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Modulated nematic structures induced by chirality and steric polarization
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What kind of one-dimensional modulated nematic structures (ODMNS) can form nonchiral and chiral bent-core
and dimeric materials? Here, using the Landau–de Gennes theory of nematics, extended to account for molecular
steric polarization, we study a possibility of formation of ODMNS, both in nonchiral and intrinsically chiral liquid
crystalline materials. Besides nematic and cholesteric phases, we find four bulk ODMNS for nonchiral materials,
two of which, to the best of our knowledge, have not been reported so far. These two structures are longitudinal
(NLP) and transverse (NTP) periodic waves where the polarization field being periodic in one dimension stays
parallel and perpendicular, respectively, to the wave vector. The other two phases are the twist-bend nematic
phase (NTB) and the splay-bend nematic phase (NSB), but their fine structure appears more complex than that
considered so far. The presence of molecular chirality converts nonchiral NTP and NSB into new NTB phases.
Surprisingly, the nonchiral NLP phase can stay stable even in the presence of intrinsic chirality.
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Until very recently only four classes of nematics were
recognized: (i) uniaxial and (ii) biaxial nematics for nonchiral
liquid crystalline materials and (iii) cholesteric and (iv) blue
phases for chiral liquid crystals [1]. The most surprising recent
discovery is the identification of the fifth. In this phase, found in
liquid crystalline systems of chemically achiral dimers [2–5],
bent-core mesogens [6,7], and their hybrids [8], the molecules
are arranged to form a helical superstructure with nanoscale
periodicity. This periodicity is about two orders of magnitude
shorter than typically found in cholesteric and blue phases of
ordinary chiral materials. With the molecular centers of mass
distributed randomly in space the structure belongs to the
nematic class. It coined the name twist-bend nematic phase
(NTB). Contrary to cholesterics, the director in NTB is not
perpendicular to the helix axis, but precesses on a cone, with
the helical axis parallel to the cone’s axis. Since molecules
forming NTB are chemically achiral experimentally coexisting
domains of opposite chirality are observed. The NTB phase
is stabilized below uniaxial nematic phase (N ) as a result of
first order N -NTB phase transition on the temperature scale.
Hence, we observe a fundamentally new phenomenon, namely,
the spontaneous chiral symmetry breaking within the nematic
class of materials.

Very recently the NTB phase has also been reported for
chemically chiral asymmetric dimers [9,10]. Interestingly,
when this intrinsic molecular chirality is added, up to seven
distinct nematic phases can be stabilized in one system. They
involve the cholesteric phase (N∗), a blue phase, and variants
of NTB, all with pitch which is larger than that found for NTB

of achiral dimers [10].
The issue of stable NTB structure has been addressed at the

theoretical level in three important papers [11–13]. With the
aid of elasticity theory of the director field, Meyer [11,12] and
Dozov [13] have analyzed some consequences of spontaneous
local bend or splay deformations of the nematic director
on the polar organization of the molecules—the so-called
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flexoelectric effect. While the cholesterics can fill the space
with homogeneous twist it appears that the corresponding bend
state should always be associated either with some twist or
splay. Consequently, in the presence of spontaneous bend, the
uniform nematic phase would become unstable to the forma-
tion of a modulated phase, which could be either chiral NTB or
nonchiral NSB [13]. A prerequisite to such behavior would be
the sign change of the (effective) bend Frank elastic constant,
K3. Indeed, K3 determined experimentally in N [4,14] is
anomalously small as the transition to NTB is approached.

Recently, Shamid et al. [15] have developed Landau
theory and lattice simulations of polar order and director
bend deformations, correlating flexoelectricity, negative K3,
and stability of the NTB and NSB phases. They predicted a
second-order phase transition from N to NTB or NSB. At the
transition, the effective K3 changes sign and the corresponding
structure develops modulated polar order, averaging to zero
globally. All phases are uniaxial and described using director
and polarization fields.

The purpose of this Rapid Communication is to investigate
how nematics can self-organize into one-dimensional
modulated structures (ODMNS) for nonchiral and intrinsically
chiral V-shaped molecules, using generalized Landau–de
Gennes–Ginzburg (LdeG) theory. We assume that the
second-rank 3×3 traceless and symmetric alignment tensor
field, Q(r), is the primary order parameter accounting for
nematic order [1]. It permits that locally a system is described
by a tripod of orthonormal directors {n̂,l̂,m̂} and corresponding
eigenvectors {λn,λl,λm}. Identifying the full biaxial field
Q with primary order parameter of nematics, rather than
its n̂ part only [13], should also clarify whether biaxiality
(λn �= λl �= λm) is relevant for NTB, for we know that chiral
nematic phases of at least intrinsically chiral mesogens are all
biaxial [16].

For the modeling of spontaneous chiral symmetry breaking
as observed in NTB the Q tensor alone is not sufficient. In
the lowest-order scenario we need, in addition, at least one
secondary order parameter, which can be either a first-rank
(polar) field, P(r) [17], or a third-rank tensor field T(r),
invariant with respect to tetrahedral point group symmetry
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[18–24]. The difference between these scenarios would be the
polar order for Q and P couplings [17] and lack of polarity but
the presence of nonlinear dielectric tensor for Q and T. Here
we focus on the Q and P fields. We look systematically into
extended LdeG free energy expansion and identify ordering
mechanisms towards one-dimensional modulated structures
using bifurcation and numerical analyses.

Before we proceed further it is important to realize that the
polar field, P, does not need to be of electrostatic or magnetic
origin. Bend-core molecules are primarily polar due to their
“V” shape, while bimesogens acquire steric polarization in
their conformational states. Such steric dipoles are present
even in the absence of electrostatic dipoles. In a densely packed
environment, we expect that these entropic, excluded volume
interactions, rather than charge moments, define the local
order, such as P. Recently, Greco and Ferrarini have provided
strong support for the entropy-driven N -NTB transition [25].

We start by introducing the minimal coupling, LdeG free
energy per volume, constructed as a power-series expansion in
Q and P, and their derivatives [17,26]. It can be decomposed as

F =
4∑

i=2

Fi = 1

V

4∑
i=2

∫
V

(fiQ + fiP + fiQP )d3r, (1)

where fiX are the free energy densities constructed out of
the order parameters {X} and contributing to Fi in ith order.
By taking suitable units, disregarding external fields and
surface terms and assuming deformations to appear only in a
quadratic part of the free energy, the general form of fiQ up
to fourth order in Q is

f2Q = 1
4 [tQ Tr(Q2) + (∇ ⊗ Q) · (∇ ⊗ Q)

+ρ(∇ · Q) · (∇ · Q) − 2κ Q · (∇ × Q)], (2)

f3Q + f4Q = −
√

6 B Tr(Q3) + Tr(Q2)2, (3)

where tQ is the reduced temperature associated with Q; κ

is the reduced chirality, proportional to the wave vector of
the cholesteric phase; and ρ is the relative elastic constant.
Likewise, the polar parts fiP are

f2P +f3P + f4P = 1
4 [tP P2 + (∇ ⊗ P) · (∇ ⊗ P) + ac(∇ · P)2

− 2κP P · (∇ × P)] + a4(P2)2. (4)

Finally, the lowest-order cross-coupling terms fiQP read

f2QP = − 1
4 [eP P · (∇ · Q) + 2κQP (∇ · Q) · (∇ × P)], (5)

f3QP = −λPαQαβPβ, (6)

f4QP = λ1PαQ2
αβPβ + λ2P2Tr(Q2). (7)

Clearly, for electric dipoles ∇ × P would vanish in (4) and (5),
while the ac term should be replaced by direct interactions
between charge distributions. However, for purely steric
dipoles, associated with excluded volume interactions [25]
these terms are all present. In particular, for intrinsically chiral
materials that develop steric polar order the chiral parameters
κ , κP , and κQP are all nonzero.

The LdeG expansion (2)–(7) is the minimal coupling theory
for systems described in terms of P and Q, where P is chiefly
of steric origin. Our objective in this Rapid Communication

is to identify possible ODMNS that minimize F ([Q(r),P(r)])
for arbitrary tQ and tP > 0. A brief account of what to expect
from such theory has already been presented long ago in [17],
where we indicated a possibility of flexopolarization-induced
periodic structures. Some of nematic structures that can be
stabilized by (flexo-)polarization are found in [27–29]. In their
theory Alexander and Yeomans [27] showed that applying an
electric field to a sample with a large flexoelectric response can
be a driving force for the formation of NSB and a flexoelectric
blue phase. Shamid et al. [28], on the other hand, have taken
a simpler version of the expansion [17] and showed that polar
two-dimensional hexagonal and three-dimensional bcc lattice
phases can be stabilized in nonchiral materials.

In this Rapid Communication we study inhomogeneous
nematics with inhomogeneity propagating in one spatial
direction, both for nonchiral and intrinsically chiral materials.
We show that stable modulated phases, identified so far as a
result of polar coupling, do not exhaust all possibilities that
the theory (1)–(7) allows for. Our ultimate goal will be to look
into fine structure of these phases and clarify the role played
by biaxiality. In order to address these issues we explore the
bifurcation theory supplemented by numerical minimization
and identify global minima of F , Eq. (1), within the ODMNS
family. We leave a question of stable polar blue phases to our
future studies.

The above program is realized in practice by expand-
ing Q(r) and P(r) into plane waves of definite helic-
ity [17]: Q(r) = ∑

k

∑2
m=−2 Qm(k) exp(ik · r)e[2]

m,k̂
, P(r) =∑

k

∑1
m=−1 Pm(k) exp(ik · r)e[1]

m,k̂
. Here k are the wave vec-

tors, Pm(k) and Qm(k) are the variational parameters in the
free energy expansion, and e[L]

m,k̂
, m = 0, ±1, ±L are the spin

L = 1,2 spherical tensors represented in a local coordinate
system with k̂ = k/|k| as quantization axis. The selection of
k, Qm(k), and Pm(k) is fixed by the bifurcation analysis [30,31]
while their numerical values are found by the subsequent
minimization of F . The theoretical analysis is outlined in the
Supplemental Material [32], and only the salient points are
highlighted here.

In the vicinity of the isotropic phase the dominant contri-
bution, F2, from the ODMNS structures is

F2 =
∑

n

2∑
m=−2

[Am(|n|k)|Qm(n)|2 + (1 − δm2,4)

×{Bm(|n|k)|Pm(n)|2 + iCm(|n|k)[Qm(n) P ∗
m(n)

−Q∗
m(n) Pm(n)]/2 }], (8)

where

Am(|n|k) = [tQ + n2k2 + ρ(4 − m2)n2k2/6 − κm|n|k]/4,

Bm(|n|k) = [tP + n2k2 + ac(1 − m2)n2k2

−2κP m|n|k]/4, (9)

Cm(|n|k) = −[eP

√
(4 − m2)/6|n|k +

√
2κQP mn2k2]/4.

Here k is replaced by nk, n = 0, ± 1, . . . , Pm(k) by Pm(n),
and Qm(k) by Qm(n); δi,j is the Kronecker delta.
Setting ∂F/∂Qm(n) = ∂F/∂Pm(n) = ∂F/∂k = 0 determines
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the equilibrium value of the amplitudes and k vector for given
material parameters. As it turns out, new classes of ODMNS
can already be identified by taking κP = κQP = λ1 = λ2 = 0
and κ � 0. For thermodynamic stability it is also mandatory
that ρ > − 3

2 and 1 + ac > 0. Additionally, a4 must be positive
if λ �= 0.

We shall now proceed by analyzing the case of λ = a4 = 0
and later discuss the effect of λ �= 0. For the first-mentioned
case the condition ∂F/∂Pm(n) = 0 can be solved for Pm(n)
given fixed Qm(n). It yields

Pm(n) = −i
Cm(|n|k)

2Bm(|n|k)
Qm(n), m = 0, ± 1. (10)

Substituting (10) back to F we obtain the effective free energy
that still has to be minimized with respect to Qm(n). Only F2

is modified by this substitution. It becomes

F2,eff =
∑

n

2∑
m=−2

[
Am(|n|k) − Cm(|n|k)2

4Bm(|n|k)
(1 − δm2,4)

]

× |Qm(n)|2 = 1

V

∫
V

feff(Q,∂Q)d3r. (11)

Note that the leading elastic part of feff can again be cast

in form (2), but with ρ being replaced by ρ − e2
P

4tP
. Since

(∇ · Q)2 vanishes for twist deformations [26] the flexopo-
larization must induce an instability towards ODMNS for

ρ − e2
P

4tP
� − 3

2 . However, generally, the eP term alone cannot
bring about spontaneous chiral symmetry breaking. For that,
as it turns out, we need either nonzero chirality or sufficiently
large |λ|, or both.

We shall now seek for ODMNS that can be stabilized
as result of a phase transition from the isotropic phase (I ).
The general method is to analyze the nonlinear equations
∂F/∂Qm(n) = ∂F/∂Pm(n) = 0 for Qm(n) and Pm(n) using
the bifurcation analysis (BA) [30,31]. We applied this method
to identify the leading amplitudes in the expansion of Q and
P [32]. In the zeroth order of BA each single amplitude Qm(1)
can bifurcate from I to a modulated structure at tQ = tm at
which the coefficient in front of |Qm(1)|2 in Eq. (11) vanishes.
Maximum of tm’s represents a potential transition temperature
for a continuous phase transition, or spinodal for a first-order
phase transition.

To identify trial ODMNS, consistent with standard ap-
proximations for the N∗ phase (|n| � 1) [16], we need to
proceed with BA to higher orders. A subsequent minimization
of F either with respect to so identified trial states or with
respect to all 21 amplitudes of |n| � 1 gives (consistently)
six different ODMNS: (i) NLP{Q0(1), P0(1), ReQ0(0)}, (ii)
NTP{ReQ±1(1), ReQ0(0), ReQ2(0), ImP±1(1)}, (iii) NTB {as
in NTP}, (iv) NSB {as in NTP, ImQ±2(1), ImQ0(1)}, (v) N∗

SB {as
in NSB}, and (vi) N∗ {ImQ±2(1), ReQ0(0)}, where the leading
nonzero amplitudes are given in braces. The structures are
pictured in Fig. 1 with the exemplary phase diagrams shown
in Figs. 2(a)–2(d). All phase transitions found are first order
although with increasing tQ and decreasing tP the difference
between the bifurcation and transition temperatures becomes
numerically negligible.

Figures 2(a) and 2(b) show new ODMNS structures as
predicted by the model for κ = 0. These flexopolarization-

FIG. 1. ODMNS predicted by the theory. Lengths of cuboid edges
are proportional to the eigenvalues of Q + cI, where I is the unit
matrix and c is a constant, such that the isotropic state is represented
by a cube. Red arrows represent P and the black arrow is the direction
of k.

induced nonchiral phases are referred to as the transverse
periodic nematic (NTP) and the longitudinal periodic nematic
(NLP) phases. In NTP the polarization vector, marked by red
arrows in Fig. 1, is always perpendicular to k and to the
third director m̂. It is given by a linear combination of n̂
and l̂. In addition, we have |Re Q+1(1)| = |Re Q−1(1)|. As
a result of nonvanishing homogeneous nematic background
[Re Q0(0) �= 0, Re Q2(0) �= 0] the NTP structure is locally
biaxial with biaxiality modulated along k.

The NLP phase is constructed out of m = 0 modes, with n̂
and P being parallel to k. Hence its name longitudinal wave.
The phase is uniaxial and periodically changes from prolate to
oblate through the isotropic point. The transition from I to NLP

is controlled by the ac term, which gives nonzero contribution
only for the m = 0 mode, Eq. (8).

In the NSB phase the polarization P is periodically mod-
ulated in the {n̂, l̂} plane. The primary modes of m = 0 and
m = ±1, which characterize NSB, emerge at the same bifur-
cating temperature [32]. Through a coupling to the nematic
background and the m = ±2 modes in higher orders of BA,
the structure shows an inhomogeneous biaxial modulation.

The phase diagrams in Figs. 2(c)–2(d) illustrate changes
induced by intrinsic molecular chirality for λ = 0. Clearly,
κ �= 0 results in replacing N by N∗, where P = 0 and n̂ ⊥ k
rotates about k. Changes also concern NTP and NSB phases.
NTP transforms into biaxial NTB (see Fig. 1), with n̂ precessing
on the right elliptic cone about k, and with P perpendicular to
k. For κ > 0 the periodicity of NTB is lower than that of NTP.

The NSB phase turns into its chiral, biaxial analog N∗
SB,

which is another variant of NTB. Here, two out of the three
directors generate twist deformations, similar to the ones
modeled in [29], with P being a linear combination of all
three directors.
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(a)

(b)

(c)

(d)

FIG. 2. Phase diagrams for ρ = 1 and B = 1/
√

6. Other coupling
constants are indicated in each panel. Solid lines are obtained
from numerical minimization while dashed curves are bifurcation
temperatures from the isotropic phase. In panels (a) and (b) all phases
are nonchiral, while in panel (c) all modulated phases are chiral.
Despite nonzero intrinsic chirality in panel (d) there is a stable region
of achiral modulated NLP structure.

The most striking, however, is the prediction of the
nonchiral and uniaxial NLP phase. A remarkable property of
this structure is that it stays nonchiral even for intrinsically
chiral systems. The phase can become absolutely stable within
the ODMNS class [Fig. 2(d)] given the free energy of the
m = 0 mode is sufficiently lowered by the ac term.

The NTB phase can be stabilized not only for κ �= 0, but
primarily for λ < 0 (a4 > 0). In order to obtain this phase for
nonchiral materials |λ| must exceed a threshold value, where
NTB bifurcates from NTP. For example, if we take parameters
of Fig. 2(a) and a4 = 1, then NTB becomes stable for λ � −0.4.
Exemplary calculations carried out for λ = −1/2 show this
scenario with a rich sequence of accompanied phase transi-
tions: I ↔ (NTP,NSB,N ) ↔ NTB (phases in parentheses are
optional). Although the NTB phases obtained for (a) {κ � 0,

λ = 0} and (b) {κ = 0,λ �= 0} have the same symmetry with
P being an eigenvector of Q, in the first case the structure of
single helicity m = sgn(κ) minimizes F , while for the case (b)
structures of opposite helicities m = ±1 are of the same free
energy. The cases (a) and (b) also differ quantitatively, that is
in their periodicities and biaxialities [16].

In conclusion, the LdeG theory of nematics, extended to
account for molecular steric polarization, can stabilize five
different ODMNS as a result of first-order phase transition
from the isotropic phase. Three of these, N∗, NSB, and NTB,
are standard ODMNS, but the two achiral ones, NLP and NTP,
have not been reported so far. The most surprising observation
is that the nonchiral NLP phase can stay stable even in the
presence of intrinsic molecular chirality.

Although great experimental strides have been made
recently towards an understanding of the structural properties
of the chiral NTB phase, there is no consensus as to what
mechanism is responsible for chiral symmetry breaking. Our
analysis shows that correlating steric dipoles, flexopolariza-
tion, and molecular chirality at mesoscopic scale can bring a
fundamental understanding of this issue. Indeed, except for
N∗, a prerequisite for the existence of the aforementioned
structures is nonzero flexopolarization. But, in order to obtain
a stable chiral NTB an additional factor is necessary. This can
be either sufficiently strong PQP coupling, governed by the
parameter λ, or the presence of intrinsic molecular chirality
(κ �= 0), or both.

So far, only two of the ODMNS, namely, NTB and NSB, have
been reported by experimental groups. But the NLP phase,
being purely uniaxial, might have already been observed in
chiral materials as well, as there are a few unidentified struc-
tures with a uniaxial low temperature phase [9]. Generally, the
predicted ODMNS can be looked for in nonchiral and intrin-
sically chiral materials such as recently investigated dimers
and stabilized trimers [33] (even oligomers), all exhibiting
nematiclike bend modulated phases. Conventionally, the NTB

phase is formed from the nematic phase. The presented theory
also permits a direct I -NTB phase transition. Very recently, this
novel possibility has been confirmed experimentally [34,35].
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THEORY

Minimal coupling free energy expansion for alignment tensor and polarization field

The SO(3)-symmetric Landau-deGennes free energy (LdeG) of nematics is an expansion

about the isotropic phase in a second rank, symmetric and traceless tensor order parameter,

Q(r), with Cartesian components Qαβ(r), (α, β = x, y, z) and its derivatives ∂γQαβ. The

original expression for F , complete up to fourth order can be found in [1]. General theory

that involves an extension containing lowest order couplings with the polarization field P(r)

has been developed in [2, 3]. It reads

F =
4∑
i=2

Fi =
1

V

∫
V

f d3r =
1

V

4∑
i=2

∫
V

(fiQ + fiP + fiQP ) d3r, (1)

where fiX are the free energy densities in i−th order. The successive contributions to f are

f2Q =
1

4

[
tQ Tr(Q2) + (∇⊗Q) · (∇⊗Q)

+ρ(∇ ·Q) · (∇ ·Q)− 2κQ · (∇×Q)] , (2)

f3Q + f4Q = −
√

6B Tr(Q3) + Tr(Q2)2, (3)

f2P + f3P + f4P =
1

4

[
tP P2 + (∇⊗P) · (∇⊗P)

+ ac(∇ ·P)2 − 2κP P · (∇×P)
]

+ a4(P
2)2, (4)

f2QP = −1

4
[ePP · (∇ ·Q) + 2κQP (∇ ·Q) · (∇×P)] , (5)

f3QP = −λPαQαβPβ, (6)

f4QP = λ1PαQ
2
αβPβ + λ2P

2Tr(Q2), (7)

where the number of the constitutive parameters has been reduced by taking suitable units

[4]. Also summation over repeated Greek indices is to be understood if not stated other-

wise. Out of 13 phenomenological parameters left, tQ is the reduced temperature, κ is the

reduced intrinsic chirality in the absence of P, ρ is the relative elastic constant and eP is

the flexopolarization coefficient. Taking tP > 0 eliminates spontaneous polar order (P 6= 0)

in the absence of Q.

The LdeG expansion (2-7) offers the minimal coupling, mesoscopic level description of

the systems whose orientational properties depend on Q (primary order parameter) and P
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(secondary order parameter). Our objective is to identify possible ODMNS that minimize

F ([Q(r),P(r)]) for arbitrary tQ and tP > 0.

The problem of finding global minima of the free energy functional, Eq. (1), is extremely

difficult since the bending and bulk energies favour different forms of the order parameters

Q and P. Usually the order, for which the free energy becomes locally minimal, cannot

be extended globally (frustration), which causes liquid crystalline phases of complex orien-

tational order to emerge [5–9]. Below we show how to identify some of these. We sketch

a variant of the general procedure [10, 11] that allows to identify the absolute minimizers

of F close to the isotropic phase within the class of one-dimensional modulated nematic

structures (ODMNS).

Helicity mode expansion

To identify (quasi-)periodic structures in the LdeG theory, Eq. (1), the order parameter

fields Q and P usually are expanded into plane waves with helicity [3]

Q(r) =
∑
k

2∑
m=−2

Qm(k) exp(i k · r) e[2]
m,k̂

, (8)

P(r) =
∑
k

1∑
m=−1

Pm(k) exp(i k · r) e[1]
m,k̂

, (9)

where e
[L]

m,k̂
, m = 0,±1,±L are the spin L = 1, 2 spherical tensors represented in an or-

thonormal, right handed local coordinate system {ξ̂, η̂, k̂} with k̂ = k/|k| as quantization

axis. They read [3]

e
[1]

±1,k̂ = ∓ 1√
2

(ξ̂ ± iη̂),

e
[1]

0,k̂
= k̂,

e
[2]

±2,k̂ =
1

2
(ξ̂ ± iη̂)⊗ (ξ̂ ± iη̂),

e
[2]

±1,k̂ = ∓1

2

[
(ξ̂ ± iη̂)⊗ k̂ + k̂⊗ (ξ̂ ± iη̂)

]
,

e
[2]

0,k̂
=

1√
6

(3k̂⊗ k̂− 1). (10)

The reality condition: {Q(r) = Q(r)∗,P(r) = P(r)∗} implies that Qm(−k) = (−1)mQm(k)∗

and Pm(−k) = (−1)m+1Pm(k)∗. Substitution of the expansions (8,9) into the free energy,
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Eq. (1), gives

F2 =
1

4

∑
k

2∑
m=−2

{
tQ +

[
1 +

1

6
ρ(4−m2)

]
k2 − κmk

}
|Qm(k)|2

+
1

4

∑
k

1∑
m=−1

{
tP +

[
1 + ac(1−m2)

]
k2 − 2κPmk

}
|Pm(k)|2

+
∑
k

1∑
m=−1

(
eP
√

4−m2

4
√

6
k +

κQP

2
√

2
mk2

)[
Pm(k)∗Qm(k)− Pm(k)Qm(k)∗

2i

]
,

F3 = −
√

6B
∑

k,k′,k′′

∑
m,m′,m′′

Qm(k)Qm′(k′)Qm′′(k′′)Tr
[
e
[2]

m,k̂
e
[2]

m′,k̂′e
[2]

m′′,k̂′′

]
δk+k′+k′′,0

−λ
∑

k,k′,k′′

∑
m,m′,m′′

Pm(k)Qm′(k′)Pm′′(k′′) e
[1]

m,k̂
· e[2]

m′,k̂′ · e
[1]

m′′,k̂′′δk+k′+k′′,0,

F4 = .... . (11)

The calculations above are carried out subject to the condition that

1

V

∫
V

eik·rd3r = δk,0, (12)

where δi,j is the Kronecker delta. Two amplitudes of opposite helicity out of {Qm(k), Pm(k)}

can be taken real due to invariance of P and Q with respect to uniform translations in 3D

and global rotations about k. We choose ImQ±1 = 0.

Minimization scheme for periodic one-dimensional structures

Usually, the phases of the complex amplitudes Qm(k) and Pm(k) are fixed by symmetry

of the structure considered [4, 5, 12], while the real parts of the amplitudes and k-vectors

are found by minimizing the free energy, F . Here, we show how to find stable ODMNS.

Modulated, one-dimensional minimizers of F composed of (11) are determined by one

type of wave vector set. Hence |k| can be replaced by nk, n = 0,±1, ..., Pm(k) by Pm(n)

and Qm(k) by Qm(n); the direction of k being arbitrarily oriented in space can be fixed
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parallel to z-axis of a laboratory system of frame. The equations (11) now become

F2 =
∑
n

2∑
m=−2

{
Am(|n|k)|Qm(n)|2 + (1− δm2, 4)

[
Bm(|n|k)|Pm(n)|2

+
i

2
Cm(|n|k) (Qm(n)P ∗m(n)−Q∗m(n)Pm(n))

]}
, (13)

F3 = −
√

6B
∑
n,n′,n′′

∑
m,m′,m′′

Qm(n)Qm′(n′)Qm′′(n′′)Tr
[
e
[2]

m,k̂
e
[2]

m′,k̂
e
[2]

m′′,k̂

]
δn+n′+n′′, 0

−λ
∑
n,n′,n′′

∑
m,m′,m′′

Pm(n)Qm′(n′)Pm′′(n′′)e
[1]

m,k̂
· e[2]

m′,k̂
· e[1]

m′′,k̂
δn+n′+n′′, 0

F4 = ....,

where

Am(|n|k) =
1

4

[
tQ + n2k2 +

ρ(4−m2)

6
n2k2 − κm|n|k

]
,

Bm(|n|k) =
1

4

[
tP + n2k2 + ac(1−m2)n2k2 −2κPm|n|k] ,

Cm(|n|k) = −1

4

(
eP

√
4−m2

6
|n|k +

√
2κQPmn

2k2

)
. (14)

The equilibrium length of the k-vector is easily found from the solution of linear equation

in k:

∂F/∂k = ∂F2/∂k = 0. (15)

Setting

∂F/∂Qm(n) = 0, (16)

∂F/∂Pm(n) = 0 (17)

determines the equilibrium value of the amplitudes for given material parameters. Now

there are three steps to identify relevant Qm(n) and Pm(n) for ODMNS. We illustrate the

procedure for

κP = κQP = λ = λ1 = λ2 = a4 = 0. (18)

Extension to the general case is straightforward.

1. Diagonalization of F2, Eq. (13).
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This step is particularly simple for (18) since Pm(n) appears only in (13). By solv-

ing the condition (17) for Pm(n) (given fixed Qm(n)):

Pm(n) = −i
C(m, |n|k)

2B(m, |n|k)
Qm(n), m = 0,±1. (19)

and substituting (19) back to (13) we obtain F2 in the diagonal form (due to global trans-

lational and rotational symmetries of the expansion)

F2,eff =
∑
n

2∑
m=−2

[
A(m, |n|k)− C(m, |n|k)2

4B(m, |n|k)
(1− δm2,4)

]
|Qm(n)|2. (20)

F = F2, eff + F3 + F4 still has to be minimized with respect to Qm(n).

2. Identification of ODMNS through bifurcation analysis.

General form of the Eqs. (16) for F2 given by (20) is

Λixi = f({xα}), i = 1, 2, ..... (21)

where f(...) is the third-rank polynomial in {ReQm(n), ImQm(n)} ≡ {xα} and where the

set {Λi} denotes the corresponding coefficients in front of |Qm(n)|2, Eq. (20). The isotropic

phase (I), where xi = 0 (∀i), always solves (21). Decreasing tQ (or tP ) we expect that for

tQ ≤ tcQ the isotropic phase is no longer a local minimum of F . We now employ a bifurcation

analysis to Eqs (21) to determine the stability limit tcQ of I as well as the ODMNS structures

that become stable below tcQ (see [11] and references therein). For this purpose we expand

Λi and xi in an arbitrary parameter ε,

Λi = Λi,0 + εΛi,1 + ε2Λi,2 + ...,

xi = ε xi,1 + ε2 xi,2 + ... . (22)

By substituting Eqs. (22) into Eqs. (21) and comparing terms of the same order in ε, we find

equations for xα, i and Λα, i of which the ones up to first order in ε are obvious for Landau

expansion:

(ε0) : Λi,0 = Λi(tQ = ti) = 0

(ε1) : xi = xi,1 6= 0, for tQ < ti. (23)
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They give the critical (or spinodal) temperatures for each independent mode i and the

wavelength, Eq. (15), of the bifurcating solution i.

Explicitly, the leading m = ±2 modes Q±2(1) bifurcate from I when

tQ = t±2 = κ2,

k±2 = ±κ > 0. (24)

The condensation of the leading m = ±1 modes Q±1(1) occurs when t±1 and k±1 satisfies

the implicit relations

tQ = t±1 =
k±1

(
e2Pk±1 − 4

(
k2±1 + tP

)
(∓2κ+ (ρ+ 2)k±1)

)
8
(
k2±1 + tP

) ,

κ =
k±1

(
∓e2P tP ± 4(ρ+ 2)

(
k2±1 + tP

)2)
4
(
k2±1 + tP

)2 , (25)

which can be resolved for non-chiral materials (κ = 0) giving

tQ = t±1 =
1

8

(
e2P − 4

√
(ρ+ 2)e2P tP + 4(ρ+ 2)tP

)

k±1 =

√√√√√ e2P tP
4(ρ+ 2)

− tP , for 0 < tP <
e2P

4(ρ+ 2)
. (26)

Similarly, for m = 0 (Q0(1) mode) we get

tQ = t0 =
e2P − 2

√
2(2ρ+ 3)e2P tP + 2(2ρ+ 3)tP

6 (ac + 1)
, (27)

k0 =

√√√√√2e2P tP
2ρ+3

− 2tP

2(ac + 1)
, for 0 < tP <

e2P
2(2ρ+ 3)

. (28)

Finally, the bifurcation from I to N (Q0(0) ) takes place at tQ = tIN = 0.

The actual critical (spinodal) temperature tcQ is the largest of the above temperatures.

The corresponding amplitude Qm(n) (|n| ≤ 1) , which we refer to as x1, gives the leading

contribution to Q, Eq. (8). The next to leading contributions are found systematically by

studying equations generated by higher order terms in ε. Up to εn we get a finite, small

subset X[ε, n] of nonzero xαs that couple to x1 (see example below). Using X[ε, n], we

can construct a perturbative expansion for Q and, subsequently, for F . A much better

alternative is to carry out full minimization of F with respect to all variables xm ∈ X[ε, n],

while setting xp = 0 for xp /∈ X[ε, n]. Since the difference between X[ε, n] and X[ε, n − 1]
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is in variables that are of the order of xn1 (εn ) we can carry out the minimization starting

from n = 1 and systematically improve the results by increasing n. Hence, the free energies

of all ODMNS can be found to arbitrary accuracy.

An equivalent approach would be to construct the effective Landau expansion in the

primary amplitude x1 by systematically eliminating xα, α > 1 [10].

2. Example: Isotropic-Cholesteric bifurcation

Our analysis can be illustrated for the well known case of the Isotropic-Cholesteric

phase transition [4]. We assume that κ > 0 and that tcQ = t2 = κ2, Eq. (24). The

real and imaginary parts {x1 = ReQ2(1), x2 = ImQ2(1)} of Q2(1) bifurcate at the same

temperature; hence they are both nonzero for tQ < t2 with Λ1 = Λ2 = tQ − κ2.

Let x20 = x21 + x22 and x3 = ReQ0(0). Then

(ε1) : Λ1,1 = Λ2,1 = x3,1 = 0

(ε2) : κ2Λ1,2 = κ2Λ2,2 = 16
(
9− κ2

)
x20,1

(ε2) : κ2x3,2 = −12x20,1 (29)

(ε3) : ... = ...,

where the relation x0,1x0,2 = x1,1x1,2 + x2,1x2,2 has been used. As can be seen from (29)

the nonzero parameter x0 generates nonzero x3 in second order of ε. Hence x0 and x3 are

coupled and nonzero value of the former one implies nonzero value of the latter.

If we limit to |n| ≤ 1 no further nonzero Qm(n)s are coupled by the procedure

(29). Hence, up to |n| ≤ 1 the cholesteric structure is characterized by X[ε, 2] =

{ReQ2(1), ImQ2(1),ReQ0(0)} amplitudes, which is commonly accepted parameterization

of the cholesteric phase [4]. The ODMNS relevant for the competition with the N and N∗

phases, are reported in the main text.
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