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1
, S. Varga

2
, P. Gurin

2 and J. Quintana-H.2(a)
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PACS 05.20.Jj – Statistical mechanics of classical fluids

Abstract – Spontaneously deformed nematic and antiferroelectric smectic structures have been
detected in a two-dimensional system of hard banana-shaped needles by means of Monte
Carlo simulation and Onsager theory. The spatially non-uniform and deformed nematic consists
of orientationally ordered polar domains, where the nematic director displays mainly bended
patterns. The net polarization of the bended nematic is zero. Onsager theory shows that the
bent-core structure of the particles favours the bend deformation due to a free energy reducing
bend torque, while the splay deformation results in a free energy cost. With increasing pressure
the polar nematic domains becomes thinner and transforms into linear arrays with alternating
polarity (antiferroelectric smectic phase). The theoretical results are in good agreement with the
simulations.

Copyright c© EPLA, 2012

Introduction. – Bent-core molecules, which are often
referred to as bananas, have received considerable exper-
imental and theoretical attention over the past years due
to the discovery of the biaxial nematic phase [1–4] and
tilted smectic phases with polar layers [5–7]. These phases
are relevant in the technology as they can be used in
fast electro-optical devices [8]. At first sight the forma-
tion of the biaxial nematic phase is understandable in the
system of bent-core molecules due to the biaxial molec-
ular symmetry. However it is very hard to stabilize the
biaxial nematic order by purely steric forces due to the
strong competition between the orientational and pack-
ing entropies. While the packing entropy gain is always
significant for the alignment of the long molecular axes,
the ordering of the short axes do not improve the pack-
ing of the rods notably and the more ordered smectic and
columnar phases also come into the competition by result-
ing very complex phase diagrams [9]. The stabilization
of ferroelectric smectic and columnar phases (Bn meso-
phases) in bent-core systems is even surprising because
these phases were attributed to chiral units of the meso-
gens. It is astonishing that chiral domains can form

(a)E-mail: jaq@unam.mx

spontaneously even if the constituting molecules are achi-
ral [6]. Evidently the anisotropic steric interactions play
important role in the formation of Bn phases, because the
packing is more efficient with a tilt in the spatially ordered
phases [10].
No doubt, the orientational and positional restriction

affects dramatically the stability of the banana phases,
too. For example, the extensively studied two-dimensional
(2D) system of hard needles with zero thickness do
exhibit isotropic and quasi–long-range nematic phases,
while spatially ordered phases do not take place at all [11].
The latter result is due to the fact that there is no pack-
ing entropy gain from the positional ordering since the
system of parallel hard needles behaves like an “ideal gas”.
The orientational fluctuations are more significant in 2D
than in 3D by reducing the true long-range nematic order
into an algebraically decaying orientational order. As a
result the first-order isotropic-nematic phase transition
of three-dimensional systems transforms into a continu-
ous Kosterlitz-Thouless–type isotropic-nematic transition
[12]. The scenario seems to be more complicated in the
case of 2D bananas because of the polar shape of the parti-
cles. The nematic order must be less favourable (or even
missing) because the bent-core shape does not support so
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(a) (b)

Fig. 1: a) Hard body representation of a banana-shaped
molecule consisting of two equal line segments with length a
and bend angle α between them. b) Definition of the polar axis
of the molecule. The total length of the particle is L= 2a.

much the orientational order without the positional one.
On the other hand, the polar shape of the particles raises
the issue of the polar nematic order. Moreover, the smectic
order cannot be ruled out as the particles can pack more
efficiently in the layered structure. In this regard several
experimental studies have been devoted to the effect of
orientational and spatial restriction on the phase behav-
iour of the bent-core molecules [13–16]. Even strictly 2D
system can be constructed by adsorbing banana-shaped
P-n-PIMB molecules onto a HOPG surface. Gong and
Wan [13] have observed several smectic-type orders like
the antiferroelectric and bilayered smectic structures.
To the best of our knowledge, the simplest model of

2D bananas, which can be constructed from two identical
straight lines joint at the ends by a given bend angle, see
fig. 1, has not been studied by Monte Carlo simulation
and Onsager theory. In this regard we are only aware of
the recent study of Bisi et al. [17], where antiferroelectric
smectic order is predicted in the 2D system of V-shaped
particles on the basis of packing arguments.

Simulation. – In this work we study the global phase
behaviour of the system of bent-core needles in two dimen-
sions, where the particles are allowed to move and rotate
in the x-y plane. The simulations have been performed
by means of the Metropolis Monte Carlo algorithm in
the isothermal-isobaric ensemble [18]. Periodic boundary
conditions were applied to the simulation box along with
the minimum-image criterion. In this ensemble the trial
moves are the random changes of the positions and the
orientations of the particles and the change of the simu-
lation box size. The maximum displacement, rotation and
box size change were adjusted during the simulations to
get 30% acceptance ratio for all types of trials. The length
of the particles (L) sets the scale in the system. Both
compression and expansion runs have been done by start-
ing from isotropic and completely ordered solid configura-
tions, respectively. In most of the cases 106–107MC cycles
were enough for equilibration and additional 105MC
cycles were used to obtain the statistical averages. The
comparison of the results of the expansion and compres-
sion routes indicates that there is no measurable hystere-
sis. The equation of state, order parameter, positional

Fig. 2: Orientational order parameter of the banana-shaped
hard needles for α= 0 (filled circles) and α= π/8 (open circles)
and N = 1000. The inset shows the equation of state. The
density and the pressure are dimensionless: ρ∗ =NL2/A and
p∗ = βpL2.

and orientational correlation functions were determined
to characterize the structure of the equilibrium phases
and the nature of the possible phase transitions. The
nematic order parameter, S, and the orientational correla-
tion function, g2(r), are defined as the largest eigenvalue
of the traceless 2D symmetric tensor Tij = 2〈ωiωj〉− δij
and g2(r) = 〈cos(2φ(0)− 2φ(r))〉. In these quantities 〈〉
denotes the ensemble average, ωi is the i component of the
particle’s orientation given by ω= (cosφ, sinφ), δij is the
Kronecker delta function and r is the distance between two
particles. For finite system size the nematic order para-
meter depends on the number of particles, N , and usually
increases with the density. For straight needles the order
parameter is zero in the thermodynamic limit (N →∞),
instead of the true long-range order an algebraically decay-
ing order occurs [11]. The orientational correlation func-
tion behaves as g2(r)∼ exp(−ηr) in the isotropic phase,
while it becomes algebraic, g2(r)∼ r−η, in the high-density
nematic phase. The transition between the two behaviours
serves the critical density.
The order parameter of the finite-size system of bent-

core needles differs from that of straight needles as it
shows abnormal behaviour by its decreasing tendency
with increasing pressure (density) above a certain value
(see fig. 2). Remarkable differences between the straight
and banana-shaped needles can be also seen in the pres-
sure curves. The behaviour of the orientational correlation
function is unusual, too, it decays exponentially in the
isotropic (low pressure) phase, then it becomes algebraic
at intermediate pressures, and it is again exponentially
decaying at high pressures (see fig. 3). Interestingly
the high pressure phase (p∗ = 60) looks like an isotropic
phase with stronger short-range orientational correlation
than the nematic phase at p∗ = 40. These results suggest
that isotropic-nematic-isotropic re-entrance behaviour
takes place with increasing pressure (density). However,
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Fig. 3: Orientational correlation function of the banana-shaped
hard needles for α= π/8 and N = 2000. The pressure depen-
dence of the correlation function is shown both in log-log and
linear-linear scales. The pressure and the inter-particle distance
are dimensionless: r∗ = r/L and p∗ = βpL2.

the closer inspection of the simulation snapshots, which
are depicted in fig. 4, reveals that the low- and the
high-density exponentially decaying structures are very
different. While the particles are weakly correlated in
the low-density isotropic system (fig. 4(a)), i.e. there
is no orientational order, the particles are very ordered
and form polar domains at high densities (fig. 4(c)). In
addition to these differences, the ordered system is accom-
panied by the bend deformation with clock-wise rotation
of the particles’ polar axes, which has not been observed
experimentally. The bend deformation of the polar
domains cannot be attributed to the artificial external
forces caused by the periodic boundary condition, but it is
due to the bent-core shape-induced torque field. This field
acts on the particles to maximize the free room available
for the particles, which is no doubt the driving force in
the packing process. However, fig. 4(d) shows for a larger
value of α that the packing of the particles can be even
more efficient by the positional ordering into a layered
structure. We can see that the particles are not tilted
in the layers and the polarity of the neighboring layers
alternates and there is no net polarization in the box,
i.e. the new phase is an antiferroelectric smectic A. Note
that the inlayer polarization is due to the high up-down
excluded-volume cost taking place between particles with
opposite orientations (polarities). This smectic phase has
been observed in the monolayer of the banana-shaped
P-18-PIMB molecules adsorbed on HOPG surface [13].
Accepting that there is an intermediate density range

where g2 shows really power law decaying —even if it
is difficult to define a sharp border between the power
law and exponential behaviours— these results suggest
the following scenario. The system has an unconventional
nematic phase which is polar and locally very ordered
but its global net polarization is zero. An approximate
phase diagram can be seen in fig. 5. We can see that

(a) (b)

(c) (d)

Fig. 4: (Colour on-line) Simulation snapshots of the detected
mesophase structures: (a) isotropic (p∗ = 15, N = 1000),
(b) nematic (p∗ = 40, N = 1000), (c) deformed nematic (p∗ =
60, N = 2000) for α= π/8 and (d) antiferroelectric smectic
(p∗ = 55, N = 1000) for α= 3π/8. If the angle between two
neighboring particles is less than π/2, both are shown with
the same colour.

the increasing bend angle do not support the formation
of the conventional nematic phase, but it gives rise to
spontaneous bend deformation without net polarization.
Moreover it stabilizes the antiferroelectric smectic phase
to such an extent that the nematic order is completely
missing for α� π/5. Note that the large bend angle of
P-18-PIMB molecule can be the main reason why no
nematic phase has been observed in the experiment of
Gong and Wan [13].
We mention that the issue of the existence of algebraic

decaying order is not completely resolved by our simula-
tions because it may happen that the simulation box is
not large enough and the correlation function is actually
exponentially decaying in the bulk limit for all values of
α. According to this scenario the system has no nematic
phase at all, only a disordered isotropic phase and a smec-
tic one. In the isotropic phase the short-range correla-
tions become more stronger with the increasing density,
but the excluded-volume interaction does not support the
parallel alignment of the neighbouring particles. There-
fore neither true nor quasi–long-range orientational order
builds up. Based on our recent results we can not decide
between the above two scenarios. However, we have no
doubt that the locally ordered polar and spontaneously
curved domains are stable. Another explanation —e.g.
the system is becoming stuck in a glassy state— is out of
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Fig. 5: (Colour on-line) Phase diagram of banana-shaped
molecules in pressure-bend angle plane. The dashed curves
are guide to the eyes to see the border of the mesophases
(EO: exponentially decaying correlations, AO: algebraically
decaying correlations, S: smectic). The symbols indicate the
simulated pressure values. The inset shows the comparison of
the Onsager theory and the MC simulation results for the lower
border of the smectic phase in the density-bend angle plane,
ρ∗ =NL2/A, p∗ = βpL2.

question because it would involve hysteresis in the equa-
tion of state, which is not observed in our simulation study.

Stability of the smectic phase. – Since the seminal
work of Onsager [19], it is widely accepted that the second
virial theory is capable to describe the bulk properties of
mesophases. Onsager-type theories are quite successful in
2D, too [20]. It gives account of isotropic, nematic and
smectic phases of various type of particle’s shapes such as
rectangle and zigzag etc. [21–23].
For the stability analysis of the smectic phase with

respect to spatially uniform phase we search for the
minimum of the free energy truncated at the second
virial coefficient [19]. To maintain the simplicity of the
theoretical treatment for the smectic phase, we do not
include the effect of the orientational freedom, i.e. the
Onsager theory of parallel particles is examined. Since
the particle’s shape does not have up-down symmetry we
consider the extension of the theory for binary mixtures,
where N1 (up) and N2 (down) particles are not allowed to
rotate and they are antiparallel. The Onsager functional
for this mixture is

βF

A
=

2∑
i=1

ρi ln ρi− ρi+ 1
d

2∑
i=1

ρi

∫ d
0

dy hi(y) ln(hi(y))

+
1

2d

2∑
i,j=1

ρiρj

∫ d
0

dy1 hi(y1)

∫
dy2 hj(y2)d

ij
exc(y12),

where ρi is the number density of component i, d is
the smectic period and hi is the normalized positional

distribution function in such a way that 1
d

∫ d
0
dy hi(y) = 1.

The input of the functional is the excluded distance
between two particles of the components i and j,
dijexc(y), which is related to the excluded area through
Aijexc =

∫
dy dijexc(y). For the up-up and down-down

pairs it is given by d11exc = d
22
exc = 2|y| tan(α2 )H(ζ − |y|)+

(4a sin α2 − 2|y| tan α2 )(H(2ζ − |y|)−H(ζ − |y|)), while for
the up-down configurations d12exc = d

21
exc = (2a sin

α
2 −

2|y| tan α2 )H(ζ − |y|), where ζ = a cos(α2 ). The stabil-
ity of the spatially non-uniform smectic phase has
been examined by the bifurcation analysis. Our numerical
calculations show that out-of-phase pairs of smectic distri-
bution functions, which are given by h1 = 1+ εcos(qy)
and h2 = 1− εcos(qy) for infinitesimally weak antiferro-
electric smectic order, gives the lowest free energy,
because the up and down species do not like to stay in
the same layer. In addition to this result, writing the
component densities as ρ1 = xρ and ρ2 = (1−x)/ρ, the
fraction of up particles, x, is exactly 0.5 at the lowest free
energy, i.e. the net polarization is zero in both phases.
Substitution of the perturbed distribution functions h1
and h2 into the free energy, we get that the smectic free
energy βF

A
|S = βFA |N +Cε2, where C depends on the wave

number (q= 2π
d
). At the critical point C and dCdq must be

zero. These two equations give the critical density (ρc)
and the wave number (qc) in the following simple forms:

ρc ≈ 5.3336
sin(α)

, qc ≈ 4.9854
cos(α2 )

. (1)

In agreement with the simulation results [11,12] no
nematic-smectic phase transition occurs in the straight
needle limit (α= 0). Furthermore the increasing bend
angle stabilizes the smectic order, which is always anti-
ferroelectric. The inset of fig. 5 shows the simulation and
theoretical critical curves together in the density-bend
angle plane. We believe that the region of the smectic
phase would shrink if the bifurcation analysis would be
performed with respect to the more stable deformed or
isotropic phases. However, the inclusion of the missing
effects into the calculations would significantly over-
complicate the calculations without resulting analytical
equations for the phase boundary.

Theory of spontaneous bend. – Now we show that
the spontaneously deformed locally ordered structure can
exist in the system of bent-core needles using the second
virial theory. It is well known that the free energy of the
2D hard disks truncated at the second virial coefficient
(B2) can be written as

βF

A
= ρ(ln ρ− 1)+ ρ2B2, (2)

where β = 1/kBT , A is the surface area and ρ is the
number density. B2 is the half of the area surrounding
a given disk, which is excluded to another disk, i.e.
B2 =

1
2Aexc.

Onsager extended the second virial theory for aniso-
tropic objects and showed that the entropy of mixing
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Fig. 6: The effect of splay and bend deformation in the free
energy of parallel banana-shaped needles for increasing bend
angle at the density ρ∗ = 22: a) splay deformation, b) bend
deformation. ∆F is the Free energy difference between the
bended and spatially uniform structures, q is the deformation
strength.

term due to the orientational freedom enters into the
ideal part of the free energy and the orientational aver-
age of the excluded area gives the second virial term,
i.e. B2 =

1
2 〈Aexc〉. To make the calculations for needles

as simple as possible we assume that the particles are not
allowed to rotate in a given position of the space. If all
needles are parallel, the original second virial expression
can be maintained by using the excluded area for parallel

orientations, A
‖
exc. Such a situation corresponds to perfect

and spatially uniform nematic order without any deforma-
tion. To include the spatially varying nematic director field
into the calculations, we allow the particles to change their
orientations according to the prescribed deformation. If
the orientations of the particles are parallel to the spatially
varying nematic director n(r), the free energy depends on
the strength of the deformation q, i.e.

βF

A
= ρ(ln ρ− 1)+ 1

2
ρ2Aexc(q), (3)

where

Aexc(q) =

∫
d2r H(σ(ω,n(r0),n(r))− |r− r0|). (4)

Here H is the Heaviside step-function, σ is the distance
of closest approach and ω= r/r is the centre-to-centre
unit vector between two particles with orientations parallel
with the nematic directors at the points r0 and r according
to the prescribed deformation. Assuming that n(r0) =
(1, 0), the splay and bend deformations are given by
n(r) = (1, qy) and n(r) = (1,−qx), respectively. Note that
these expressions are only valid for weak deformations,
which is justified on molecular length scale. Furthermore
the free energy of parallel particles can be recovered for

q= 0, because eq. (4) gives Aexc(q= 0) =A
‖
exc. Figure 6

shows the q dependence of the free energy for splay
and bend deformations for bent-core needles. It can be
seen that the uniform nematic phase resists against the
splay deformation as the splay always increases the free
energy for both positive and negative q. Moreover the

resistance becomes stronger with increasing bend angle.
The situation is quite different for the bend deformation,
because the free energy has the minimum for q > 0, i.e.
the bend deformed nematic can be more stable than the
spatially uniform one. We note that the bended structure
is only locally polar and displays clockwise rotations which
agrees with the positive value of q at equilibrium. The net
polarization is zero due to the spatially varying (bended)
nematic director field.
According to the Frank’s elastic theory [24], the free

energy of 2D nematics can be written as

F = F0+
1

2

∫
d2r (K‖(n×∇×n)2+K⊥(∇·n)2), (5)

where F0 is the free energy of the undeformed nematic, n is
the nematic director K‖ and K⊥ are the elastic constants
of bend and splay deformations. It is clear that any type of
deformation increases the free energy of the undeformed
nematic, i.e. eq. (5) is not able to explain the above results.
To extend the Frank theory for bended nematics we need a
term in eq. (5) which is linear in the deformation. For this
reason we usem unit vector, which is perpendicular to the
nematic director, i.e. m= (ny,−nx). With this change we
only permute the splay and bend deformation in eq. (5),
because n×∇×n=m∇·m. With the help of m it is
possible to construct a Frank free energy, which favours
the bended nematic state. We do this by adding a linear
torque term to the deformation free energy:

F = F0+
1

2

∫
d2r (K‖(∇·m)2− 2h∇·m), (6)

where h is the bend torque-field parameter and the K⊥
term is omitted. Equation (6) was originally devised for
polar nematic phase by Pleiner and Brand [25]. Note
that the above equation is the analogue of the Frank free
energy of cholesteric phase [26]. Inserting the bend director
field (n= (1,−qx)) into the above equation we get that
F/A=K‖q2/2−hq, which has the minimum at q= h/K‖
in agreement with our results based on Onsager theory.
In the light of our results, the main issue is whether

the bended nematic phase can exist or not in two dimen-
sions. In this regard we believe that no definite answer
can be drawn because of the shortcomings of the applied
methods. The simulation suffers from the finite-size effects
and the aligning effect of the periodic boundary condi-
tion, while the Onsager theory neglects the orientational
fluctuations and the contributions of higher virial terms.
No doubt, these effects have impact on the stability of
algebraically decaying nematic order. The straight needles
have an extra symmetry (rotation by π) compared to
the bent-core particles which is the manifestation of the
different symmetry properties of the interparticle inter-
actions. We raise the issue that this symmetry breaking
of the interaction may exclude the possibility of algebraic
order. This idea is supported by our Frank’s elastic analy-
sis, which shows that a local torque field acts between
the particles. This special field may totally suppress the
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border between the low- and high-density structures, since
the torque field always gives rise to a clockwise rotation in
the structure of the fluid at any density. To answer for this
fundamental issue, the possibility of 2D nematic order for
particles interacting with non-separable potentials should
be resolved first [27]. However, our results agree very well
in one respect that a bended structure with clockwise rota-
tion, which is locally polar and ordered, does exist in 2D
systems of hard bent-core needles.
In summary it has been proved by the MC simula-

tion and Onsager theory that the polar feature of the
excluded-volume interaction alone stabilizes the locally
nematic deformed structure and antiferroelectric smectic
phase in two dimensions. Our results are in agreement
with the experimental findings of Gong and Wan [13], that
banana-shaped molecules can form antiferroelectric smec-
tic structure in 2D. Our theory can be a good start for the
examination of other polar-shaped molecular systems like
the diblock polyisocyanides, which shows bilayer smectic
order on HOPG substrate [28]. To get deeper insight into
the complex phase behaviour of banana-shaped molecules
it is necessary to go beyond the present Onsager theory
and take the effects of orientational fluctuations and the
finite thickness of the particles into account. The applica-
tion of the phase-field-crystal theory can be a step ahead
along this path [29].
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