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The response of the nematic twist–bend (NTB) phase to an applied
field can provide important insight into structure of this liquid and
may bring us closer to understanding mechanisms generating mir-
ror symmetry breaking in a fluid of achiral molecules. Here we in-
vestigate theoretically how an external uniform field can affect struc-
tural properties and stability of NTB. Assuming that the driving
force responsible for the formation of this phase is packing entropy
we show, within Landau–de Gennes theory, that NTB can undergo
a rich sequence of structural changes with field. For the systems
with positive anisotropy of permittivity we first observe a decrease
of the tilt angle of NTB until it transforms through a field–induced
phase transition to the ordinary prolate uniaxial nematic phase (N ).
Then, at very high fields this nematic phase develops polarization
perpendicular to the field. For systems with negative anisotropy of
permittivity the results reveal new modulated structures. Even an in-
finitesimally small field transforms NTB to its elliptical counterpart
(NTBe), where the circular base of the cone of the main director be-
comes elliptic. With stronger fields the ellipse degenerates to a line
giving rise to a nonchiral periodic structure, the nematic splay–bend
(NSB), where the two nematic directors are restricted to a plane. The
three structures, NTB, NTBe and NSB, with a modulated polar or-
der are globally nonpolar. But further increase of the field induces
phase transitions into globally polar structures with nonvanishing
polarization along the field’s direction. We found two such struc-
tures, one of which is a polar and chiral modification of NSB, where
splay and bend deformations are accompanied by weak twist defor-
mations (N∗

SBp). Further increase of the field unwinds this structure
into a polar nematic (Np) of polarization parallel to the field.

twist–bend nematic | splay–bend nematic | chirality | polarity

The twist–bend nematic (NTB) phase, recently discov-
ered in liquid–crystalline chemically achiral dimers (1–7),

bent–core mesogens (8, 9), and their hybrids (10), is one of the
most amazing example of spontaneous chiral symmetry break-
ing in soft matter physics. It occurs in the liquid state without
any long–range positional order, but the average local molec-
ular long axis, n̂, known as the director, follows a nanoscale–
pitch heliconical winding. Thus the structure belongs to the
family of nematic phases and is the fifth nematic phase rec-
ognized (5), in addition to uniaxial and biaxial nematics for
nonchiral liquid crystalline materials and cholesteric and blue
phases for chiral liquid crystals (11). In 2001 Dozov (12),
following earlier analysis of Meyer (13, 14), predicted theoret-
ically this structure using Frank model of elastic deformations
in nematics by assuming that the bend elastic constant can
change sign. With this assumption n̂ can form 1D modulated
structures where simultaneously twist and bend or splay and
bend elastic constants are nonzero. The second of the struc-
tures, known as the nematic splay–bend (NSB), is nonchiral
and exhibits periodic splay and bend modulations of the di-
rector, taking place within one plane. The observation of this
phase is still not confirmed experimentally, but it can be sta-

bilized in constant pressure Monte–Carlo simulations of thin
layers composed of hard bent–core molecules (15).

The first possibility is recognized as the chiral NTB phase
with the director, n̂(r) ≡ n̂(z), attaining oblique helicoidal
structure in precessing on the side of a right circular cone,
Fig. 1. More specifically

Fig. 1. (Color online) Schematic representation of the nematic twist–bend structure.
Right circular cone of angle θn̂ shows the tilt between the director n̂ and the helical
symmetry axis, parallel to the wave vector, k. Red arrows represent P, where P ‖
k × n̂; black arrow is the direction of k.
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n̂(z) = [cos(φn̂) sin(θn̂), sin(φn̂) sin(θn̂), cos(θn̂)], [1]

where θn̂ is the conical angle (angle between n̂ and k) and
φn̂ = ±kz = ± 2π

p
z with wave vector k = kẑ taken to be

parallel to the ẑ–axis of laboratory system of frame; here p is
the pitch. The Dozov’s scenario for the formation of NTB has
strong experimental support for anomalously small, but posi-
tive values of the bend elastic constant have been reported in
the nematic phase as the transition to NTB was approached
(4, 16). A Landau–de Gennes mesoscopic theory, where the
director is replaced by a symmetric and traceless tensor or-
der parameter field, Q, accounts for a fine structure of the
modulated phases and shows limitations of the director’s de-
scription (17, 18).

The NTB phase observed has a number of remarkable fea-
tures. It looks uniform everywhere in space like cholesterics,
with a temperature–dependent conical angle, θn̂, ranging ap-
proximately between 9◦ and 30◦ (4, 19, 20). But, while the
cholesteric phase with its conical angle equal to a right an-
gle (θn̂ = π/2), can homogeneously fill the space with twist
the analogous arrangement for NTB (0 < θn̂ < π/2) requires
both bend and twist deformations to be present. X-ray diffrac-
tion experiments, sensitive to positional (3, 5) or orientational
(21, 22) orderings reveal no long–range positional order of
molecular centers of mass (NTB indeed remains a fully 3D liq-
uid), but a 1D periodic order of molecular orientations. The
helicoidal pitch length in the NTB is about 10 nm, i.e. on the
order of a few molecular lengths, which is about two orders
of magnitude smaller than that typically found in cholesteric
and blue phases (11). The NTB phase is usually stabilized
as a result of a first–order phase transition from the uniaxial
nematic phase, but very recently a direct transition between
NTB and the isotropic phase has also been found (23, 24).
Lack of molecular intrinsic chirality implies that coexisting do-
mains of opposite handedness are formed and, consequently,
the emergence of NTB is related to a fundamentally new phe-
nomenon, namely, the spontaneous chiral symmetry breaking.

While phenomenologically the spontaneous distortion of
the NTB and NSB phases can effectively be explained as orig-
inating from the negative bend elasticity (12) the question of
what microscopic/mesoscopic mechanism can be responsible
for chiral symmetry breaking, especially the selforganization
into NTB, is still open and remains to be understood and
explored. The issue has been addressed at the theoretical
level in a series of papers (18, 25–33). Analysis shows that
the molecules whose structure is sufficiently bent is a neces-
sary requirement for the stabilization of NTB, probably as
a results of entropic, excluded volume interactions (25, 28).
The molecules not only selforganize into a helical structure,
but also propagate long–range polar order of vanishing global
polarization, transverse to the helical axis. For steric interac-
tions the polarity is a consequence of ordering of molecular
bent cores (27, 28, 32, 33) and the other molecular interac-
tions, like between electrostatic dipoles, are probably less rel-
evant for thermal stability of this phase. These conclusions
seem in line with recent experimental observations (34–36).

A mesoscopic–level explanation of how molecular polarity
of bent–core molecules can generate modulated polar phases
and, hence, effectively lower the bend elastic constant has
been proposed to be due to the flexoelectric couplings, where
derivatives of the the alignment tensor (or of the director
field), induce a net polarization (17, 18, 26, 29, 37). The

minimal coupling model, which is able to account for NTB, is
the Landau–de Gennes (LdeG) type of free energy expansion
in the alignment tensor Q(r) and the polarization field P(r),
and their derivatives (17, 18, 38). It can be decomposed as

F ≡ F [Q, P] = 1
V

∫
V

(fQ + fP + fQP ) d3r, [2]

where the free energy densities, fX , are constructed out of
the fields {X}. By taking suitable units and assuming defor-
mations to appear only in a quadratic part of the free energy,
the general form of fX up to fourth order in X for nonchiral
liquid crystals is (17)

fQ = 1
4

[
tQ Tr(Q2) + (∇ ⊗ Q) · (∇ ⊗ Q)

+ ρ(∇ · Q) · (∇ · Q)] −
√

6 B Tr(Q3) + Tr(Q2)2, [3]

fP = 1
4

[
tP P2 + (∇ ⊗ P) · (∇ ⊗ P) + ac(∇ · P)2]

+ (P2)2, [4]

fQP = −1
4

eP P · (∇ · Q) − λPαQαβPβ , [5]

where tQ and tP > 0 are the reduced temperatures associated
with Q and P fields, respectively; ρ is the relative elastic con-
stant; ac is the strength of longitudinal contribution from the
steric polarization (18); eP is the strength of flexopolarization.
For thermodynamic stability of this free energy expansion it
is also mandatory that ρ > − 3

2 and 1+ac > 0. When the flex-

opolarization coupling becomes strong enough (ρ− e2
P

4tP
≤ − 3

2 )
(18), the uniform nematic phase can no longer be stable and a
modulated polar phase is formed. In addition to NTB and NSB

the theory (2) predicts the existence of further two 1D mod-
ulated nonchiral, polar nematic phases with transverse and
longitudinal polarization being modulated along just one di-
rection for one star of wave vector approximation (18). But it
is important to observe that the flexopolarization term alone
(eP �= 0) is not sufficient to bring about spontaneous chiral
symmetry breaking. It needs to be accompanied, at least, by
the nonvanishing λ–coupling (λ �= 0) in F . The nonvanishing
λ is also needed for a proper explanation of the fluctuation
modes in NTB, as suggested by recent light scattering experi-
ments (39).

Alternative mesoscopic scenarios pertaining to the stability
of NTB, like these involving couplings between the alignment
tensor and higher rank (octupolar) order parameters have also
been proposed (40–46). This indicates that the theoretical
studies of mechanism(s) responsible for observed spontaneous
chiral symmetry breaking are still in their initial stage and fur-
ther research is needed to provide understanding of stability
of NTB. One promising direction, which we would like to fol-
low here, is a systematic analysis of how properties of NTB

can change in the presence of external stimuli, such as elec-
tric or magnetic fields, surface anchoring, photo–chemically
driven trans–cis isomerization etc. Such analysis can also be
important in seeking for future practical applications of this
new phase.

In case of modulated nematics their response to an exter-
nal field can become highly nontrivial (11, 47). In cholesterics,
for example, it is possible to unwind the orientational spiral
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through an intermediate heliconical structure (48, 49), both
for bulk sample (50) and in confined geometry (51, 52). A
more comprehensible, field–induced modification of cholester-
ics involves reorientation of helical axis (11), or changing the
pitch (53). Similar effects can be expected for NTB, although
recent magnetic field experiments (54, 55) show only depletion
of the N − NT B transition temperature, without a noticeable
distortion of the structure. So far, theoretical attempts to
characterize the interaction of NTB with field have been made
on the basis of the Frank elastic theory (56–58).

A purpose of this paper is to study, in a systematic way, a
response of the bulk NTB phase to the external fields (electric,
magnetic) within the frame of the LdeG free energy, Eqs. (2-
5). As NTB is expected for nonchiral bent–shaped molecules,
with and without electric dipoles, we assume that stability of
this phase is driven primarily by excluded–volume, entropic
interactions (28). We consider the LdeG free energy, Eq. 2,
supplemented by the dielectric (diamagnetic) term, FE , (F →
F + FE), where

FE = −Δε
1
V

∫
V

EαQαβ(r)Eβd3r, [6]

and where Δε is the dielectric (diamagnetic) anisotropy in the
director reference frame. We think that the dielectric (diamag-
netic) term should dominate, at least for sufficiently strong
fields and disregard a possible direct interaction between the
dipole moments and the field. We explore the absolute sta-
bility of the NTB phase for the model (2-6) by limiting to a
family of all nematic structures, periodic at most in one spa-
tial direction (hereafter referred to as ODMNS (18)). Starting
with the NTB phase, which is stable within the ODMNS fam-
ily for vanishing field, we identify free energy minimizers for
nonzero field (59). A full account of the electric field response,
with terms quadratic and linear in field, will be presented else-
where.

All possible ODMNS structures can be parameterized with
the aid of plane waves expansion of Q(r) and P(r) (17,
18): Q(r) =

∑
n

∑2
m=−2 Qm(n) exp(i nk ẑ · r) e[2]

m,ẑ, P(r) =

∑
n

∑1
m=−1 Pm(n) exp(i nk ẑ · r) e[1]

m,ẑ, where nkẑ = k are
the wave-vectors (n = 0, ±1, ...); Qm(n) and Pm(n) are the un-
known amplitudes found from the minimization of the free en-
ergy expansion, and e[L]

m,ẑ, m = 0, ±1, ±L are the spin L = 1, 2
spherical tensors represented in a laboratory coordinate sys-
tem with quantization axis along ẑ-direction. The selection
of k, Qm(n), and Pm(n) is fixed by minimization of F , sup-
plemented by the bifurcation analysis (37, 60, 61). Note that
only n = 0 terms couple to a uniform external field in (6),
giving

FE = −ΔεE2 {
sin2(θ) [x20 cos(2φ) − y20 sin(2φ)] + sin(2θ)

[y10 sin(φ) − x10 cos(φ)] + x00 [3 cos(2θ) + 1] /(2
√

6)
}

, [7]

where E = E[cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)] is the external
field expressed in the laboratory system of frame and where
ReQm(n) = xmn and ImQm(n) = ymn. The relative orien-
tation of Q and E, parameterized by θ and φ, is found by
minimization of F . The formulas (3-5) entering F are given
in the expanded form in (37).

Our starting point is the identification of homogeneous
structures of wave vector k that can be constructed out of
Q and P, among which should be the NTB phase. The spa-
tial homogeneity of a structure implies that ∀z the tensors
Q(z) and, say, Q(0) for z = 0 are connected by a rotation.
More specifically, Q(z) can be obtained from Q(0) by rotat-
ing through the angle kz about ẑ: Rẑ(±kz)Q(0) = Q±(z),
where ± stands for right– and left–handed heliconical struc-
ture. Likewise, through the same rotation P(0) is transformed
into P(z): Rẑ(±kz)P(0) = P±(z). The structures fulfilling
the above conditions have a unique form given by the terms
of |n| ≤ 2 in the expansions of Q and P, namely

Q±(z) = Q0(0)e[2]
0,ẑ +

∑2
m=1

[
Q±m(m)e[2]

±m,ẑe±imkz + c.c
]
, [8]

P±(z) = P0(0)e[1]
0,ẑ +

[
P±1(1)e[1]

±1,ẑe±ikz + c.c
]
. [9]

For example, the explicit formulas for Q+ and P+ read

Q(z) ≡ Q+(z) =

⎡
⎣ cos(2kz + φ2)r2 − x00√

6
− sin(2kz + φ2)r2 − cos(kz + φ1)r1

− sin(2kz + φ2)r2 − cos(2kz + φ2)r2 − x00√
6

sin(kz + φ1)r1

− cos(kz + φ1)r1 sin(kz + φ1)r1
√

2
3 x00

⎤
⎦ , [10]

P(z) ≡ P+(z) =

⎡
⎣ −√

2p1 cos (kz + φp)√
2p1 sin (kz + φp)

v00

⎤
⎦ . [11]

Here ri cos (φi) = xii, ri sin (φi) = yii (ri ≥ 0), p1 cos (φp) =
v11, p1 sin (φp) = z11 (p1 ≥ 0), where vij = RePi(j), zij =
ImPi(j) and, as previously, xij = ReQi(j) and yij = ImQi(j).
Note that one of the three phases φi, (i = 1, 2, p) is the Gold-
stone mode and can be eliminated, which expresses the free-
dom of choosing the origin of the laboratory system of frame.
In what follow we set φ1 = 0. Hence, a family of all homoge-
neous (polar) helical nematic mesophases, structurally linked

with the uniaxial nematic phase (N), can be parameterized
unambiguously using at most eight parameters (including k
vector). The x00 terms in Eq. (10) represents the reference N
phase with the director along ẑ. As the systems we study are
nonchiral, the spontaneous chiral symmetry breaking means
that domains representing opposite chiralities have the same
free energy: F [Q+, P+] = F [Q−, P−] and that they are
formed with the same probability (ambidextrous chirality).

Setting r1 = 0 in Eq. (10) gives the cholesteric phase of the
conical angle θn̂ = π, Eq. (1), while the simplest of the NTB

phases is obtained by neglecting terms with m = 2 (r2 = 0)
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in (10). In this simplified case the conical angle is given by

cos(θn̂) =

√
3χ2 + 8 +

√
3χ

√
2
√

3χ2 +
√

9χ2 + 24χ + 8
, [12]

where χ = x00/r1. Note that 0 ≤ θn̂ ≤ π/4 for prolate
uniaxial nematic background (x00 ≥ 0), while the oblate case
(x00 ≤ 0) yields π/2 ≥ θn̂ ≥ π/4. The general case of NT B

with r2 �= 0 allows for a fine control of biaxiality and of the
conical angle. For example, the biaxiality of NTB, measured
by the normalized parameter w (62)

− 1 ≤ w(Q) =
√

6 T r(Q3)/
[
T r(Q2)

] 3
2 ≤ 1 , [13]

is given by

w =
χ

(
−6τ2 + χ2 + 3

)
+ 3

√
6 τ cos (φ2)

(2τ2 + χ2 + 2)3/2 . [14]

Here τ = r2/r1 and w = 1 (w = −1) for local uniaxial pro-
late (oblate) order. The states of |w| < 1 are biaxial with
w = 0 corresponding to maximally biaxial order. Note that
w, Eq. (14), is k–independent, expressing the fact that z–
dependence of Q, Eq. (10), is generated by a rotation. This
means that NTB is biaxial and in the limit of k → 0 we get
the fourth of homogeneous nematic structures accounted for
by (10), namely the biaxial nematic.

Each of the structures identified so far can be polar,
Eq. (11). For k �= 0 the polarization can acquire the long–
range periodic component in the x − y plane (p1 �= 0), which
is perpendicular to ẑ and/or global macroscopic polarization
(v00 �= 0), parallel to ẑ . Interestingly, the NTB phase given by
Eqs (10,11) with v00 = 0, can be the global minimizer within
the ODMNS class. The sufficient condition for the free energy
parameters can be derived using the bifurcation analysis (37)
with uniaxial nematic (x00 �= 0) as a reference state. It reads

−2
√

6tP√
9B2 − 8tQ + 3B

< λ <

√
3
2

(
e2

P − 4(ρ + 2)tP

)
(ρ + 2)

(√
9B2 − 8tQ + 3B

) ,

[15]
which is valid when the following additional constrains are
fulfilled: eP �= 0, tQ < B2, ρ > − 3

2 and tP > 0.
In seeking for a globally stable structure among ODMNS

we need to take into account both homogeneous and inho-
mogeneous trial states given by the plane waves expansion
of Q and P. The complexity of the ODMNS minimization
depends on the number of amplitudes used in this expan-
sion, which is controlled by the maximal value nmax of |n|
in the set {k, Qm(n), Pm(n), n = 0, ±1, ..., ±nmax}. As it
turns out the nmax = 1 approximation with 25 real, varia-
tional parameters is not sufficient to qualitatively reproduce
structural changes as experienced by NTB due to an applied
external field. In order to obtain credible results the following
strategy has proved to work. In the first step we perform the
free energy minimization with nmax = 2. Then, the identified
structures serve in the next step as initial states in seeking for
the improved free energy minimum, where relaxation method
for 1D periodic structures is being used for the bulk sample. A
short summary of this typical method is given in Supporting
Information (SI).

Fig. 2. (Color online) Sketch of NTB modifications under the external field. Dashed
lines correspond to the strength of external field coupling that leads to a phase trans-
formation; yellow arrows are directions of E in each of the structures. Red arrows
represent P and black arrow is the direction of k. Lengths of cuboid edges are pro-
portional to the eigenvalues of Q + cI, where I is the unit matrix and c is a constant,
such that the isotropic state is represented by a cube. Every phase is presented in a
perspective with its top view added.

Results of numerical analysis are illustrated for the case
when ρ = 1, ac = 2, eP = −4, B = 1/

√
6, λ = −1/2,

tQ = 1/10 and tP = 8/10 where without external field the he-
liconical structure gives minimum among ODMNS, isotropic,
uniaxial and biaxial nematics. Depending on the strength of
the field and the sign of the material anisotropy, both con-
trolled by the single model parameter ΔεE2 in Eq. (6), the
NTB structure evolves as shown in Fig. (2). For the case of
positive material anisotropy (ΔεE2 > 0) the minimum is re-
alized for E||k̂, while for negative anisotropy (ΔεE2 < 0) the
minimum occurs when E⊥k̂. Furthermore, in the positive
anisotropy case the NTB phase unwinds to the uniaxial ne-
matic with the director parallel to the external field. Further
increase of the field results in stabilization of a polar nematic
(Np), where secondary director is parallel to the polarization
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vector, both being perpendicular to the external field. The
case of negative anisotropy modifies instantly the modulation
of the main director in the NTB phase, which is now precess-
ing on the right elliptic cone around k̂. We denote this new
structure as NTBe. Stronger fields (E⊥k̂) make the elliptic
cone base narrower and finally NSB is stabilized, where the
cone becomes degenerated to a line and P lies in the plane
of splay–bend modulations. With larger fields in–plane mod-
ulations diminish and P acquires the off-plane uniform com-
ponent along the field. This is a new chiral structure denoted
N∗

SBp. For even stronger fields this phase transforms to polar
nematic with polarization parallel to the field.
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symbols - from relaxation method
solid lines - from amplitude minimization with nmax=2

Fig. 3. (Color online) Q and P fields obtained for NTB from the relaxation method
(symbols) and from the free energy minimization with respect to the Fourier ampli-
tudes for nmax = 2 (lines) for ΔεE2 = 0.0025 .
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Fig. 4. (Color online) Q and P fields obtained for N∗
SBp from the relaxation method

(symbols) and from the free energy minimization with respect to the Fourier ampli-
tudes for nmax = 2 (lines) for ΔεE2 = −1.3225 .

Quantitatively phases are described by the amplitudes
Qm(n) and Pm(n), or equivalently by their real and imag-
inary parts, which we denoted: xij = ReQi(j), yij =
ImQi(j), vij = RePi(j), zij = ImPi(j). Additionally each
structure is characterized by the wave vector k. For sta-
ble ODMNS with nmax = 2 the sets of nonzero parame-
ters are: {y11, y22, x00, x11, x22, z11, v11} for NTB; as in NTB

and {y−22, y−11, y02, x−22, x−11, x02, x20, z−11, z02, v−11, v02}
for NTBe; as in NTBe, provided that the following con-
strains are fulfilled {|y−22| = |y22|, |y−11| = |y11|, |x−22| =

|x22|, |x−11| = |x11|, |z−11| = |z11|, |v−11| = |v11|} for NSB;
and as in NSB in union with {|y−21| = |y−12|, |y12| =
|y21|, |x−21| = |x−12|, |x12| = |x21|, |z−12| = |z12|, z10, |v−12| =
|v12|} for N∗

SBp. A typical outcome of standard relaxation
procedure, see (SI), for stable structures and how it compares
with the amplitude minimization for nmax = 2 is illustrated in
Figs (3-9). Note that both the nmax = 2 amplitude minimiza-
tion and the relaxation results agree quantitatively, indicating
that the approximation of nmax = 2 is sufficient to obtain the
basic features of the phases studied. Taking nmax = 1 leads
to qualitatively inconsistent results.

NN pNp

w
w
Q

Q N e N Np
N

E

Fig. 5. (Color online) Various observables averaged over one period from the re-
laxation method (points) and from the free energy minimization with respect to the
Fourier amplitudes for nmax = 2 (lines). Eigenvalues of Q are given in green
(along wave vector), orange (for negative anionotropy it is along the direction of ex-
ternal field) and blue. Biaxiality parameter, given by Eq. (13), is plotted in red for w

and in black for w(Q).

N

N p

N e

N

E

Fig. 6. (Color online) Wave vector as a function of external field for ODMNS pre-
sented in Fig. (2). As previously points are from relaxation method and line is
outcome of the free energy minimization with respect to the Fourier amplitudes for
nmax = 2.

In order to give an insight into fine structure of stable
phases we plot characteristic observables for each of them in
Figs (5-9). Firstly, we present the behavior of eigenvalues
for Q(z) averaged over one period (Q), Fig. (5), which is
what can effectively be measured in experiments. Please note
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NN pn

N e N

E

Fig. 7. (Color online) Minimal (orange) and maximal (blue) values of angle between
k and n̂. As previously points are from relaxation method and lines are outcomes of
the free energy minimization with respect to the Fourier amplitudes for nmax = 2.

NN p

m

N e

N

E

Fig. 8. (Color online) Minimal (orange) and maximal (blue) values of angle between
k and m̂. As previously points are from relaxation method and lines are outcomes of
the free energy minimization with respect to the Fourier amplitudes for nmax = 2.

that homogenous nematics and NTB (averaged over one pe-
riod) are uniaxial, as two eigenvalues of Q coincide, and all
other ODMNS are biaxial. Degree of biaxiality can be quan-
tified by the relative differences between the eigenvalues, or
with the help of the w parameter, Eq. (13). In Fig. (5) we
present w(Q) in black, and w in red, and one sees that NTB

and NTBe are weakly biaxial, as w < 1, while NSB is always
biaxial passing the point of maximal biaxiality. Finally NSBp

is biaxial of oblate type and Np is uniaxial oblate. Further
important characteristic of ODMNS presented in Fig. (2) is
the variation of the wave vector with field, which is shown
in Fig. (6). Clearly, the wave vector vanishes in homogenous
nematic phases. Note that the general effect of the field is to
unwind the structures except for the initial behavior of NTBe,
which is just opposite. Another variable which characterizes
ODMNS is the conical angle. This tilt angle is measured
between k and n̂, but could also be given e.g. between k
and m̂. Being constant for NT B it varies with z for all re-
maining ODMNS, as shown in Fig. (7), where we depict its
minimal and maximal value with field. It is apparent that
both semiaxes of ellipse are equal in NTB (blue and orange
lines in Fig. (7) coincide), but higher field makes the diameter
of cone’s basis smaller. In NTBe blue and orange lines split

providing the elliptic profile of the cone’s basis. In the NSB

phase the minimal value of that angle is equal to zero and m̂,
Fig. (8), is perpendicular to k, which means that n̂ performs
in–plane modulations between minimal and maximal values
of θn̂. Then, comparing Fig. (7) with Fig. (8) for the angle
between k and m̂, gives insight into changing primary direc-
tor from n̂ to m̂ as field increases for materials with negative
anisotropy. This effect occurs when ΔεE2 ∼= −0.8 and it is in
fact caused by passing through a point of maximal biaxiality
from prolate– to oblate–like structure, as shown in Fig. (5)
for w. Finally, in Fig. (9) we present the averages over one
period for the length of polarization vector. Average of po-
larization modulus shows the average length of P for each
structure, whereas modulus of averaged polarization reveals
which of the phases posses the uniform component of P.

NN pNp

P
P

N e N NpN

E

Fig. 9. (Color online) Averages over one period of |P| (blue) and |P| (orange). As
previously points are from relaxation method and lines are outcomes free energy
minimization with respect to the Fourier amplitudes for nmax = 2.

Summarizing, scientists have long sought to understand
how chiral states can be generated in a liquid state from
nonchiral matter. Now strong evidence is found that a new
class of nematics called a nematic twist–bend provides such an
example. This entropically induced state is realized because
the underlying molecules have a specific shape. Here we pre-
sented possible transformations of the NTB phase with an ex-
ternal field within the LdeG theory of flexopolarization. The
outcomes of numerical minimization along with the full free
energy relaxation method have been studied for few sets of
model parameters, with one typical example being discussed
in depth here.

For materials with positive anisotropy the unwinding of the
helix to the uniaxial nematic structure is obtained, however
here for sufficiently strong fields a polar nematic appears more
stable. Compunds with negative anisotropy give rise to three
different ODMNS with a wide range of the NSB phase, so it
is an apparent suggestion that this phase can be stabilized
when applying external fields, and the experimental possibil-
ity for such an option has been presented before (63). So far
the NSB was expected as an intermediate state between neigh-
boring domains of opposite chirality (19), which permits for
smooth transition between adjacent right– and left–handed
NTB domains.
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