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The response of the nematic twist–bend (NTB) phase to an applied
field can provide important insight into the structure of this liquid
and may bring us closer to understanding mechanisms generat-
ing mirror symmetry breaking in a fluid of achiral molecules. Here
we investigate theoretically how an external uniform field can
affect structural properties and the stability of NTB. Assuming
that the driving force responsible for the formation of this phase
is packing entropy, we show, within Landau–de Gennes theory,
that NTB can undergo a rich sequence of structural changes with
the field. For the systems with positive anisotropy of permittiv-
ity, we first observe a decrease of the tilt angle of NTB until it
transforms through a field-induced phase transition to the ordi-
nary prolate uniaxial nematic phase (N). Then, at very high fields,
this nematic phase develops polarization perpendicular to the
field (Np+). For systems with negative anisotropy of permittivity,
the results reveal new modulated structures. Even an infinitesi-
mally small field transforms NTB to its elliptical counterpart (NTBe),
where the circular base of the cone of the main director becomes
elliptic. With stronger fields, the ellipse degenerates to a line,
giving rise to a nonchiral periodic structure, the nematic splay–
bend (NSB), where the two nematic directors are restricted to a
plane. The three structures—NTB, NTBe, and NSB—with a modu-
lated polar order are globally nonpolar. But further increase of the
field induces phase transitions into globally polar structures with
nonvanishing polarization along the field’s direction. We found
two such structures, one of which is a polar and chiral modifica-
tion of NSB, where splay and bend deformations are accompanied
by weak twist deformations (N*

SBp). Further increase of the field
unwinds this structure into a polar nematic (Np−) of polarization
parallel to the field.
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The twist–bend nematic (NTB) phase, recently discovered in
liquid crystalline chemically achiral dimers (1–7), bent-core

mesogens (8, 9), and their hybrids (10), is one of the most
amazing examples of spontaneous chiral symmetry breaking in
soft-matter physics. It occurs in the liquid state without any long-
range positional order, but the average local molecular long axis,
n̂, known as the director, follows a nanoscale-pitch heliconical
winding. Thus, the structure belongs to the family of nematic
phases and is the fifth nematic phase recognized (5), in addition
to uniaxial and biaxial nematics for nonchiral liquid crystalline
materials and cholesteric and blue phases for chiral liquid crys-
tals (11). In 2001, Dozov (12), following earlier analysis of Meyer
(13, 14), predicted theoretically this structure using the Frank
model of elastic deformations in nematics by assuming that the
bend elastic constant can change sign. With this assumption, n̂
can form 1D modulated structures where simultaneously twist
and bend or splay and bend are nonzero. The second of the struc-
tures, known as the nematic splay–bend (NSB), is nonchiral and
exhibits periodic splay and bend modulations of the director, tak-
ing place within one plane. The observation of this phase is still
not confirmed experimentally, but it can be stabilized in constant-
pressure Monte Carlo simulations of thin layers composed of
hard bent–core molecules (15).

The first possibility is recognized as the chiral NTB phase, with
the director, n̂(r)≡ n̂(z ), attaining an oblique helicoidal struc-

ture in precessing on the side of a right circular cone (Fig. 1).
More specifically,

n̂(z ) = [cos(φn̂) sin(θn̂), sin(φn̂) sin(θn̂), cos(θn̂)], [1]

where θn̂ is the conical angle (angle between n̂ and k) and
φn̂ =±kz =± 2π

p
z , with wave vector k = k ẑ taken to be paral-

lel to the ẑ axis of the laboratory system of frame; here, p
is the pitch. The Dozov’s theory (12) of the NTB phase has
strong experimental support for anomalously small (but posi-
tive) bend elastic constant that has been reported in the vicin-
ity of the nematic-nematic twist-bend phase transition (4, 16).
The Landau–de Gennes (LdeG) mesoscopic theory, where the
director is replaced by a symmetric and traceless tensor order
parameter field, Q̃, often referred to as the alignment ten-
sor, accounts for a fine structure of the modulated phases and
shows limitations of the director’s description (17, 18). The
eigenvector of Q̃ corresponding to the maximal modulus of a
nondegenerate eigenvalue defines the director n̂ of the system.
The remaining two eigenvectors, which we denote l̂ and m̂, are
the secondary directors. Hence, three orthogonal unit direc-
tors {n̂, l̂, m̂ = n̂× l̂} and the associated eigenvalues are generally
needed to account for local orientational properties of nematics,
including, of course, NTB.

The NTB phase observed has a number of remarkable fea-
tures. It looks uniform everywhere in space like cholester-
ics, with a temperature-dependent conical angle, θn̂, ranging
approximately between 9◦ and 30◦ (4, 19, 20). But, while the
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Fig. 1. Schematic representation of the nematic twist–bend structure.
Right circular cone of conical angle θn̂ shows the tilt between the direc-
tor n̂ and the helical symmetry axis, parallel to the wave vector, k.
Red arrow represents polarization P, where P ‖ k× n̂; black arrow is the
direction of k.

cholesteric phase with its conical angle equal to a right angle
(θn̂ =π/2) can homogeneously fill the space with a twist, the
analogous arrangement for NTB (0<θn̂ <π/2) requires both
bend and twist deformations to be present. X-ray diffraction
experiments, sensitive to positional (3, 5) or orientational (21,
22) orderings, reveal no long-range positional order of molecu-
lar centers of mass (NTB indeed remains a fully 3D liquid) but
a 1D periodic order of molecular orientations. The helicoidal
pitch length in NTB is about 10 nm—that is, on the order of a
few molecular lengths, which is about two orders of magnitude
smaller than that typically found in cholesteric and blue phases
(11). The NTB phase is usually stabilized as a result of a first-
order phase transition from the uniaxial nematic phase, but very
recently a direct transition between NTB and the isotropic phase
has also been found (23, 24). Lack of molecular intrinsic chi-
rality implies that coexisting domains of opposite handedness
are formed and, consequently, the emergence of NTB is related
to a fundamental phenomenon—namely, the spontaneous chiral
symmetry breaking.

While phenomenologically the spontaneous distortion of the
NTB and NSB phases can effectively be explained as originat-
ing from the negative bend elasticity (12), the question of what
microscopic/mesoscopic mechanism can be responsible for chiral
symmetry breaking, especially the self-organization into NTB, is
still open and remains to be understood and explored. The issue
has been addressed at the theoretical level in a series of papers
(18, 25–33). Analysis shows that the molecules whose structure
is sufficiently bent are a necessary requirement for the stabiliza-
tion of NTB, probably as a result of entropic, excluded volume
interactions (25, 28). The molecules not only self-organize into
a helical structure but also propagate long-range polar order of
vanishing global polarization, transverse to the helical axis. For
steric interactions, the polarity is a consequence of ordering of
molecular bent cores (27, 28, 32, 33), and the other molecular
interactions, such as between electrostatic dipoles, are probably
less relevant for thermal stability of this phase. These conclusions
seem in line with recent experimental observations (34–36).

A mesoscopic-level explanation of how molecular polarity
of bent-core molecules can generate modulated polar nematic
phases and, hence, effectively lower the bend elastic constant
has been proposed to be due to the flexopolarization couplings,
where derivatives of the alignment tensor (or of the director
field) induce a net polarization (17, 18, 26, 29) (see supplemental
material for ref. 37).

Model
We regard Q̃ and P̃ as dimensionless fields that characterize
locally averaged orientational order of the bent-core molecules.
A likely source of the polar order P̃(r̃) may be a sterically induced
ordering due to specific bent-core molecular shapes, or it may
be the electrostatic polarization due to molecular electric dipole
moments (if present). On the other hand, the alignment tensor
Q̃ can be associated with the anisotropic part of macroscopic
response functions of the bulk material (11). For example, it
can be identified with the anisotropic part ∆ε(r̃) of the dielec-
tric (diamagnetic) susceptibility tensor ε(r̃): ∆ε= ε− 1

3
Tr(ε)1,

where 1 denotes the unit tensor and r̃ stands for the posi-
tion vector. Although the proportionality coefficient between
∆ε and Q̃ may be chosen at will, it is convenient to take (see,
e.g., ref. 38)

Q̃αβ = ∆εαβ/∆εmax , [2]

where |∆εmax | is the maximal anisotropy in the principal suscep-
tibilities ∆ε (∆ε= ε||− ε⊥) that would be measured along (ε||)
or normal (ε⊥) to the director in the perfectly ordered nematic
phase. When ∆εmax > 0, the system has positive anisotropy and
vice versa.

The minimal coupling model in Q̃(r̃) and P̃(r̃), which is able
to account for NTB ordering, is the LdeG free-energy expansion
(17, 18, 39). It reads

F̃ =
1

Ṽ

∫
Ṽ

f̃ d3r̃ =
1

Ṽ

∫
Ṽ

(
f̃Q + f̃P + f̃QP

)
d3r̃, [3]

where the free-energy densities, f̃X , are constructed out of the
fields X . The general form of f̃X for nonchiral liquid crystals is
given by (17)

f̃Q = aQ Tr(Q̃2)− b Tr(Q̃3) + cTr(Q̃2)2

+L1(∇⊗ Q̃)2 +L2(∇ · Q̃)2, [4]

f̃P = aP P̃2 +A4(P̃2)2 + bP (∇⊗ P̃)2 +Ac(∇· P̃)2, [5]

f̃QP =−εP P̃ · (∇· Q̃)−ΛQP P̃αQ̃αβP̃β . [6]

Here, b, c, L1, L2, A4, bP , Ac , εP , and ΛQP are temper-
ature-independent constitutive parameters, (∇⊗ Q̃)2 = (∂iQ̃jk )

(∂iQ̃jk ), (∇ · Q̃)2 = (∂iQ̃ik )(∂j Q̃jk ), and (∇⊗ P̃)2 = (∂i P̃j )

(∂i P̃j ); repeated indices are summed over.
As always in Landau theory, the temperatures aQ = a0Q(T −

T ∗) and aP = a0P (T −TP ) are connected with the absolute
temperature T of the system; T ∗ is the spinodal for a first-order
phase transition from the isotropic phase to an orientationally
ordered phase or transition temperature otherwise; TP is the
transition temperature to a polar phase of Q̃ = 0 and P̃ 6= 0. We
take aP > 0, which eliminates spontaneous polar order (P̃ 6= 0) in
the absence of Q̃. Since a0P > 0, a0Q > 0, T ∗>TP , and T >TP ,
any straight line in the {aQ , aP} plane with positive slope and
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negative aQ -intercept represents a permissible physical system
with no polar order for Q̃ = 0. In the remaining parts of the free-
energy density, Ac is the strength of the longitudinal contribution
from the steric polarization, εP is the strength of flexopolar-
ization, and ΛQP is the strength of direct coupling between
Q̃ and P̃ fields. For thermodynamic stability of f̃ against an
unlimited growth of Q̃(r̃) and P̃(r̃), it is mandatory that c> 0,
L1 > 0, L1 + 2

3
L2 > 0, A4 > 0, and bP +Ac > 0. Note that Eqs.

4–6 contain all symmetry-allowed invariants up to fourth order
in Q̃ and P̃ and include for the quadratic part those involving
first-order spatial derivatives of Q̃ and P̃. Higher order elastic
and bulk contributions, which could be significant (see ref. 39),
will not be considered here. When the flexopolarization coupling
becomes strong enough (18),

4L2− ε2
P/aP ≤−6L1, [7]

the uniform nematic phase can no longer be stable, and a modu-
lated polar order is formed. In addition to NTB and NSB, the the-
ory (Eq. 3) predicts the existence of two further 1D modulated
nonchiral, polar nematic phases with transverse and longitudinal
polarization being modulated along just one direction (18). But
it is important to observe that the flexopolarization term alone
(εP 6= 0) is not sufficient to bring about spontaneous chiral sym-
metry breaking. It needs to be accompanied, at least, by the non-
vanishing ΛQP -coupling (ΛQP 6= 0) in F̃ . The nonvanishing ΛQP

is also needed for a proper explanation of the fluctuation modes
in NTB, as suggested by recent light-scattering experiments (40).

Alternative mesoscopic scenarios pertaining to the stability of
NTB, like these involving couplings between the alignment tensor
and higher rank (octupolar) order parameters, have also been
proposed (41–47). With the recent discovery of a bent-core mate-
rial exhibiting anomalously low twist and bend elastic constants
(48), this indicates that the theoretical studies of mechanism(s)
responsible for observed spontaneous chiral symmetry breaking
are still in their initial stage, and further research is needed to
provide understanding of the stability of NTB. One promising
direction, which we would like to follow here, is a systematic anal-
ysis of how properties of NTB can change in the presence of exter-
nal stimuli, such as electric or magnetic fields, surface anchoring,
photochemically driven trans cis isomerization, etc. Such analysis
can also be important in seeking future practical applications of
this new phase.

In the case of modulated nematics, their response to an exter-
nal field can become highly nontrivial (11, 49). In cholesterics,
for example, it is possible to unwind the orientational spiral
through an intermediate heliconical structure (50, 51), both
for bulk sample (52) and in confined geometry (53, 54). A
more comprehensible, field-induced modification of cholester-
ics involves reorientation of the helical axis (11) or chang-
ing the pitch (55). Similar effects can be expected for NTB,
although recent magnetic field experiments (56, 57) show
only depletion of the N −NTB transition temperature, with-
out a noticeable distortion of the structure. So far, theo-
retical attempts to characterize the interaction of NTB with
the field have been made on the basis of the Frank elastic
theory (58–60).

The purpose of this paper is to study, in a systematic way,
a response of the bulk NTB phase to the external fields (elec-
tric, magnetic) within the frame of the LdeG free energy (Eqs.
3–6). As NTB is expected for nonchiral bent-shaped molecules,
with and without electric dipoles, we assume that stability of this
phase is driven primarily by excluded-volume, entropic interac-
tions (28). We consider the LdeG free energy (Eq. 3) supple-
mented by the dielectric (diamagnetic) term, F̃E (F̃→ F̃ + F̃E ,

F̃E = 1

Ṽ

∫
Ṽ

f̃E d3r̃), where (11, 38)

f̃E =−1

2
ε0Ẽα∆εαβẼβ =−1

2
ε0∆εmax Ẽ

2êαQ̃αβ(r̃)êβ . [8]

Here, Ẽ2 = ẼαẼα, and ê is the unit vector collinear with Ẽ;
ε0 is the permittivity constant of the vacuum for an applied
electric field and inverse of the permeability of vacuum (ε0→
µ−1

0 ) for a magnetic field. Note that we omitted in Eq. 8
any coupling with the field that is independent of orienta-
tion. We think that the dielectric (diamagnetic) term should
dominate, at least for sufficiently strong fields, and disre-
gard a possible direct interaction between the dipole moments
and the field.

It is now useful to rewrite Eq. 3 in terms of reduced (dimen-
sionless) quantities, which reveals the redundancy of four param-
eters in the expressions (Eqs. 4–6) and allows us to set them to
one from the start (17, 18, 39, 61). We introduce the reduced
quantities F , f , r, Q, P, tQ , ρ, tP , ac , ad , eP , λ, ∆εE2, and k
using equations

F̃ =
b4

c3
F

(
f̃ =

b4

c3
f

)
, r̃ =

2
√
c L1

b
r, Q̃ =

b

c
Q, [9]

P̃ =
b
√
L1

c
√
bP

P, aQ =
b2

4c
tQ , L2 =L1 ρ, [10]

aP =
b2bP
4 c L1

tP , Ac = bP ac , A4 =
c b2

P

L2
1

ad , [11]

εP =
b
√
bP

2
√
c

eP , ΛQP =
b bP
L1

λ, [12]

Ẽ2 =
2 b3

c2 ε0 ∆εmax
(∆εE2), k̃ =

b

2
√
c L1

k, [13]

Fig. 2. Schematic phase diagram involving only isotropic, nematic, and
nematic twist–bend phases obtained within the relaxation method. Given
also is an exemplary reference NTB state (blue point A) for which a detailed
response to the external field has been found. Any physical system is
represented by a straight line of the positive tangent and negative tQ inter-
cept, passing through a point, A—that is, lying between the two limiting
dashed lines shown. Note that the generic system represented by A gives
all sequences of phases with stable NTB observed experimentally—namely,
I−N−NTB and a direct I−NTB. Each allowed straight line is parameter-
ized by the temperature T according to linear relations between tQ and aQ

and between tP and aP (Eqs. 10 and 11). Detailed calculations of the field
effect on the NTB phase are carried out for ρ= 1, ac = 2,eP =−4, ad = 1,
and λ=−1/2.
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Fig. 3. Transformation of NTB with an applied external field. The dashed
lines correspond to the values of ∆ε|E|2 that lead to phase transformation;
yellow arrows are directions of the field E in each of the structures. Red
arrowheads represent the polarization vector P, and the black arrowhead is
the direction of the wave vector k. Lengths of cuboid edges are proportional
to the eigenvalues of Q + cI, where I is the unit matrix and c is a constant,
such that the isotropic state is represented by a cube. Directions of cuboid
edges, equivalent to principal axes of Q, are along the directors, where the
main principal axis associated with the maximal nondegenerated eigenvalue
of Q is parallel to n̂. The secondary directors m̂ and l̂ are parallel to the
remaining two cuboid edges, with the rule that m̂ = n̂× l̂ is associated with
the next-to-maximal eigenvalue. Rightmost are schematic representations
of the structures with the main director n̂ shown as the blue double-arrow.
Blue curves depict successive, field-induced deformations of the NTB cone
of n̂, while P follows the red curves. Note that the Np+ phase (∆ε> 0) is
uniaxial with P degenerated on a circle, perpendicular to the director. In
N*SBp, the main director is fixed in space, while the secondary directors are
responsible for the in-plane splay–bend deformations. The polarity of this
phase induces chiral order. The Np− phase is a polar uniaxial nematic with
polarization parallel to n̂.

where k̃ is the physical wavevector. Eqs. 3–6 and 8 then
become

F ≡F [Q, P] =
1

V

∫
V

(fQ + fP + fQP + fE )d3r, [14]

where

fQ =
1

4

[
tQ Tr(Q2) + (∇⊗Q)2 + ρ(∇ ·Q)2]

−Tr(Q3) + Tr(Q2)2, [15]

fP =
1

4

[
tP P2 + (∇⊗P)2 + ac(∇·P)2]+ ad(P2)2, [16]

fQP =−1

4
ePP · (∇·Q)−λPαQαβPβ , [17]

fE =−∆εE2êαQαβ(r)êβ . [18]

We explore the absolute stability of the NTB phase for the model
(Eqs. 14–18) by limiting to a family of all One-Dimensional Mod-
ulated Nematic Structures (ODMNS), periodic at most in one
spatial direction (18). Starting with the NTB phase, which is sta-
ble within the ODMNS family for the vanishing field, we identify
free-energy minimizers for the nonzero field. A full account of
the electric field response, with terms quadratic and linear in the
field, will be presented elsewhere.

All possible ODMNS structures can be parameterized with
the aid of the plane wave expansions of Q(r) and P(r)

(17, 18): Q(r) =
∑

n

∑2
m=−2 Qm(n) exp(ink ẑ · r) e[2]

m ,̂z, P(r) =∑
n

∑1
m=−1 Pm(n) exp(ink ẑ · r) e[1]

m ,̂z, where nk ẑ = k are the
wave vectors (n = 0,±1, . . .), Qm(n) and Pm(n) are the
unknown amplitudes found from the minimization of the free-
energy expansion, and e[L]

m ,̂z and m = 0,±1,±L are the spin L=

1, 2 spherical tensors represented in a laboratory coordinate sys-
tem with quantization axis along the ẑ direction. The selection
of k , Qm(n), and Pm(n) is fixed by minimization of F , supple-
mented by the bifurcation analysis (see supplemental material
for ref. 37) (61, 62). Only n = 0 terms couple to a uniform
external field in Eq. 18, giving

fE =−∆εE2
{

sin2(θ) [x20 cos(2φ)− y20 sin(2φ)]+ sin(2θ)

[y10 sin(φ)− x10 cos(φ)]+ x00 [3 cos(2θ) + 1]/(2
√

6)
}

,

[19]

where E =E [cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)] is the external
field expressed in the laboratory system of the frame and where
ReQm(n) = xmn and ImQm(n) = ymn . The relative orientation
of Q and E, parameterized by θ and φ, is found by minimization
of F .

Our starting point is the identification of homogeneous struc-
tures of wave vector k that can be constructed out of Q and P,
among which should be the NTB phase. The spatial homogeneity
of a structure implies that ∀z the tensors Q(z ) and, say, Q(0)
for z = 0 are connected by a rotation. More specifically, Q(z )
can be obtained from Q(0) by rotating through the angle kz
about ẑ: Rẑ (±kz )Q(0) =Q±(z ), where ± stands for right- and
left-handed heliconical structure. Likewise, through the same
rotation, P(0) is transformed into P(z ): Rẑ (±kz )P(0) = P±(z ).
The structures fulfilling the above conditions have a unique

Table 1. Critical values of ∆εE2 at field-induced phase
transitions for the reference state A of Fig. 2

Transition ∆εE2

N−Np+ 3.24
NTB−N 0.058
NTB−NTBe −0
NTBe−NSB −0.029
NSB−N*SBp −1.10
N*SBp−Np− −1.54

E10306 | www.pnas.org/cgi/doi/10.1073/pnas.1721786115 Pająk et al.
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Fig. 4. Q and P fields obtained for NTB from the relaxation method
(symbols) and from the free-energy minimization with respect to the
Fourier amplitudes for nmax = 2 (lines) for ∆εE2 = 0.0025 (where |k| ≈ 0.45;
see Fig. 7).

form given by the terms of |n| ≤ 2 in the expansions of Q and
P—namely,

Q±(z ) =Q0(0)e[2]
0,̂z +

2∑
m=1

[
Q±m(m)e[2]

±m ,̂ze
±imkz + c.c

]
, [20]

P±(z ) =P0(0)e[1]
0,̂z +

[
P±1(1)e[1]

±1,̂ze
±ikz + c.c

]
. [21]

For example, the explicit formulas for Q+ and P+ read

Q+(z ) =

c2(z )r2− x00√
6

−s2(z )r2 −c1(z )r1

−s2(z )r2 −c2(z )r2− x00√
6

s1(z )r1

−c1(z )r1 s1(z )r1

√
2
3
x00

, [22]

P(z )≡P+(z ) =

 −√2p1 cos (kz +φp)√
2p1 sin (kz +φp)

v00

. [23]

Here, Q+(z )≡Q(z ), ci(z ) = cos(ikz +φi), si(z ) =
sin(ikz +φi), ri cos (φi)= xii , ri sin (φi)= yii (ri ≥ 0),
p1 cos (φp)= v11, and p1 sin (φp)= z11 (p1≥ 0), where
vij =RePi(j ), zij = ImPi(j ), and as previously, xij =ReQi(j )
and yij = ImQi(j ). Note that one of the three phases φi

(i = 1, 2, p) is the Goldstone mode and can be eliminated, which
expresses the freedom of choosing the origin of the laboratory
system of the frame. In what follows we set φ1 = 0. Hence, a
family of all homogeneous (polar) helical nematic mesophases,
structurally linked with the uniaxial nematic phase (N ), can be
parameterized unambiguously using at most eight parameters
(including the k vector). The x00 terms in Eq. 22 represent the
reference N phase with the director along ẑ, while v00 indicates
that each of the structures can also be globally polar. As the
systems we study are nonchiral, the spontaneous chiral symmetry
breaking means that domains representing opposite chiralities
have the same free energy, F [Q+, P+] =F [Q−, P−], and that
they are formed with equal probability (ambidextrous chirality).

Setting r1 = 0 in Eq. 22 gives the cholesteric phase of the con-
ical angle θn̂ =π/2 (Eq. 1), while the simplest parameterization
of the NTB phases is obtained by neglecting terms with m = 2
(r2 = 0) in Eq. 22. In this simplified case, the conical angle is
given by

cos(θn̂) =

√
3χ2 + 8 +

√
3χ

√
2
√

3χ2 +
√

9χ2 + 24χ+ 8
, [24]

where χ= x00/r1. Note that 0≤ θn̂≤π/4 for a prolate uniaxial
nematic background (x00≥ 0), while the oblate case (x00≤ 0)
yields π/2≥ θn̂≥π/4. The general case of NTB with r2 6= 0 allows
for a fine control of biaxiality and of the conical angle. The for-
mer can be measured by the coordinate-independent normalized
parameter w (11, 39, 63),

− 1≤w(Q) =
√

6Tr(Q3)/
[
Tr(Q2)

] 3
2 ≤ 1 , [25]

which yields w = 1 (w =−1) for the locally uniaxial prolate
(oblate) order, where two out of the three eigenvalues of Q
are equal. The biaxial order with three eigenvalues of Q being
different is characterized by |w |< 1. The maximal biaxiality is
accomplished for w = 0 when one eigenvalue of Q vanishes (for
more details, see figure 1 in ref. 63). In particular, for NTB, the
parameter w is given by

w =
χ
(
−6τ2 +χ2 + 3

)
+ 3
√

6 τ cos (φ2)

(2τ2 +χ2 + 2)3/2
, [26]

where τ = r2/r1. Note that w in Eq. 26 is k -independent, express-
ing the fact that z dependence of Q in Eq. 22 is generated by a
rotation. This means that NTB is biaxial, and in the limit of k→ 0,
we get the fourth of homogeneous nematic structures accounted
for by Eq. 22—namely, the biaxial nematic.

Each of the structures identified so far can be polar (Eq. 23).
For k 6= 0, the polarization can acquire the long-range periodic
component in the x − y plane (p1 6= 0), which is perpendicular
to ẑ, and/or global macroscopic polarization (v00 6= 0), parallel
to ẑ. Interestingly, the NTB phase given by Eqs. 22 and 23 with
v00 = 0 can be the global minimizer within the ODMNS class.
The sufficient condition for the free-energy parameters can be
derived using the bifurcation analysis (see supplemental material
for ref. 37) with uniaxial nematic (x00 6= 0) as a reference state. It
reads

−4 tP

1 +
√

1− 16 tQ/3
<λ<

e2
P − 4(2 + ρ)tP

(ρ+ 2)
(

1 +
√

1− 16 tQ/3
), [27]

which is valid when the following additional constraints are
fulfilled: eP 6= 0, tQ < 1

6
, ρ>− 3

2
, and tP > 0.

Fig. 5. Q and P fields obtained for N*SBp from the relaxation method (sym-
bols) and from the free-energy minimization with respect to the Fourier
amplitudes for nmax = 2 (lines) for ∆εE2 =−1.3225 (where (|k| ≈ 0.20; see
Fig. 7).
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Fig. 6. Various observables averaged over one period from the relaxation
method (points) and from the free-energy minimization with respect to the
Fourier amplitudes for nmax = 2 (lines). Eigenvalues of Q are given in green
(along wave vector), orange (for negative anisotropy, it is along the direc-
tion of the external field), and blue. The biaxiality parameter, given by Eq.
25, is plotted in red for w and in black for w(Q).

Results
In seeking a globally stable structure among ODMNS, we need
to take into account both homogeneous and inhomogeneous
trial states given by the plane wave expansions of Q and P. The
complexity of the ODMNS minimization depends on the num-
ber of amplitudes used in this expansion, which is controlled by
the maximal value nmax of |n| in the set {k ,Qm(n),Pm(n), n =
0,±1, . . . ,±nmax}. As it turns out, the nmax = 1 approximation
with 25 real, variational parameters is not sufficient to qualita-
tively reproduce structural changes as experienced by NTB due
to an applied external field. To obtain credible results, the fol-
lowing strategy has proved to work. In the first step, we perform
the free-energy minimization with nmax = 2. Then, the identified
structures serve in the next step as initial states in seeking for the
improved free-energy minimum, where the relaxation method
for 1D periodic structures is being used for the bulk sample. A
short summary of this typical method is given below.

More specifically, we consider the bulk NTB sample of thick-
ness Λ with free boundary conditions at z = 0 and z = Λ (0≤
z ≤Λ), where Λ is much larger than the period of the structure.
Then, we divide the sample in the z direction into N equal inter-
vals and approximate the fields Q(z ) and P(z ) at nodes zi taken
in the middle of each interval i . For the derivatives of the fields,
we use the central difference approximation

∂X(z )/∂z |z=zi
= [X(zi+1)−X(zi−1)]/2δ, [28]

where δ is the distance between the two neighboring nodes
and where X = Q(z ) or P(z ). After these preparations are
done, the volume integral in F is discretized in a standard
way using a simple trapezoidal rule, with the node vari-
ables {X}≡{Q(zi), P(zi), i = 1, . . . 8N } playing the role of
variational parameters.

The relaxation method for the discretized free energy deter-
mines {X} with the following iterative formula:

X(n+1)(zi)−X(n)(zi) =−γ ∂F/∂X(zi)|X(zi )=X(n)(zi )
, [29]

where the superscript (n) enumerates the values of {X(zi)}
obtained in successive iterations and γ is the relaxation param-
eter. For the convergent iterations, we typically used γ= 0.005
and N = 4000, but generally, the choice of γ is not important,
unless numerical instabilities occur. Occasionally, we doubled
the number of nodes to see the influence on the accuracy of the

free energy. The iteration was initialized with X(1)(zi)≡X(zi)
using analytic expressions obtained from the Fourier amplitude
minimization for nmax = 2 for the case without the external field.
The corresponding periodicity (2π/k) of NTB was used to fix
Λ. Once initialized, the system (Eq. 29) was solved iteratively
until self-consistency with the required accuracy was achieved.
We used very large bulk samples of Λ≈ 260π/k for which the
structure close to the midplane (z ≈Λ/2) was insensitive to the
ordering near boundaries. The next step was the equilibration of
the k vector for the X fields evolved during the relaxation pro-
cess. The method we used is described in detail in refs. 64 and
65 and is based on the observation that under distance rescal-
ing, z→ z/κ the free energy is a general quadratic function of
κ, with coefficients that are κ-independent. Thus, the scaling
factor, κ∗, obtained by the subsequent minimization of the free
energy, gives the improved wave vector, κ∗k , for the approximate
X fields that are obtained from relaxation. Effectively, it amounts
in rescaling the distance between the nodes: δ→ δ′= δ/κ∗ of the
relaxed fields. The relaxation procedure is then repeated with
the new δ′ and followed by a new rescaling. The process contin-
ued until κ∗∼= 1. To find solutions for the cases with the electric
field, we repeated the above procedure using as the initial con-
dition the solution from the step with a smaller field. A typical
(generic) NTB reference state taken for detailed field analysis is
shown in Fig. 2, point A.

Results of the numerical analysis are illustrated for the case
when ρ= 1, ac = 2, eP =−4, ad = 1, λ=−1/2, tQ = 1/10, and
tP = 8/10, where without the external field the heliconical struc-
ture is most stable among ODMNS, isotropic, uniaxial, and
biaxial nematics. Depending on the strength of the field and
the sign of the material anisotropy, both controlled by the sin-
gle model parameter ∆εE2 in Eq. 18, the NTB structure can
evolve, as shown in Fig. 3. For the case of positive material
anisotropy (∆εE2 > 0), the minimum is realized for E||k̂, while
for negative anisotropy (∆εE2 < 0) the minimum occurs when
E⊥k̂. Furthermore, in the positive anisotropy case, the NTB
phase unwinds to the uniaxial nematic with the director paral-
lel to the external field. Further increase of the field results in

Fig. 7. Wave vector as a function of the external field for ODMNS pre-
sented in Fig. 3. As previously, points are from the relaxation method, and
the line is the outcome of the free-energy minimization with respect to
the Fourier amplitudes for nmax = 2. Dimensionless wave vector for the zero
field case (k(E = 0)≈ 0.446) when matched to typical experimental data of
k0 = 2π/10[nm−1]≈ 0.628[nm−1] fixes the scale factor in Eq. 13, giving a
partial link between the theory and experiment. The procedure reduces
the number of model parameters in Eq. 13, but a full comparison with the
experiment would require further experimental data as discussed in the last
chapter.
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Fig. 8. Minimal (orange) and maximal (blue) values of angle between k
and n̂. As previously, points are from the relaxation method, and lines
are outcomes of the free-energy minimization with respect to the Fourier
amplitudes for nmax = 2.

stabilization of a polar nematic (Np+), where the polarization
vector is arbitrarily orientated in the plane perpendicular to
n̂. The case of negative anisotropy modifies instantly the mod-
ulation of the main director in the NTB phase, which is now
precessing on the elliptic cone around k̂, shown in gray in
Fig. 3. We denote this new structure as NTBe . Stronger fields
(E⊥k̂) make the elliptic cone narrower, and finally NSB is sta-
bilized, where the cone becomes degenerated to an isosceles
triangle (i.e., n̂ becomes confined to a circular arc) and P lies
in the plane of splay–bend modulations. With larger fields, the
in-plane modulations diminish, and P acquires an out-of-plane
uniform component along the field. This is a new chiral struc-
ture, denoted N ∗SBp , where the modulation of the main director
is replaced by splay–bend modulations of the secondary direc-
tors. For even stronger fields, this phase transforms to a polar
nematic (Np−) with polarization parallel to the field and n̂. Val-
ues of the dimensionless field parameter that induces phase
transitions are gathered in Table 1. Quantitatively, phases are
described by the amplitudes Qm(n) and Pm(n) or equivalently
by their real and imaginary parts, which we denote xij =ReQi(j ),
yij = ImQi(j ), vij =RePi(j ), and zij = ImPi(j ). Additionally,
each structure is characterized by the wave vector k . For stable
ODMNS with nmax = 2, the sets of nonzero parameters are as
follows: {y11, y22, x00, x11, x22, z11, v11} for NTB; as in NTB and
{y−22, y−11, y02, x−22, x−11, x02, x20, z−11, z02, v−11, v02} for
NTBe ; as in NTBe , provided that the following constrains are
fulfilled, {|y−22|= |y22|, |y−11|= |y11|, |x−22|= |x22|, |x−11|=
|x11|, |z−11|= |z11|, |v−11|= |v11|}, for NSB; and as in NSB in
union with {|y−21|= |y−12|, |y12|= |y21|, |x−21|= |x−12|, |x12|=
|x21|, |z−12|= |z12|, z10, |v−12|= |v12|} for N ∗SBp . A typical out-
come of the standard relaxation procedure for stable structures
and how it compares with the amplitude minimization for nmax =
2 is illustrated in Figs. 4–10. Note that both the nmax = 2 ampli-
tude minimization and the relaxation results agree quantitatively,
indicating that the approximation of nmax = 2 is sufficient to
obtain the basic features of the phases studied. Taking nmax =
1 leads to qualitatively inconsistent results, which means that
two Fourier harmonics of wave vectors k and 2 k are required
to account for structural properties of NTB and of the related
structures.

To gain an insight into fine structure of stable phases, we plot
characteristic observables for each of them in Figs. 6–10. First,
we present the behavior of eigenvalues for Q(z ) averaged over
one period (Q) (Fig. 6), which is what can effectively be measured

in experiments. Please note that homogeneous nematics and NTB

(averaged over one period) are uniaxial, as two eigenvalues of Q
coincide, and all other ODMNS are biaxial. Degree of biaxiality
can be quantified by the relative differences between the eigen-
values or with the help of the parameter w (Eq. 25). In Fig. 6, we
present w(Q) in black and w in red, and one sees that NTB and
NTBe are weakly biaxial, as |w |< 1, while NSB is always biaxial,
passing the point of maximal biaxiality. Finally, N ∗SBp is biaxial of
the oblate type, and Np is uniaxial oblate. A further important
characteristic of ODMNS presented in Fig. 3 is the variation of
the wave vector with the field, which is shown in Fig. 7. Clearly,
the wave vector vanishes in homogeneous nematic phases. Note
that the general effect of the field is to unwind the structures,
except for the initial behavior of NTBe , which is just the oppo-
site. Another variable that characterizes ODMNS is the conical
angle. This tilt angle is measured between k and n̂ but could also
be given, for example, between k and m̂. Being constant for NTB,
it varies with z for all remaining ODMNS, as shown in Fig. 8,
where we depict its minimal and maximal value with the field. It
is apparent that both semiaxes of ellipse are equal in NTB (blue
and orange lines in Fig. 8 coincide), but a higher field makes the
diameter of the cone’s basis smaller. In NTBe , blue and orange
lines split, providing the elliptic profile of the cone’s basis. In the
NSB phase, the minimal value of that angle is equal to zero, and
m̂ (Fig. 9) is perpendicular to k, which means that n̂ performs
in-plane modulations between minimal and maximal values of
θn̂. Then, comparing Fig. 8 with Fig. 9 for the angle between k
and m̂ gives insight into changing the primary director from n̂ to
m̂ as the field increases for materials with negative anisotropy.
This effect occurs when ∆εE2∼=−0.8, and it is in fact caused
by passing through a point of maximal biaxiality from prolate-
to oblate-like structure, as shown in Fig. 6 for w . Finally, in Fig.
10, we present the averages over one period for the length of
polarization vector. The average of polarization modulus shows
the average length of P for each structure, whereas the modulus
of averaged polarization reveals which of the phases possess the
uniform component of polarization.

Discussion
Scientists have long sought to understand how chiral states can
be generated in a liquid state from nonchiral matter. Now strong
evidence is found that a new class of nematics, called nematic
twist–bend, provides such an example. This entropically induced
state is realized because the underlying molecules have a specific

Fig. 9. Minimal (orange) and maximal (blue) values of angle between k
and m̂. As previously, points are from the relaxation method, and lines
are outcomes of the free-energy minimization with respect to the Fourier
amplitudes for nmax = 2.
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Fig. 10. Averages over one period of |P| (blue) and |P| (orange). As pre-
viously, points are from the relaxation method, and lines are outcomes of
the free-energy minimization with respect to the Fourier amplitudes for
nmax = 2.

shape. Here we presented possible transformations of the NTB
phase with an external field within the LdeG theory of flexopolar-
ization. The outcomes of numerical minimization along with the
full free-energy relaxation method have been studied for few sets
of model parameters, with one typical example being discussed
in-depth here.

For materials with positive anisotropy, the unwinding of the
helix to the uniaxial (prolate) nematic structure is obtained, how-
ever here for sufficiently strong fields, a polar nematic appears
more stable. Interestingly, in the NTB phase, the circular cone
of the director (Fig. 1) stays circular, while both periodicity of
the structure and θn̂ decrease with field. We do not observe an
intermediate NSB ordering, although such possibility cannot be
excluded, in general. NSB phase was expected as an intermediate
state between neighboring NTB domains with opposite chiralities
(19). Compounds with negative material anisotropy give rise to
three different ODMNS with a wide range of the NSB phase, so it
is an apparent suggestion that this phase can indeed be stabilized
when applying external fields. Here NSB appears almost uni-
versally through the mechanism of flattening the circular cone,
where NTB is converted into NTBe , even for infinitesimally small
fields. Finally, we would like to add that in some cases stud-
ied the predicted N ∗SBp phase was replaced by an oblate nematic
phase.

An interesting question that is left is whether currently avail-
able applied fields allow for potential experimental verification of
our predictions. A connection between the physical and reduced
fields can be estimated by a direct replacement of the LdeG
parameters with their director field equivalents, akin to ref. 67.
Since Ẽ couples to Q̃, a natural estimate is that the field
contribution (−ε0∆εẼ2) should be of the same order of mag-
nitude as the Frank elastic free energy stored in NTB. This
gives

Ẽ2≈ π2

p2|∆ε|ε0
[K22 +K33 + (K33−K22)cos(2 θn̂)]sin2(θn̂),

[30]
where K22 (twist) and K33 (bend) are Frank elastic constants in
the nematic phase, and p = 2π/k is the pitch and k is the wave
vector of NTB. We do not know the elastic constants of the fam-
ily of unwound nematic states stabilized at reference point A of
Fig. 2, but owing that A should be only up to a few degrees of
Kelvin away from the isotropic and the nematic phases (tQ > 0),
we assume that for compounds exhibiting the NTB phase within
the temperature range of 0 K to 10 K from the isotropic phase,
the elastic constants are similar to those of CB7CB from ref. 67

within the same temperature range and that instability to NTB

requires very small values of K33—that is, K22 . 3 pN and
K33 . 0.5 pN. Taking in addition ∆ε≈ 3, θn̂≈ 20◦, and p≈
10 nm, it gives Ẽ ∼ 26 V/µm. Please note that if the period of NTB
is in a range of 10 nm to 50 nm (68), the expected field strength
can be reduced to 5 V/µm. Similar crude estimates for a meso-
gen with negative anisotropy and stable NTB, where DTC5C9
(69) can serve as an example, gives the field range between 11
V/µm and 54 V/µm. Parameters used for these estimates are
∆ε≈−0.6, K22≈ 2 pN, and K33≈ 0.5 pN. The period’s range
of NTB and the conical angle are taken as previously. As we can
see, for an experimental test of the theory, it would be helpful
to use a material with high dielectric anisotropy and large pitch.
We should mention that typical fields currently used to study NTB
are of the order of 10 V/µm (20, 70). The contribution to the free
energy due to a magnetic field has the same mathematical form
as that of the electric field. Replacing Ẽ with B̃ and 1

|∆ε|ε0
with

µ0
|∆χ| in Eq. 30 and taking ∆χ≈ 1.5× 10−6 SI units from ref. 67,
we find that the magnetic field of the order of 10 T has the same
effect as an electric field of about 1 V/µm.

If the nematic twist–bend phase is separated from the isotropic
phase by the uniaxial nematic, we can set the scale for the field
from properties of this intermediate nematic phase (Eq. 4). A
connection between the physical and reduced fields requires in
this case an estimate of b and c parameters (Eq. 13). One may
also find it useful to know a0Q and the elastic constant L1 to
set the temperature scale and correlate the experimental wave
vector k̃ of NTB with k (Eq. 13). More specifically, for Ẽ = P̃ = 0

and under the assumption that Q̃ is uniaxial,

Q̃αβ(r̃) =S

(
nα(r̃)nβ(r̃)− δαβ

3

)
, [31]

the free-energy density f̃ becomes reduced to that of the nematic
phase expressed in terms of the scalar order parameter S and
supplemented by splay, bend, and twist elastic deformation terms
of the director (f̃ → f̃ (S , n̂); see refs. 38 and 39). Please bear
in mind that in agreement with the convention given by Eq.
2, S = 1 for perfect orientational order and S = 0 for complete
orientational disorder, which implies that

S∆εmax = ∆ε. [32]

A comparison of f̃ (S , n̂) with Frank free-energy density and min-
imization with respect to S allows us to express a0Q , b, c, L1, and
L2 through various quantities that characterize nematic phase
like the nematic–isotropic transition temperature TNI, jump SNI
of the scalar order parameter at TNI, transition entropy ∆ΣNI,
susceptibility anisotropy ∆εNI, spinodal temperature T ∗, and
Frank elastic constants K11 (splay), K22 (twist), and K33 (bend).
The explicit formulas are (38)

a0Q =
3 ∆ΣNI

2S2
NI

, b =
9 ∆ΣNI (TNI−T ∗)

S3
NI

, [33]

c =
9 ∆ΣNI (TNI−T ∗)

4S4
NI

. [34]

The relations for L1 and L2 read (39)

L1≈
K22,2

4
, L2≈

K11,2− 2K22,2 +K33,2

4
. [35]

They are accurate up to S2 for Kii expanded in terms of S (Kii ≈
Kii,2S

2 +Kii,3S
3 + · · · ) and should be treated with caution.

The reason is that the experimental data show huge anisotropy
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of splay–bend elastic constants. While K11 and K22 generally
increase with decreasing temperature following the S2 depen-
dence predicted by the minimal coupling LdeG model, the non-
monotonic temperature variation of K33 cannot be explained.
A quantitative theory of NTB would then require the presence
of higher order elastic invariants of the form Q(∇Q)2, three
of which are relevant, and the stabilizing terms (Q∇Q)2 (39).
Assuming qualitative agreement and applying formulas Eqs. 33–
35, in Eq. 13 one can obtain a different relation between the
dimensionless and physical fields, expressed in terms of exper-
imentally accessible quantities at the nematic–isotropic phase
transition. More precisely,

Ẽ2 =
288 ∆ΣNI (TNI−T ∗)

ε0 ∆εNI
∆εE2, [36]

where T ∗ can be found, for example, by fitting theoretically
predicted temperature variation of S

S =
3

4
SNI

{
1 +

[
1− 8(T −T ∗)

9(TNI−T ∗)

]1
2

}
[37]

to experimental data. Using exemplary data for CB7CB from
refs. 3 and 67, ∆ΣNI≈ 0.34R, ∆εNI≈ 1.5, and TNI −T ∗≈
89 mK [our fit to experimental data for S (67) using Eq. 37 gives a
somewhat higher value of 0.1 K]; mass density ρ≈ 103 kg/m3; and
molar mass M ≈ 0.45 kg/mol, we get Ẽ ≈ 110 [V /µm]

√
|∆εE2|,

which yields Ẽ ≈ 27[V /µm]. Note that the two independently
determined estimates of the field agree surprisingly well.

The final remark is that fields analyzed in this paper
can also be of surface Rapini–Papoular form (11): f̃E =
rpTr [Q(z )−Q(z0)]2δ(z − z0), with z0 = 0,L, for their relevant
part, which is uniaxial given by Eq. 31, has a similar mathemati-
cal structure as Eq. 18, where the role of external field êγ is taken
by the surface preferred orientation nγ(0)≡nγ(z̃0). Indeed, this
contribution is proportional to nα(0)Q̃αβ(r)nβ(0), and for pla-
nar anchoring, we may expect a surface-induced NTBe ordering,
irrespective of the strength of rp . Clearly, this remark refers only
to a very narrow region close to the surfaces. Observations of
chiral phase with the presence of splay and bend deformations
(2, 70, 71) obtained under both surface and alternating electric
fields or evidence of the second NTB phase (20) may indicate that
some phase transformations under external fields we predicted
have already been observed. However, here we did not consider
the presence of two (perpendicular) fields instantly, which may
lead to stabilization of new structures besides the ODMNS class,
with simultaneous modulation in more than one direction.

Closing Note. While our paper was subject to the reviewing pro-
cedure, we have learned that Merkel et al. (72) have con-
firmed experimentally the electric field-stabilized NTBe and NSB

phases for a bent-core liquid crystal compound with negative
dielectric anisotropy. They applied direct electric fields of the
order of 5 V/µm.
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