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INVITED ARTICLE

Structure formation in monolayers composed of hard bent-core molecules
Paweł Karbowniczeka, Michał Cieślab, Lech Longab and Agnieszka Chrzanowskaa

aInstitute of Physics, Cracow University of Technology, Kraków, Poland; bMarian Smoluchowski Institute of Physics, Department of Statistical
Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Kraków, Poland

ABSTRACT
We investigate the role of excluded volume interactions instabilising different structures in
monolayers filled with bent-shaped molecules using the Onsager type of density functional
theory supplemented by constant-pressure Monte-Carlo simulations. We study influence of
molecular features, like the apex angle, thickness of the arm and the type of the arm edges
on the stability of layered structures. For simple molecular shapes taken the observed phases
are dominated by the lamellar antiferroelectric type as observed experimentally, but a con-
siderable sensitivity of the ordering to details of the molecular shape is found for order
parameters and wave vectors of the structures. Interestingly, for large opening angles and not
too thick molecules, a window of stable nematic splay-bend phase is shown to exist.
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1. Introduction

Two-dimensional (2D) structures made by complicated
macromolecules are recently of great interest due to
their potential applications, mainly in photoelectronic
and biosensor area [1–8]. In contrast to assemblies of
spherical objects like, for instance, colloidal or nanosi-
lica spheres, in case of anisotropic or irregularly shaped
particles, there is a possibility to realise monolayers
exhibiting very regular patterns which, next, can be
utilised as a matrix capable to orient liquid crystal or
to fabricate elements of electronic devices [5]. It has
also turned out that the structure of a matrix built

within a monolayer may influence the activity of bio-
molecules. This biomolecular effect is a first step for
biosensors construction. A comprehensive and detailed
report about ordered molecular assemblies formed by
Langmuir–Blodgett films and self-assemblies with
potential influence on biosensing capabilities is given
in [2].

Achiral bent-core (banana)-shaped molecules can be
important in this regard [1,3–5,9,10]. Their significance
arises from the observation of extraordinary self-organi-
sation in these mesogens in 3D, like the twist-bend
nematic phase of nanoscale pitch [11,12], the fibre-
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forming smectic twist-bend phase [13] and the cybotactic
nematic phase [14]. They are also promising candidates
to form the elusive biaxial nematic phase [15], the splay-
bend nematic phase (NSB) [16–19] and even more com-
plex structures with tetrahedratic order [20–23].

In 2D, the situation is more subtle. These systems
are generally characterised by the lack of true long-
range order in the nematic state, which is a conse-
quence of director fluctuations. A continuous
nematic–isotropic phase transition goes here via
Kosterlitz–Thouless disclination unbinding mechanism
yielding what is observed as algebraically decaying
orientational pair correlation function in the nematic
phase [24]. It is observed, for example, in simulations
of a 2D system of hard needles with zero thickness
[25,26], for planar hard rods [27] and for zigzag and
bow-shaped hard needles [28]. Even though the true
long-range nematic order does not exist in these sys-
tems on a macroscopic scale, the simulations show that
it persists over large spatial dimensions (i.e. on a meso-
scopic scale). Interestingly, it can be well described by
means of Onsager’s density functionaltheory (DFT)
[29–32], despite the fact that macroscopic fluctuations
of the director are generally not included in DFT.

On the experimental side, the data of Gong and
Wan [1] for banana-shaped liquid crystal molecules
(P-n-PIMB) deposited on a highly orienting pyrolytic
graphite (HOPG) surface reveal that the nematic order
can be nearly saturated over the sample. Using scan-
ningtunnelling microscopy (STM), the authors
observed here several antiferroelectric chiral and non-
chiral lamellar structures. Antiferroelectric smectic
order in dense 2D banana systems has been also dis-
cussed theoretically as prevailing in [33] by Bisi et al.
based on the packing arguments and, later, by Gonzales
et al. in the case of needle-like, infinitely thin boomer-
angs [34] and hockey stick-shaped molecules consisting
of two line segments [35]. It has been also detected in
zero-thickness zigzag and bow-shaped systems [28]. In
addition, in [28,34,35], the authors have observed that
upon increasing pressure, before the system attains
antiferroelectric smectic A phase, a spatially non-uni-
form, bend-deformed polar domains with the overall
zero net polarisation are being formed.

Understanding molecular self-organisation in thin
layers of more realistic, finite-thickness bent-core
molecules is an interesting theoretical issue. Since
most studies on 2D systems are based on the particles
exhibiting geometrical shapes like needles [25,31,32],
hard discorectangles [36] or zigzag particles [37]
interacting via hard-core potentials, we will also
incorporate a model from this class (it will be

discussed in detail later). Both types of approach –
Monte-Carlo (MC) simulations and Onsager’s DFT –
give consistent predictions here. Of particular impor-
tance on the phase stabilisation are excluded volume
effects due to primary molecular features of the par-
ticles. In the case of bananas, these features are:
length and width of the arms and the apex angle.
As it will be shown, the secondary features like the
shape of the arm’s end contribute to quantitative
changes.

As already mentioned above, the DFT of
Onsager’s type has proven to give a good insight
into qualitative features of the phases. One of the
benefits of using the DFT scheme in connection
with bifurcation and symmetry analyses is the fact
that it allows to cover a broad range of cases giving
clear directions for a more detailed study. The theory
predicts the existence of the ordered mesophases
with weakly first or second-order phase transitions
in 2D systems, and hence cannot predict quasi long-
range order (QLRO), which is characteristic for sys-
tems with a continuous broken symmetry. Even
though the Onsager’s DFT does not account for
QLRO, it works surprisingly well for nonseparable,
hard-body interactions [29–32]. Indeed, a compari-
son of the Onsager DFT with MC simulations sug-
gest that the former theory is able to account for
relevant features of molecular self-organisation
[25,28–32,34,37].

The aim of the present paper is to investigate with
the Onsager’s DFT a possibility of structure formation
in monolayers built from hard bent-core molecules of
zero and finite thickness. In particular, we show that a
change in molecular shape can have a profound effect
on the properties and even stability of the structures.
We mainly limit ourselves to the case of high orienta-
tional order, in agreement with experiment [1] and
previous 2D studies [34], but supplement the DFT
analysis with a fullMC simulations to support validity
of the approximation used.

The paper is organised as follows: Section II presents
the model and Section III introduces the Onsager’s DFT
formalism together with the appropriately identified
order parameters, needed for the structure description
of aligned boomerangs. Section IV gives the results of
the bifurcation analysis for NSB and lamellar structures.
Section V provides exemplary phase diagrams obtained
from the full minimisation for three different bent-core
systems: hard needle-like bananas, finite thickness bana-
nas with flat horizontal edges and finite thickness bana-
nas with squared edges. Finally, in the last section, a
summary is given together with the main conclusions.
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2. Model

We are going to study molecular self-organisation in a
2D system of hard bent-core molecules of finite thick-
ness. Three types of molecules will be studied: needle-
like boomerangs, Figure (1(a)), finite thickness boom-
erangs with horizontally cut edges (HB), Figure (1(b))
and finite thickness boomerangs with squared edges
(SB), Figure (1(c)).

The bent-core needles, which are the reference par-
ticles given in Figure (1(a)), are just two line segments
of the length l joined at one end in such a way that they
form the apex angle of 2ψ. To obtain a HB molecule,
the line segments are replaced by rhomboids whose tilt
angle conforms to the assumption that the edges are
effectively horizontal as in Figure (1(b)). The SB mole-
cules will differ from the HB molecules with respect to
the shape of the arm edges, which in the SB case are
squared. D describes here the arm’s thickness.

We should add that we sought for several possibilities
of introducing finite thickness to needle-like boomer-
angs. The SB molecules seem to be the most natural
extension, whereas boomerangs with horizontally cut
arms (the HB particles) are expected to attain a layered
arrangement more easily. Indeed, for the HB systems,
even close packing arrangements correspond to lamellar
order with polarised layers. Importantly, for all three
cases, the excluded areas can be calculated analytically.

In order to compare the results for these three differ-
ently shaped bananas, Figure (1), we introduce the
dimensionless shape parameter (width to arm’s length
ratio) δ ¼ D=l (0 � δ ,< 1) and define the reduced density
in agreement with one used for bent-core needles [34]

ρ ¼ �ρ l2 sinð2ψÞ; (1)

where �ρ ¼ N=S stands for the average density with N
being the number of particles within the surface area S.
Using definition of the packing fraction parameter
η ¼ NSmol=S, with Smol being the surface of the mole-
cule, the reduced density becomes

ρ ¼ η
l2 sinð2ψÞ

Smol
: (2)

In the case of the HB particles, Smol ¼ 2l2δ. Thus,

ρ ¼ η
sinð2ψÞ

2δ
: (3)

For the SB particles, Smol ¼ l2δ 2� δ= tanðψÞð Þ. Then,

ρ ¼ η
sinð2ψÞ

δð2� δ= tanðψÞÞ : (4)

Please note that the parameterisation (2) is singular for
ψ ¼ 0 and ψ ¼ π=2, where bent-core molecules of zeroth
thickness become reduced to a line, with η ¼ 0. For 3D
liquid crystals, the typical packing fractions accessible to
liquid crystalline phases attain values from the interval
(0.4–0.7). For 2D systems, including δ ¼ 0 case, η spans
the whole interval (0–1). In particular, HB and SB boom-
erangs can reach their maximal possible value of η ¼ 1
for ideal, close-packed, lamellar configurations with
maximally polarised layers. Very high packing fractions
for lamellar structures in 2D (η � 0:8) are also observed
in the experiments of Gong and Wan [1].

3. Density functional analysis

3.1. Free energy functional and self-consistent
equations

A successful approach to describe the phase behaviour of
hard-body liquid crystalline systems is a generalisation of
the Onsager theory. In this framework, the Helmholtz
free energy, F , is constructed as a functional of the single
particle probability distribution function PðXÞ [38]
F P½ �
NkBT

¼ kBTTr
ðXÞ

ρðXÞ ln ΛρðXÞð Þ � 1½ �f g þ Tr
ðXÞ

ρðXÞVext½ �

� kBT
2

Tr
ðX1;X2Þ

ρðX1Þf12 ρðX2Þ½ �;

(5)

where

Figure 1. Shapes of bent-core molecules studied: (a) bent-core
needles (they serve as a reference), (b) finite thickness bent-
core molecules with flat horizontal edges (HB) and (c) finite
thickness bent-core molecules with squared edges (SB). The
apex angle, ψ, here is π=4 and the arm’s width is D ¼ l=4.
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f12 ¼ e�βVðX1;X2Þ � 1 (6)

is the Mayer function. Here, V is the interparticle
potential,Vext is the external potential, representing inter-
action with external fields, or surfaces, Λ is the constant
resulting from the integration over momenta, T is the
absolute temperature and kB is the Boltzmann constant.
ρðXÞ stands for the one-particle distribution function,
which is normalised to the total number of particles N

Tr
ðXÞ

½ρðXÞ� ¼ hNi;N: (7)

In what follows no external fields are taken into
account and the surface is assumed smooth at the
lengthscale of the molecular size (typically a fewnano-
metres for bent-core molecules). Its role is limited to
confine molecules in 2D (strong planar anchoring).
Under these assumptions, the corresponding Vext does
not depend on molecular orientational degrees of free-
dom and, hence, can be disregarded in the expan-
sion (5).

The variable X represents the set describing the
position r ¼ ðx; yÞ of the centre of mass of the particle
and its orientations. In the description of lamellar
structures we assume, in agreement with experiment
[1] and previous 2D studies [34], that orientational
order is nearly saturated. In practice it means that for
a C2h-symmetric molecule, the orientational degrees of
freedom become reduced to a discrete variable, say s,
accounting only for two possible orientations of the
steric dipole (s ¼ �1) with respect to the local director
n̂ðrÞ, where s ¼ þ1 denotes a particle with a steric
dipole pointing to the ‘right’ and s ¼ �1 denotes a
particle with a dipole pointing to the ‘left’. This
means that the steric dipole is assumed to stay perpen-
dicular to the local director, Figure (2). In what follows
we limit orientational degrees of freedom of a molecule
to the above two values, but carry out exemplary NPT
(constant number of particles, pressure and tempera-
ture) MC simulations with a full spectrum of transla-
tional and orientational degrees of freedom to check

the credibility of this approximation. Hence, in 2D, the
trace in Equations (5, 7) is calculated as

Tr
ðXÞ

¼ P
s¼�1

ðL
0

dx

ðL
0

dy ¼

S
P
s¼�1

1
L

ðMd¼L

0

dy;

(8)

where L represents the linear dimension of our sample
(S ¼ L2); M stands for the number of layers and d is
the layer thickness in the case of smectics.

In order to obtain the equilibrium solutions for the
distribution function, the free energy functional F ρ½ �
must be minimised with respect to variation of ρðXÞ
subject to the normalisation constraint Tr

ðXÞ
½ρðXÞ� ¼ N.

It amounts to minimising F� ρ½ � given by

F� ρ½ � ¼ F ρ½ � � μ Tr
ðXÞ

½ρðXÞ� � N

� �
; (9)

where μ is the chemical potential. In our case of ideally
oriented hard boomerangs, the Mayer function has a
meaning of an excluded distance. It reads

f12 ¼ e�βVðX1;X2Þ � 1

¼ �Θ �ðr̂12; s1; s2Þ � r12½ �; (10)

where r̂12 ¼ r12
r12

¼ r2�r1
r2�r1j j and � is the contact function

defined as the distance of contact from the origin of the
second molecule for a given direction r̂12 and orientations
s1; s2 (see Figure (3)); Θ denotes the Heaviside function.
Now, introducing the probability distribution func-
tion PðXÞ

Figure 2. Definition of the s variable, accounting for different
orientations of molecule’s steric dipole with respect to the local
director, n̂ðx; yÞ.

Figure 3. Definition of the contact function � for two molecules
with the apex angle 2ψ ¼ π=2 and δ ¼ D=l ¼ 1=3.
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ρðXÞ ¼ NPðXÞ ¼ �ρSPðXÞ (11)
and disregarding irrelevant (constant) terms, one can
rewrite the free energy (5) in terms of a rescaled free
energy per unit area, f ðPÞ, as

f ðPÞ
l2 sinð2ψÞ ¼

βΔF P½ �
S

¼

�ρ Tr
ðXÞ

PðXÞ lnPðXÞ½ � þ �ρ

2
Tr
ðXÞ

PðXÞHeff ðXÞ
� �

;

(12)

where Heff is the effective excluded volume, averaged
over the probability distribution of particle ‘2’. It reads

Heff ðX1Þ ¼ �ρS Tr
ðX2Þ

PðX2ÞΘ �ðX1;X2Þ � r12½ �f g:

(13)

The equilibrium distribution function is now
obtained by minimising the free energy functional
(12). The necessary condition reads

δf ðPÞ
δP

¼ 0; (14)

which in practice becomes reduced to solving the
self-consistent non-linear integral equations for PðXÞ

PðXÞ ¼ Z�1e�Heff ðXÞ; (15)

where

Z ¼ Tr
ðXÞ

e�Heff ðXÞ (16)

is the normalisation of PðXÞ. The stationary solution
of Equation (15) is denoted as PsðXÞ.

3.2. Details of the calculation

In the analysis of possible stable phases, we disregard
phases with 2D periodicity, like crystalline ones.
Structures that are left are polar nematics, NSB and
commensurate or incommensurate smectics of A or C
type, among which the most relevant are shown in
Figure (4). Thus, for the case of perfectly aligned
boomerangs only two variables are needed toparame-
terise one particle distribution function. For NSB, we
will assume the director to be a periodic function in
x-direction, which means that PðXÞ;Pðs; n̂ðxÞÞ, where
s ¼ �1 represents two opposite orientations of the
steric dipole with respect to the local director, Figure
(4). For lamellar structures, we will use vertical coor-
dinate y and s toparameterise P: PðXÞ;Pðs; yÞ. First,
we will identify the bifurcation points from the per-
fectly ordered reference nematic phase.

For the cases not involving NSB [16,17], the distribu-
tion function can be Fourier expanded as

Pðs; yÞ ¼ ~A0 þ
X1
n¼1

~An cos
2πny
d

� ϕ0;n

� �
þ

s~B0 þ
X1
m¼1

s~Bm cos
2πmy
d 0 � ϕ1;m

� �
; 0 � y � L;

(17)

where periodic boundary conditions are assumed:
L ¼ Md ¼ M0d0, with M > 0 and M0 > 0 being integer
numbers.

Note that the expansion (17) is the most general repre-
sentation for Pðs; yÞ, when particles are subjected to peri-
odic boundary conditions and possible structures are
characterised by positionally independent, homogeneous
director field. It follows from the observation that Pðs; yÞ,
where s ¼ �1, is linear in s: Pðs; yÞ ¼ ~AðyÞ þ s~BðyÞ.
Consequently, the independent Fourier expansions of
~AðyÞ and ~BðyÞ involve the density wave part (~An-terms)
and the polarisation wave part (~Bn-terms) of periodicities d
and d

0
, respectively. They are phase-shifted with respect to

each other (ϕ phases), where the phases are determined up
to a global phase, expressing freedom in choosing the
origin of laboratory system of frame.

Using orthogonality properties of the Fourier series
and properties of the s-space, we can now define order
parameters. They are given by

hxni ¼ hx 2πny
d

� 	i
hsxmi ¼ hsx 2πmy

d0
� 	i; (18)

where

h:::i ¼ Tr
ðXÞ

PðXÞ:::½ � ¼ S
X
s¼�1

1
L

ðMd¼M0d0¼L

0

dyPðs; yÞ:::

(19)

with xα ; c; sf g and, correspondingly, xð:::Þ ;
cosð:::Þ; sinð:::Þf g. With definitions (18) we can finally
rewrite the distribution function in the symmetry
adapted form. It reads

Pðs; yÞ ¼ 1
2Sþ 1

S

P1
n¼1

hcni cos 2πny
d

� 	þ hsni sin 2πny
d

� 	� �
þ 1

2S hsisþ 1
S

P1
m¼1

hscmis cos 2πny
d0

� 	þ hssmis sin 2πny
d0

� 	� �
:

(20)

Substituting the expansion (20) back into the effec-
tive excluded volume (13) and assuming L to be large,
we can reduce Heff ðX1Þ to a simpler form. It is given by
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Heff ðX1Þ ¼ �ρS
X
s2¼�1

ðL
0

dy2λðy12; s1s2ÞPðs2; y2Þ; (21)

where

λðy12; s1s2Þ ¼
ðL
0

Θ �ðx12; y12; s1s2Þ � r12½ �dx2

¼ λ0ðy12Þ þ s1s2λ1ðy12Þ (22)

plays the role of an excluded interval for
fixed relative positions and orientations of two
molecules.

This excluded area depends only on the relative
orientation between the molecules and on their relative
separation. There are two cases: with particles pointing
in the same direction (s1s2 ¼ 1) or in the opposite
direction (s1s2 ¼ �1). The exemplary cases are shown
in Figure (5). For our molecules, the excluded area is
calculated analytically, but only for the needle-like

Polar smectic A SmAF

Antiferroelectric smectic A SmAAF

Nematic N

d 2

max 2

d

d’

d’ d d’ d

Smectic A SmA

Nematic splay bend NSB

Polar nematic NF

Figure 4. (Colour online) Possible arrangements of perfectly aligned bent-core molecules. For better visibility, the molecules
pointing in opposite direction are drawn in different shades of grey. For the nematic splay-bend phase, which appears stable
only for small δ, molecules are represented by thick continuous and dashed lines. The former corresponds to the most preferable
orientation of the steric dipole (red arrow) with respect to the local director while the later is less preferable orientation. The
director is tangential to the lines shown.
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bananas can the formulas be cast in a concise form. For
s1s2 ¼ 1, they read

� y12þ2l sinψ
tanψ � x12 � y12þ2l sinψ

tanψ �2l sinψ � y12 � �l sinψ
y12
tanψ � x12 � � y12

tanψ �l sinψ � y12 � 0

� y12
tanψ � x12 � y12

tanψ 0 � y12 � l sinψ
y12�2l sinψ

tanψ � x12 � �y12þ2l sinψ
tanψ l sinψ � y12 � 2l sinψ:

8>>>><
>>>>:

(23)

and for s1s2 ¼ �1

x12 ¼ � y12
tanψ �2l sinψ � y12 � �l sinψ

� y12
tanψ � x12 � y12þ2l sinψ

tanψ �l sinψ � y12 � 0
y12
tanψ � x12 � �y12þ2l sinψ

tanψ 0 � y12 � l sinψ

x12 � y12
tanψ l sinψ � y12 � 2l sinψ:

8>>>><
>>>>:

(24)

For needle-like boomerangs λs take a particularly
simple form. They read

λ0ðy12Þ ¼
l cosψ
� y12j jþ2l sinψ

tanψ

y12j j<l sinψ
l sinψ � y12j j � 2l sinψ;

(
(25)

λ1ðy12Þ ¼
2 y12j j�l sinψ

tanψ
� y12j jþ2l sinψ

tanψ

y12j j<l sinψ
l sinψ � y12j j � 2l sinψ:

(
(26)

Examples of λs for needle-like boomerangs, HB and
SB molecules are shown in Figure (6).

The next step is to perform the integration in (21)
by replacing y12 with y, where y2 ¼ y1 þ y. In the limit
of large L, the final formula for the effective excluded
volume is given by

Figure 5. Excluded area in (x12; y12) plane for needle-like, HB
and SB particles with 2ψ ¼ π=2 and δ ¼ 1=3. The grey areas
correspond to the excluded areas, while the horizontal tie lines
to the excluded distances.

Figure 6. λ functions for needle-like boomerangs, HB and SB
molecules. Coordinates of characteristic points of the functions
are also given.
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where the coefficients of the expansion are defined as

An ¼ l2 sinð2ψÞαðψ; δ; knÞ

¼
ð2l sinψ
�2l sinψ

λ0ðyÞ cos 2πny
d

� �
dy; (28)

Bm ¼ l2 sinð2ψÞβðψ; δ; k0mÞ

¼
ð2l sinψ
�2l sinψ

λ1ðyÞ cos 2πmy
d0

� �
dy; (29)

Cn ¼ l2 sinð2ψÞγðψ; δ; knÞ

¼
ð2l sinψ
�2l sinψ

λ0ðyÞ sin 2πny
d

� �
dy; (30)

Dm ¼ l2 sinð2ψÞσðψ; δ; k0mÞ

¼
ð2l sinψ
�2l sinψ

λ1ðyÞ sin 2πmy
d0

� �
dy: (31)

Here, ρ is defined in Equation (1) and k, k0 are

dimensionless wave vectors given by k ¼ πl sinψ
d and

k 0 ¼ πl sinψ
d0 , respectively. As a result of the condition

that L ¼ Md ¼ M 0d 0, we additionally have a limitation
Mk 0 ¼ M 0k imposed on wave vectors. Substitution of
n ¼ m ¼ 0 in (28) and (29) gives A0 and B0.

Formally, the coefficients (28–31) are the Fourier
transforms of λα, Equation (22). For the case of nee-
dle-like bananas, these coefficients are of a particularly
simple form, namely

αðψ; δ; 0Þ ¼ 3
2 ; βðψ; δ; 0Þ ¼ 1

2 ; γðψ; δ; kÞ ¼ σðψ; δ; kÞ ¼ 0;

αðψ; δ; kÞ ¼ ½2 cosð2kÞþ1�sin2ðkÞ
2k2 ;

βðψ; δ; kÞ ¼ ½2 cosð2kÞ�1�sin2ðkÞ
2k2 ;

(32)

where k ¼ lπ sinψ
d . They are shown in Figure (7).

Taking definitions (18) the non-linear integral
Equation (15) becomes reduced to an infinite set of
non-linear transcendental equations for the order
parameters

hxni
hsxmi
hsi

0
@

1
A ¼ Z�1 Tr

ðX1Þ

x 2πny1
d

� 	
s1x

2πmy1
d0

� 	
s1

0
@

1
A expð�Heff Þ

2
4

3
5:
(33)

The corresponding stationary excess free energy in
the limit of large L is given by

f Ps½ �
l2 sinð2ψÞ ¼ �ρhlnPsi þ �ρ

2 hHeff i ¼ � �ρ
2 hHeff i � �ρ lnZ

¼ � �ρ2

2 ½A0 þ B0hsi2 þ 2
P1
n¼1

An hcni2 þ hsni2
� 	

þ2s1
P1
m¼1

Bm hscmi2 þ hssmi2
� 	� � �ρ lnZ:

(34)

Similar to the previous cases, we can now proceed
with the analysis of NSB. For the NSB structure, we take
the generalisation of one proposed earlier by Meyer
[16]. Since the steric polarisation is always perpendi-
cular to the local director, we assume the direction of
the former to rotate uniformly between � θmax=2 and
θmax=2 for 0 � x < d=2, Figure (4), where θmax and d
should be determined from the free energy minimum.
Assuming the structure to be globally non-polar, we
take

l2 sinð2ψÞHeff ðs1; y1Þ ¼ ρA0 þ ρB0hsis1þ

2ρ
X1
n¼1

hcni An cos
2πny1
d

� �
� Cn sin

2πny1
d

� �
 ��
þ

hsni An sin
2πny1
d

� �
þ Cn cos

2πny1
d

� �
 ��
þ

2ρs1
X1
m¼1

hscmi Bm cos
2πmy1
d0

� �
� Dm sin

2πmy1
d0

� �
 �
þ

�

hssmi Bm sin
2πmy1
d0

� �
þ Dm cos

2πmy1
d0

� �
 ��
;

(27)
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Figure 7. The k-dependence of the coefficients α and β for
needle-like boomerangs.
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Pðs; n̂ðxÞÞ ¼ Pðs; n̂ðx þ dÞÞ ¼ 1
2S

þ 1
2S

hsisδ½̂sðxÞ
þ sinðϕðxÞÞ; cosðϕðxÞÞf g�;

(35)

where

ϕðxÞ ¼
2θmaxx

d � θmax
2 ; 0 � x < d=2

π� 2θmaxx
d þ 3θmax

2 ; d=2 � x < d:

(
(36)

Here, ŝsðxÞ is the local polarisation (̂sðxÞ?n̂ðxÞ) with
s ¼ �1, as previous, and δ½:::� is the Dirac delta func-
tion. Note that the NSB structure needs d, θmax and the
average polarisation sh i measured with respect to the
local director to be determined variationally from the
free energy f ½Ps�. The calculation of the equations for
hsi and for f ½Ps� proceeds in a similar way as previous.
We only need to interchange y with x in formulas (21,
22, 33, 34), set M ¼ 1 and disregard M0. The final
formulas are identical to Equations (33, 34) with An ¼
Bn ¼ 0 for n � 1. The only difference now is that A0

and B0 depend on θmax and d.
The Equation (33) should be solved for given d; d0

and appropriately chosen M;M0. Then, the equili-
brium structure is identified with the absolute mini-
mum of (34) taken with respect to the stationary
solutions and with respect to the periodicities d; d0

and θmax. Note that the trivial nematic state corre-
sponding to hsi ¼ hcni ¼ hsni ¼ hscni ¼ hssni ¼ 0 ð" 	
nÞ always satisfies Equation (33). The remaining pro-
blem is to identify all non-trivial solutions of
Equation (33), where at least one of the order para-
meters becomes non-zero. A systematic way of find-
ing these solutions is bifurcation analysis [39]. Here,
we apply this technique to analyse bifurcation from
the nematic phase. We also determine exemplary
phase diagrams from the fullminimisation of the
free energy in different phases, over a wide range η.
We also carry out exemplary MC simulations that
involve a full spectrum of orientational degrees of
freedom to support the usefulness of the ideal
nematic order approximation.

3.3. Bifurcation analysis

Now we consider a bifurcation from a perfectly
aligned nematic phase. Close to the bifurcation
point, the difference between the states is arbitrarily
small for each d; d0, which enables one to linearise the
right-hand side (RHS) of Equation (33) with respect
to the order parameters. The analysis is carried out by
taking the needle-like boomerangs as reference. The
results are

hcni
hsni

� �
¼ �ρAn

hcni
hsni

� �
; (37)

hscmi
hssmi

� �
¼ �ρBm

hscmi
hssmi

� �
; (38)

hsi ¼ ρβð0Þhsi; (39)

where 2 by 2 arrays An, Bm are given by

An ¼ αðψ; δ; knÞ γðψ; δ; knÞ
�γðψ; δ; knÞ αðψ; δ; knÞ

� �
(40)

and

Bm ¼ βðψ; δ; k0mÞ σðψ; δ; k0nÞ
�σðψ; δ; k0mÞ βðψ; δ; k0nÞ

� �
: (41)

The homogeneous Equations (37–39) have a non-
trivial solution given that at least one of the equations

detð1þ ρAnÞ ¼ 0; (42)

detð1þ ρBmÞ ¼ 0; (43)

ρ;ρ0 ¼ � 1
βð0Þ (44)

is satisfied for a positive ρ. By solving Equations (42,
43) for ρ, we obtain two functions: ρðknÞ and ρ0ðk0mÞ,
respectively, together with ρ0. The bifurcation density is
then identified with the lowest positive value taken out of

Min
fkng

ρðknÞ½ �;Min
fk0mg

ρ0ðk0mÞ½ �; ρ0
� �

: (45)

For the majority of cases studied, we will assume the
director to be perpendicular both to the molecule’s
dipole moment and the layer normal, see Figure (2).
In this case, λ ¼ λð y12j j; s1s2Þ in Equation (22).
Consequently, we can choose ϕs in Equation (17) to
vanish and consider the case of vanishing hsni and
hssmi. The corresponding bifurcation density is then
the lowest positive value out of

Min
fkng

�1
αðknÞ


 �
;Min
fk0mg

�1
βðk 0

mÞ

 �

;
�1
βð0Þ

� �
: (46)

As an example, we start with the discussion of
bifurcation for needle-like boomerangs. It turns out
that the most stable structures bifurcating from the
nematic phase is the antiferroelectric smectic A phase
(SmAAF). To see this, consider the behaviour of αðknÞ
and βðk0mÞ, shown in Figure (7). One observes that β

attains the absolute minimum for k
0
0;m ¼ 1:246 and α

for k0;n ¼ 1:438, and that these points correspond to

the layer thicknesses of d
0
0;m ¼ lmπ sinψ

k00;m
¼ 2:52ml sinψ

and d0;n ¼ lnπ sinψ
k0;n

¼ 2:184nl sinψ, respectively.

Consequently, the physical bifurcation to the smectic
A (SmA) phase should occur for n ¼ 1 with d0 �

LIQUID CRYSTALS 9



2:18l sinðψÞ ¼ 1:09ð2l sinðψÞÞ and bifurcation to the
antiferroelectric smectic (SmAAF) phase for m ¼ 1
with d0 � 2:51 sinðψÞ ¼ 1:26ð2l sinðψÞÞ. Since the
minimum of Bm is deeper, the expected lamellar
phase bifurcating from the nematic phase will be of
the antiferroelectric type. The value of this minimum
determines the bifurcation density ðρbif ¼ � 1

Bmin
1
Þ.

Then, the distribution function at the bifurcation
point will take the form

Pðs; yÞ ¼ 1
2S

þ 1
S
hsc1is cos 2πy

2:52l sinψ

� �
þ ::: (47)

4. Possible structures

In general, the most probable 2D structures that can be
expected in boomerang systems are given in Figure (4).
Here, the low-density phase, the nematic phase, can be of
two types: the standard nematic phase (N) in which the
same (on average) number of boomerangs is pointing to
the right as to the left. When one type of orientation
prevails ( sh i�0), then one deals with the polar (ferro-
electric) nematic (NF). One may also expect that the NSB

phase ( sh i�0, finite d, 0<θmax � π) should be at least
locally stable. Upon an increase of density, a transition to
a smectic phase, which is characterised by a regular
modulation of the density profile due to presence of the
layers, may occur. Three different smectic phases are
plausible: the typical smectic A phase (SmA), where left
and right-pointing particles are, on average, equally dis-
tributed ( cnh i�0), the ferroelectric smectic A phase
(SmAF) when the particles oriented in one direction
overwhelm the number of the oppositely oriented parti-
cles ( sh i�0, cnh i�0, scnh i�0, d ¼ d0), and the antiferro-
electric smectic A phase (SmAAF), in which the particles
in subsequent layers have opposite orientations
( scnh i�0, cnh i�0, d0 ¼ 2d). Note that the period d 0 of
the layers with particles of the same average orientation
in the antiferroelectric phase is twice the smectic period d
(M ¼ 2M0 ¼ 2), whereas in the polar phase they attain
the same value. The occurrence of such phases will
depend on the structure of the particles themselves as
well as on the density.

5. Boomerangs of arms with finite width

5.1. The HB molecules

The model of the needle-like boomerangs can be
extended to the case when arms are of finite width in
many different ways of which we choose HB and SB

shapes. The HB case is given in Figure (1(b)). For HB
molecules, the coefficients α and β are given by

αðψ; δ; kÞ ¼ 1þ2 cos 2kð Þ½ �sin2kþ 4δ
sinð2ψÞk sin 4kð Þ

2k2 ;

βðψ; δ; kÞ ¼ �1þ2 cos 2kð Þ½ �sin2k
2k2 ;

αðψ; δ; k ! 0Þ ¼ 3
2 þ 8δ

sinð2ψÞ ;
βðψ; δ; k ! 0Þ ¼ 1

2 :

(48)

Note that the coefficient β here is exactly the same as
in the case of the needle-like boomerangs. It turns out,
however, that when the condition δ ¼ 0:3654 sinð2ψÞ is
fulfilled, the minimum of α and the minimum of β attain
the same value βmin ¼ αmin ¼ �0:749956 (see Figure
(8)). This condition provides a set of values for the
parameters serving as a limiting case when the bifurca-
tion from N to SmA or SmAF is observed. Note that the
close-packed structure for HB molecules is of the lamel-
lar (smectic A) type with maximally polarised layers, but
the direction of polarisation within the layer is doubly
degenerate (̂s ¼ �x̂).

Using the density of the form ρ ¼ η sin 2ψ
2δ , one can

now obtain the bifurcation diagram as given in Figure
(9). The lines provide the condition where the normal-
ised packing fraction η is equal to 0.1, 0.5 and 0.9.
Similar to [34], the most common smectic phase
obtained here is SmAAF , given by the blue region. In
the red region (Sm) of Figure (9), the bifurcation sce-
nario leads to a single amplitude SmA structure
( c1h i�0). However, due to the coupling of c1h i with
sh i and sc1h i, the equilibrium lamellar structures with
polarised layers, like SmAF , are also possible. They can
be stabilised as a result of a phase transition between
two different lamellar structures and cannot be
obtained by studying bifurcation from N. In this case,
we would need to solve numerically the self-consistent
Equations (33) for each structure separately and com-
pare the free energies of the solutions.

0 1 2 3 4 5 6

–0.5

0.0

0.5

1.0

1.5

k

Figure 8. The Fourier transforms α and β for the condition
δ ¼ 0:3654 sinð2ψÞ:
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Interestingly, the theory predicts that the nematic
splay-bend phase can be stabilised directly from N for
not too thick molecules.

5.2. The SB molecules

In the case of the SB molecules, the calculation of the
Fourier transforms for the excluded slice becomes more
involved. Firstly, the particle width δ has to be smaller
than tanðψÞ due to geometrical constraints. Secondly,
three cases with different antiparallel arrangements (I, II,
III) of the molecules (see Figure 10) have to be consid-
ered separately. The corresponding α and β functions
entering the bifurcation equation, like those in Equation
(48), should now be replaced by αi and βi (i ¼ I; II; III),
respectively. The first two cases appear when the open-
ing angle 2ψ is smaller than π=2. The first one of these

two occurs also when arms are thin, namely when their
width is smaller than 1=½cotðψÞ þ cscð2ψÞ�. The corre-
sponding normalised αi and βi functions for i = I, II, III
are given in Appendix.

Examining the positions of relative minima for αi
and βi (see Figure (11)), one observes bifurcations to
different phases as shown in Figure (12). More specifi-
cally, the first panel of Figure (11) illustrates the case
where the bifurcation to SmA or a transition to SmAF

takes place, which is connected with the coefficient α
having a global negative minimum deeper than that of
β. The next panel shows the opposite case,that is, when
the (negative) global minimum of β is deeper than that
of α, hence the bifurcating phase will be SmAAF . When
the (negative) global minima are about the same depth,
we can expect an incommensurate smectic phase to
become absolutely stable. Within our formalism, this
case can be studied by taking a commensurate approx-
imation, where both minima are approximated by an
appropriate choice of k; k0 and M;M0.

Similar to the HB case, the coefficient β at km ¼ 0 is
always positive, thus the polar nematic phase cannot
appear here either. The complete bifurcation diagram
is presented in Figure (12). The blue region in this

Figure 9. (Colour online) Bifurcation diagram for HB boomer-
angs. The blue region corresponds to the cases where nematic
(N)-antiferroelectric smectic A (SmAAF) bifurcation takes place
and the red region (Sm) corresponds to the cases where the
transition from N undergoes either to SmA or SmAF . In the
yellow region, the NSB structure bifurcates from N. The black
lines are the density limits with the packing fraction η given in
the legend.

Figure 10. Three cases of antiparallel arrangements for SB
molecules. They lead to three different Fourier transforms of
the excluded slice given in Appendix.

Figure 11. Different relations between absolute minimum of α and β. Left diagram corresponds to ψ ¼ π=4 and δ ¼ 0:5 and
bifurcation to smectic A phase. Right diagram corresponds to ψ ¼ π=4 and δ ¼ 0:1, where bifurcation is to antiferroelectric smectic
phase.
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diagram corresponds to the apex angle and arm thick-
ness where the bifurcation from N to SmAAF takes
place. The red area (Sm) again corresponds to N �
SmA bifurcation or N � SmAF transition and in the
yellow area the bifurcation is dominated by NSB. The
black lines are the guide lines at which the packing
fractions are given as in the legend.

Finally, we would like to add that we have checked a
few cases for the possibility of obtaining a stable
incommensurate smectic phases of A type and a smec-
tic C phase, where the director is not perpendicular to
the layer normal, but did not find one more stable than
the structures identified in Figures (9 and 12).

5.3. Nematic splay-bend

Both, HB and SB bifurcation diagrams contain pre-
viously described nematic splay-bend regions, but the

range of stability of NSB is narrow, starting from ψ
around 5π=12. Another limiting factor is the width δ
of a particle, which cannot be greater than 0.14. In
Figure (13), further characteristics of NSB are shown.
In particular, please note that the period d of NSB

increases with increasing opening angle, but the width
of a particle has no significant effect on d. It only
reduces the range of ψ at which the NSB phase can
occur. However, θmax can be drastically altered by the
width of a particle. For hard needles of ψ ¼ 5π=12, it
approaches its maximal value of π, which means that
molecules perform a full half turn on the path of length
d=2, but as the thickness of particles increases θmax

becomes smaller. The same effect is observed when
the opening angle of molecules increases. It causes
θmax to decrease towards π=2, which means that the
tilt angle of the director with respect to the x-axis varies
between π=4 and � π=4.

Please remember that weparameterise our results
using the convention adopted for bent-core needles
[27]. As already mentioned before thisparameterisation
is singular in the needle limit ψ ¼ 0; π=2 due to the factor
l2sinð2ψÞ in Equation (2), where bent-core molecules of
zeroth thickness become reduced to a line. Therefore, any
polar order that may occur for ψ ¼ π=2 in Figures (9 and
12) is only asymptotically stable, for η ! 1.

5.4. Exemplary results of full minimisation

Here, the free energy of different phases is calculated
for exemplary molecular shapes to identify the stable
phases as function of packing fraction. It turns out that
for majority of cases the calculations involving terms
up to n ¼ m ¼ 4 in (33) and (34) give excellent quan-
titative predictions for the equilibrium structures. The
results obtained are consistent with the phase diagram
maps, Figures (9 and 12), in apex angle–arm’s width
plane. Here, we concentrate on the most common

Figure 12. (Colour online) Bifurcation diagram for SB boomer-
angs. The blue region corresponds to the cases where nematic
(N)–antiferroelectric smectic A (SmAAF) bifurcation takes place
and the red region corresponds to the cases where the nematic
(N)–smectic A (SmA) or nematic (N)–polar smectic A (SmAF)
bifurcation undergoes. In the yellow region, NSB bifurcates from
N. The black lines are the density limits with the packing
fraction η given in the legend.

Figure 13. (Colour online) Behaviour of period d and θmax as function of ψ for NSB calculated at bifurcation from the nematic phase.
Blue and red lines correspond to HB and SB particles of width δ ¼ 0:1.
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SmAAF phase and clarify the issue of previously men-
tioned SmAF phase.

We start with the case of stable SmAAF , represented
by the blue region in Figures (9 and 12). In Figures (14
and 15), we compare the equilibrium values of leading
order parameters for this structure as function of pack-
ing fraction and arm’s width for ψ ¼ π=3. It turns out
that the change of the arm endings strongly influences
the behaviour of the order parameters, especially when
the thickness of the arms increases. As expected, for
thin arms, where, for instance, δ ¼ 0:05, the profiles of
the order parameters (and the bifurcation points) are
very similar. For larger values of δ, the bifurcation
point for the SB boomerangs shifts towards higher
packing fractions. For δ ¼ 0:25, one does not observe
the stable SmAAF phase, whereas for the HB boomer-
angs this structure is still attainable.

In Figures (16) and (17), the equilibrium wave vec-
tor k of the SmAAF phase, obtained for different

packing fractions η and the apex angle of 2ψ ¼ 2π=3
and 2ψ ¼ 2π=4, respectively, is presented for HB and
SB molecules. In case of HB molecules, the k vector
increases with the packing fraction, which means a
reduction of the layer thickness. For the SB molecules,
the wave vector k can show different behaviour. In the
case of 2ψ ¼ 2π=3, for thicker arms (δ>0:15), the wave
vector is reduced with the packing fraction and hence
the layer thickness increases.

In order to determine the sequence of phase transi-
tions and establish relations between them in the red
(Sm) regions of the bifurcation diagrams, we compared
the free energies for the reference structures using the
first terms in Equations (33) and (34), and then calcu-
lated the order parameters up to n ¼ m ¼ 4. The
results showing stable SmA and SmAF phases are
shown in Figures (18) and (19) for two HB systems:
near (δ ¼ 0:4, ψ ¼ π=4) and far (δ ¼ 0:5, ψ ¼ π=4)
from the blue region. For the cases studied the first

Figure 14. Typical behaviour of equilibrium order parameter hci for the cases with stable SmAAF phase, obtained for different
packing fractions η and the apex angle 2ψ ¼ 2π=3. The panel on the left is for the HB molecules while the panel on the right is for
the SB molecules.

Figure 15. Typical behaviour of equilibrium order parameter hsci for the cases with stable SmAAF phase, obtained for different
packing fractions η and the apex angle 2ψ ¼ 2π=3. The panel on the left is for the HB molecules while the panel on the right is for
the SB molecules.

Figure 16. Equilibrium wave vector k (k0 ¼ k=2) in stable SmAAF phase, obtained for different packing fractions and the apex angle
2ψ ¼ 2π=3 for the HB molecules (left) and for the SB molecules (right). The layer thickness is proportional to inverse of k.
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transition is N � SmA followed by SmA� SmAF for
larger ηs. The distance between both transitions
grows with the width of a particle. Note that the struc-
tures became stable at high packing fractions η.

5.5. Exemplary MC simulations

In order to check whether the approximation of ideal
nematic order gives correct qualitative predictions for
our models, we carried out exemplary, constant pres-
sure MC simulations for needle-like, HB and SB

boomerangs. All simulations began with a set of N ¼
500 to N ¼ 2000 particles of the same type, randomly
oriented and placed inside a box with periodic bound-
ary conditions applied. A single MC step involved
random selection of a particle and a random transla-
tion and rotation, accepted only if the particle did not
intersect with any others. N of such steps were consid-
ered as a single cycle. The size of the simulation box
was dynamically adjusted to keep the pressure of the
system constant. The rescaling of the box took place
every 10 cycles and was successful with a probability

Figure 17. Equilibrium wave vector k (k0 ¼ k=2) in stable SmAAF phase, obtained for different packing fractions and the apex angle
of 2ψ ¼ 2π=4 for the HB molecules (left) and for the SB molecules (right). The layer thickness is proportional to inverse of k.

Figure 18. Dependence of free energies on packing fraction η for three structures: SmAAF , SmA and SmAF of HB system (left panel)
and equilibrium, leading order parameters for stable SmA and SmAF (right panel). Molecular parameters are δ ¼ 0:4 and ψ ¼ π

4 .
Nematic phase (f ¼ 0) is stable for η < 1 while SmA wins for η > 1. SmAF becomes more stable than SmA for η > 1:15. Note that
lamellar phases withpolarised layers are close-packed ground states for HB systems.
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Figure 19. Dependence of free energies on packing fraction η for three structures: SmAAF , SmA and SmAF of HB system (left panel)
and equilibrium, leading order parameters for stable SmA and SmAF (right panel). Molecular parameters are δ ¼ 0:5 and ψ ¼ π

4 .
Nematic phase (f ¼ 0) is stable for η < 1 while SmA wins for η > 1. SmAF becomes more stable than SmA for η > 1:45. Note that
lamellar phases withpolarised layers are close-packed ground states for HB systems.
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1� Snew
Sold

� �N

exp �pðSnew � SoldÞ;�½ (49)

if the particles in new positions did not intersect.
Here, Sold and Snew denote the surface of the box before
and after rescaling, respectively, and p is the pressure.
These transformations were adjusted to keep the MC
acceptance ratio 0:3� 0:5.

Exemplary snapshots taken after full equilibration of
the system (106 cycles) are shown in Figure (20). In the
panel (a), one can observe an antiferroelectric smectic
phase formed by needle-like boomerangs. This is the
type of smectic structure that can be observed in stu-
died systems for the widest range of apex angles. For
particles of non-zero thickness other types of smectic
order can be also present, like ordinary smectic A or
ferroelectric smectic. The panel (b), obtained for the
HB boomerangs, corresponds to the case where
domains of SmAF order are present. The panel (c)
shows, on the other hand, the SB boomerangs which
are almost rod like, where two kinds of domains (smec-
tic A and ferroelectric smectic SmAF) coexist. The
panel (d) seems to be the most spectacular one. It
presents a well-ordered nematic splay-bend structure,

where in the absence of positional order the ribbon-
like, splay-bend modulation of orientational order
emerges. In the panel (e), the splay-bend domains are
observed for molecules of non-zero thickness.

It should be noted that the structures identified in
simulations, along with their thermodynamic proper-
ties, agree well with predictions of density functional
analysis. Even the periodicity (,10 for needle boom-
erangs and ,12 for the HB particles – see Figure 13)
and localisation of the most disordered, splay-bend
phase agree with predictions of bifurcation analysis
(see the yellow region of the bifurcation diagrams,
Figures (9 and 12)). It proves that orientational
order limited to two discrete orientations of the steric
dipole with respect to the (local) director, which we
used for density functional analysis, allows for a
proper identification of the structures that can con-
dense from the nematic phase in the case of 2D hard
boomerangs. However, there are also structures,
which are not included in the bifurcation analysis
presented, like the one in Figure (20(f)), where the
molecules tend to self-organise by forming oriented
rectangles, or squared blocks, without any distin-
guishable layered structure.

(a) needle boomerangs, ψ = π/6, ρ̄ =
4.52

(b) HB, ψ = π/4, δ = 0.5, η = 0.62 (c) SB, ψ = π/4, δ = 0.2, η = 0.67

(d) needle boomerangs, ψ = 5π/12,
ρ̄ = 5.1

(e) HB, ψ = 4π/9, δ = 0.1, η = 0.50 (f) SB, ψ = π/4, δ = 0.5, η = 0.79

Figure 20. (Colour online) Exemplary snapshots from MC simulations of different particles type, apex angle ψ and width-to-length
ratio δ: (a) SmAAF for needle-like boomerangs; (b) SmAF domains for boomerangs of non-zero thickness; (c) SmA and SmAF

domains; (d) nematic splay-bend for δ ¼ 0 and (e) for δ > 0; (f) phase with local rectangular arrangement of bent-core molecules.
Structures shown in panels (a)–(e) are consistent with the results of bifurcation analysis. At high packing fractions further structures
can emerge (f) that are not included in our study. Particle parameters, like width and apex angle, are given in the panels. Colour
coding is used to show different molecular orientations.
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6. Summary and conclusions

We have studied 2D ensembles of bent-core-shaped
molecules of zero and finite arm width, confined to
the planar surface. Using the second virial Onsager
DFT and the bifurcation analysis, the role of excluded
volume interactions in stabilising different structures
and its influence on local polarisation have been
examined.

Onsager’s theory reconstructs the main conclusions
from [34] about the occurrence of the SmAAF phase
and proves that SmAAF is indeed robust for 2D bent-
core system. It also stays in line with the experimental
observations of Gong and Wan for banana-shaped P-n-
PIMB molecules absorbed onto a HOPG surface [1].
This is in spite of the fact that we disregarded any
orientationally dependent interaction between sub-
strate and molecules (Vext ¼ 0 in Equation (5)), limit-
ing the role of the surface to confine the molecules in
2D (assumption of strong planar anchoring). That the
surface can be considered smooth at the lengthscale of
the molecular size is justified by comparing the size of
bent-core P-n-PIMB molecules (a few nanometres) and
the lattice spacing of HOPG (0.25 nm). Also we should
add that our dimensionless shape parameter δ corre-
sponds to δ ,< 0:2 for P-n-PIMB.

The most interesting observation is the identifica-
tion of the antiferroelectric nematic NSB phase, which is
stable for long bent-core molecules. This structure is
foreseen from Onsager’s theory and supported by
exemplary, constant pressure MC simulations. To the
best of our knowledge, it has not yet been reported
experimentally.

We find neither smectic C nor incommensurate
smectic order to become likely for these systems. We
show that the actual state of the lamellar structures
depend strictly on the behaviour of the Fourier trans-
forms of the appropriately recognised parts of the
excluded volume. According to this behaviour different
transitions are plausible, yet phases other than antifer-
roelectric smectic A can be realised for a large packing
fraction η. In this limit, also structures that are beyond
the scope of the Onsager approach, like glassy or crys-
talline ones, can potentially form.

We show that small structural modifications like the
change of the arm edges, the apex angle, or thickness of
the arm may substantially influence the behaviour of
the order parameters, wave vector and even phase
diagrams. We also demonstrate that the width of the
molecular arm influences the layer thickness.

The ordinary smectic A and polar smectic A
phases are expected to appear at high packing frac-
tions η, Figures (18 and 19). Since η > 1 in these

cases, this raises an issue as to whether such a
phase should not be excluded on the ground that
Onsagers DFT is formally justified in the dilute gas
limit (DGL). The reason we believe this is not the
case is that the mathematically similar form of the
free energy as that of Onsager’s, Equations (12, 13),
can be obtained by applying the Parsons-Lee (PL)
rescaling/resummation technique [40–42]. They
showed that the effect of (infinite) hierarchy of
higher-order virial terms can be partly taken into
account in (12) by an appropriate renormalisation
of the second virial coefficient. Operationally, the
PL rescaling replaces the second-order virial packing
fraction, η, entering Equation (12) through
�ρ ¼ η=Smol, by an effective packing fraction, ηeff ,

which is a monotonic function of η. The PL proce-
dure, developed essentially for 3D systems, has been
extended to 2D by Varga and Szalai [29,30]. One
possibility, shown to work well, is equivalent to the
replacement

ηeff !
1
2

η

1� η
� log 1� ηð Þ

� �
: (50)

That is, the physical range of η � 1 is mapped on
the infinite region of ηeff � 0. Assuming, for example,
η ,< 0:8 would be equivalent to substitute ηeff ,< 2:8 in
(12). Such rescaling of the free energy quantitatively
improves the predictions of Onsager’s theory and shifts
SmA and SmAF to lower packing fractions.

Finally, we should mention that we carried out our
calculations by assuming that the reference nematic
system is perfectly aligned. We considered NSB along
with the family of smectic states as the trial states.
Therefore, some structures (like the one presented in
Figure 20(f)) or phase transitions, as between smectic
phases and to 2D crystalline phases, cannot be obtained
using the present ansatz on one-particle density distri-
bution function in Onsager’s theory. But these struc-
tures are present at very high packing fractions, which
were not taken into account in our analytical treat-
ment. Our approximation, however, seems to work
quite well as indicated by the exemplary MC simula-
tions, which recover different smectics and even the
less ordered nematic splay-bend structure.
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Appendix

We add here, for completeness, the formulae for the Fourier transforms of the interaction-excluded slice kernel for the SB
boomerangs discussed in Section V. Subscripts refer to coefficients calculated for cases shown in Figure (10).

αIðψ; δ; kÞ ¼ 1
8k2 4sec2ðψÞ cosð2kðδ cotðψÞ � 1ÞÞ cos2ðk� δk cotðψÞÞ½

þ cosð2ψÞ sec2ðψÞ cosð2δk cotðψÞÞ � 2 cosðkðδ cscðψÞ secðψÞ � 2ÞÞ
þ 2 cosð2kÞ cosð2ψÞ sec2ðψÞ � cosð4kÞ sec2ðψÞ þ 2ð Þ � 2�

(51)

αIIðψ; δ; kÞ ¼ 1
8k2 � tanðψÞ cscð2ψÞ 2 cos 4k cos2ðψÞðδ cotðψÞ � 1Þð Þ½f

� 4 cosð2kðδ cotðψÞ � 1ÞÞ � 2 cosð4kðδ cotðψÞ � 1ÞÞ þ cosð4k� 2ψÞ
� 2 cosð2ðk� ψÞÞ � 2 cosð2ðkþ ψÞÞ þ cosð2ð2kþ ψÞÞ
þ 4 cosð4kÞ þ 2 cosð2ψÞ�g

(52)

αIIIðψ; δ; kÞ ¼ 1
8k2 ½sec2ðψÞð2cos2ðψÞ cosð2kðδ cotðψÞ � 1ÞÞ � 2 cosð2ψÞ cosð2kðδ cotðψÞ � 2ÞÞ

þ cosð4kðδ cotðψÞ � 1ÞÞ þ cosð4kÞðcosð2ψÞ � 2ÞÞ� (53)

βIðψ; δ; kÞ ¼ 1
8k2 sec2ðψÞ � 2ð Þ cosð2δk cotðψÞÞ þ 2 cosðkð2� δ cscðψÞ secðψÞÞÞð½

þ sec2ðψÞ 2 cosð2kðδ cotðψÞ � 1ÞÞ sin2ðk� δk cotðψÞÞð
þ cosð2kÞ cosð2ψÞÞ � 1Þþ cosð4kÞ sec2ðψÞ � 2ð Þ�

(54)

βIIðψ; δ; kÞ ¼ � 1
16k2 sec2ðψÞ �2 cos 4k cos2ðψÞðδ cotðψÞ � 1Þð Þ � 4 cosð2kðδ cotðψÞ � 1ÞÞð½

þ2 cosð4kðδ cotðψÞ � 1ÞÞ þ cosð4k� 2ψÞ � 2 cosð2ðk� ψÞÞ
�2 cosð2ðkþ ψÞÞ þ cosð2ð2kþ ψÞÞ þ 2 cosð2ψÞ þ 4Þ�

(55)

βIIIðψ; δ; kÞ ¼ 1
8k2 ½sec2ðψÞð6cos2ðψÞ cosð2kðδ cotðψÞ � 1ÞÞ

þ cosð2ψÞ cosð4kÞ � 4cos2ðkðδ cotðψÞ � 2ÞÞð Þ
� cosð4kðδ cotðψÞ � 1ÞÞ � 2Þ�

(56)

βIðψ; δ; k ! 0Þ ¼ 1
4 cscð2ψÞ 6δ2 cosð2ψÞ þ δ2 � 1

� 	
cosð4ψÞ þ 3δ2 � 4δ sinð2ψÞ þ 1

� 	
(57)

βIIðψ; δ; k ! 0Þ ¼ 1
2 sec

2ðψÞ ðδ cotðψÞ � 1Þ2 � 2cos2ðψÞcot2ðψÞðsinðψÞ � δ cosðψÞÞ2 þ cosð2ψÞ� 	
(58)

βIIIðψ; δ; k ! 0Þ ¼ 1
2 δ2 � 2δ cotðψÞ þ 1
� 	

(59)
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