Random Density Matrices and Fuss–Catalan distribution

Karol Życzkowski

in collaboration with

S. Braunstein, B. Collins, I. Nechita, V. Osipov, K. Penson, and H.-J. Sommers

Institute of Physics, Jagiellonian University, Cracow Center for Theoretical Physics, PAS, Warsaw

Smoluchowski Symposium, Kraków, September 27, 2010

Dedicated to the memory of Dr Ryszard Zygadło, 1964 - 2010

Assistant Professor at Smoluchowski Institute of Physics, Jagiellonian University, Organiser of recent editions of Smoluchowski Symposia

KŻ (IF UJ/CFT PAN)

Random Quantum States

September 9, 2010 2 / 33

Ensembles of random density operators

Mixed quantum state = density operator which is

- a) Hermitian, $\rho = \rho^{\dagger}$,
- b) **positive**, $\rho \geq 0$,
- c) normalized, $Tr \rho = 1$.

Let \mathcal{M}_N denote the set of density operators of size N.

Ensembles of random states in \mathcal{M}_N

Let A be matrix from an arbitrary **ensemble** of **random matrices**. Then

$$\rho = \frac{AA^{\dagger}}{\mathrm{Tr}AA^{\dagger}}$$

forms a random quantum state

KŻ (IF UJ/CFT PAN)

$$W_{k,s} := \left(p_1 U_1 + p_2 U_2 + \cdots + p_k U_k \right) G_1 \cdots G_s$$

where U_i are independent **Haar random unitary** matrices in U(N), while G_i are independent (rectangular) random **Ginibre matrices** and $p = \{p_1, \ldots, p_k\}$ is a probability vector. Define ensemble of normalized random density matrices of size N $\rho_{k,s} := W_{k,s}W_{k,s}^{\dagger}/\text{Tr}(W_{k,s}W_{k,s}^{\dagger})$

- * 1) What ensembles can be generated in this way?
- * 2) What are their statistical properties ?
- * 3) How these random states may emerge in quantum physics?
- * 4) How to generate **numerically** random matrices from certain ensembles, (e.g. **Bures** ensemble) ?

Having at your disposal LEGO pieces of two kinds:
a) rectangular pieces (random Ginibre matrices)
b) round pieces (Haar random unitary matrices)

What can you construct out of them ?

KŻ (IF UJ/CFT PAN)

Reduction of random pure states

1) Consider an ensemble of random pure states $|\psi\rangle$ of a composite system distributed according to a given measure μ .

2) Perform partial trace over a chosen subsystem *B* to get a **random mixed state**

 ρ := Tr_B $|\psi\rangle\langle\psi|$

Depending on the **structure** of the composite system, the initial **measure** μ in the space of the pure states and the choice of the **subsystem** *B*, over which the averaging is performed one obtaines different **ensembles of random mixed states**.

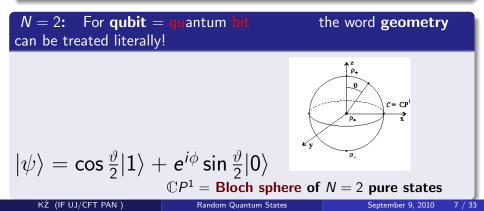
KŻ (IF UJ/CFT PAN)

Pure states in a finite dimensional Hilbert space \mathcal{H}_N

Space of normalized complex pure states for an arbitrary N:

Since $\langle \psi | \psi \rangle = 1$ a **normalized** state belongs to the **sphere** S^{2N-1} .

Two states equal up to a phase are identified, $|\psi\rangle \sim e^{i\alpha}|\psi\rangle$, so the set of states is equivalent to the **complex projective space** $\mathbb{C}P^{N-1}$ of 2N-2 real dimensions.



'Quantum chaotic' dynamics (pseudo-random evolution)

described by a random unitary matrix U acting on a pure state produces (almost surely) a 'generic pure state' $|\psi\rangle = U|\phi_0\rangle$.

• Formally one defines an (unique) Fubini–Study measure μ on complex projective spaces which is unitarily invariant: for any (measurable) set A of states one requires $\mu(A) = \mu(U(A))$.

• This measure covers the entire space $\mathbb{C}P^{N-1}$ uniformly, and for N = 2 it is just equivalent to the uniform, Lebesgue measure on the sphere S^2 .

How to obtain numerically a random pure state $|\psi angle$?

a) Take a column (a row) of a **random unitary** U so that $|\psi\rangle = U|i\rangle$. b) generate N **independent complex random numbers** z_i according to the **normal** distribution. Write $|\psi\rangle = \sum_{i=1}^{N} c_i |i\rangle$ where the expansion coefficients read $c_i = z_i / \sqrt{\sum_i |z_i|^2}$.

Ryszard with Ewa during an earlier Smoluchowski Symposium

KŻ (IF UJ/CFT PAN)

Composed systems & entangled states

bi-partite systems: $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$

- separable pure states: $|\psi
 angle = |\phi_{A}
 angle \otimes |\phi_{B}
 angle$
- entangled pure states: all states not of the above product form.

Two–qubit system: $d = 2 \times 2 = 4$

Maximally entangled **Bell state**
$$|arphi^+
angle:=rac{1}{\sqrt{2}}\Big(|00
angle+|11
angle\Big)$$

Entanglement measures

For any pure state $|\psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ define its partial trace $\sigma = \text{Tr}_B |\psi\rangle \langle \psi|$. **Definition:** Entanglement entropy of $|\psi\rangle$ is equal to von Neumann entropy of the partial trace

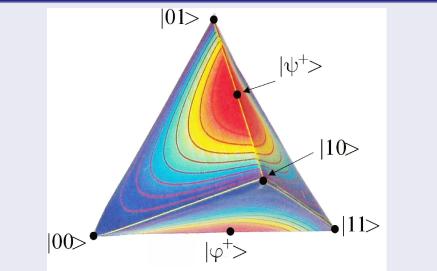
$$E(|\psi\rangle) := -\text{Tr } \sigma \ln \sigma$$

The more mixed partial trace, the more entangled initial pure state...

KŻ (IF UJ/CFT PAN)

Entanglement of two real qubits

Entanglement entropy at the tetrahedron of d = 4 real pure states

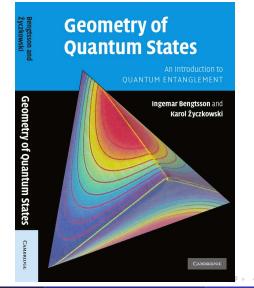


KŻ (IF UJ/CFT PAN)

September 9, 2010 11 / 33

More on this is can be found in

I. Bengtsson and K. Życzkowski, Geometry of Quantum States (Cambridge, 2006, 2008)



KŻ (IF UJ/CFT PAN)

September 9, 2010 12 / 33

Generic pure states of a bi-partite system

'Two quNits' = $N \times N$ quantum system

The space $\mathbb{C}P^{N^2-1}$ of all states in $\mathcal{H} = \mathcal{H}_N \otimes \mathcal{H}_N$ has $d_{tot} = N^2 - 2$ dimensions.

The subspace of **separable (product) states** $\mathbb{C}P^{N-1} \times \mathbb{C}P^{N-1}$ has only $d_{\text{sep}} = 2(N-2)$ dimensions. For large N we observe that $d_{\text{sep}} \sim 2N \ll d_{\text{tot}} \sim N^2$ so the **separable states** form a set of measure zero in the space of all states.

Thus a 'typical' random state is entangled!

How much entangled?

Mean entropy of the reduced density matrix ρ

Let us call $\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B$. Take any **pure state** $|\psi\rangle \in \mathcal{H}$ and define its partial trace $\rho := \operatorname{Tr}_B |\psi\rangle \langle \psi| = \operatorname{Tr}_A |\psi\rangle \langle \psi|$.

The von Neumann entropy S of the reduced mixed state ρ is a measure of entanglement of the initially pure bi-partite state $|\psi\rangle$.

KŻ (IF UJ/CFT PAN)

Average entanglement entropy for a bipartite system

$N \times N$ system

$$\langle S(\psi) \rangle_{\psi} \approx \ln N - \frac{1}{2} + O(\frac{\ln N}{N})$$

$N \times K$ system: formula of Don Page (1993/1995)

valid for random states in $\mathcal{H}_N \otimes \mathcal{H}_K$ with $K \ge N$

$$\langle S(\psi)
angle_\psi = \Psi(\mathit{NK}+1) - \Psi(\mathit{K}+1) - rac{\mathit{N}-1}{2\mathit{K}} pprox \ \ln \mathit{N} - rac{\mathit{N}}{2\mathit{K}}.$$

$N \times K$ system: probability measure

Let $\lambda = \{\lambda_1, \dots, \lambda_N\}$ denote the spectrum of the reduced matrix $\rho := \operatorname{Tr}_B |\psi\rangle \langle \psi|$. If $|\psi\rangle$ is taken **uniformly** on $\mathcal{H}_N \otimes \mathcal{H}_K$ then

 $P_{N,K}(\lambda) = C_{N,K} \, \delta \big(1 - \sum_i \lambda_i \big) \prod_i \lambda_i^{K-N} \, \prod_{i < j} (\lambda_i - \lambda_j)^2$

KŻ (IF UJ/CFT PAN)

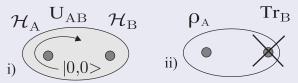
イロト 不得下 イヨト イヨト 二日

Composed bi–partite systems on $\mathcal{H}_A \otimes \mathcal{H}_B$

Ensembles obtained by partial trace: a) induced measure

i) **natural measure** on the space of **pure states** obtained by acting on a fixed state $|0,0\rangle$ with a global random unitary U_{AB} of size NK

$$|\psi
angle = \sum_{i=1}^{N} \sum_{j=1}^{\kappa} G_{ij} |i
angle \otimes |j
angle$$

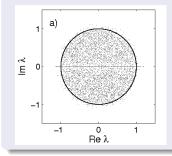


ii) partial trace over the K dimensional subsystem B gives $\rho_A = \text{Tr}_B |\psi\rangle \langle \psi |$ and leads to the **induced measure** $P_{N,K}(\lambda)$ in the space of mixed states of size N. Integrating out all eigenvalues but λ_1 one arrives (for large N) at the **Marchenko–Pastur** distribution $P_c(x = N\lambda_1)$ with the parameter c = K/N.

KŻ (IF UJ/CFT PAN)

Spectral properties of random matrices

Non-hermitian matrix G of size N of the Ginibre ensemble



Under normalization $\text{Tr}GG^{\dagger} = N$ the spectrum of *G* fills **uniformly** (for large *N*!) the **unit disk**

The so-called circular law of Girko !

Hermitian, positive matrix $\rho = GG^{\dagger}$ of the Wishart ensemble

Let $x = N\lambda_i$, where $\{\lambda_i\}$ denotes the spectrum of ρ . As $\text{Tr}\rho = 1$ so $\langle x \rangle = 1$. Distribution of the spectrum P(x) is asymptotically given by the Marchenko–Pastur law

$$\pi^{(1)}(x) = P_{\text{MP}}(x) = \frac{1}{2\pi} \sqrt{\frac{4}{x}} - 1 \text{ for } x \in [0, 4]$$

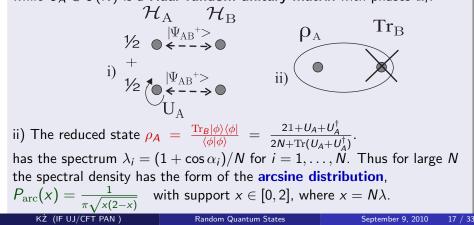
KŻ (IF UJ/CFT PAN)

Composed bi-partite systems II

b) Arcsine ensemble

i) Consider a superposition of two maximally entangled states on $\mathcal{H}_N\otimes\mathcal{H}_N$

 $|\phi\rangle = |\psi_{AB}^+\rangle + (U_A \otimes \mathbb{1}_N)|\psi_{AB}^+\rangle$, where $|\psi_{AB}^+\rangle = (1/\sqrt{N})\sum_{i=1}^N |i,i\rangle$, while $U_A \in U(N)$ is a Haar random unitary matrix with phases α_i .



c) Generalization for k states

i) Superposition of k maximally entangled states on $\mathcal{H}_N \otimes \mathcal{H}_N$ $|\phi\rangle = \sum_{i=1}^k (U_i \otimes \mathbb{1}_N) |\psi_{AB}^+\rangle,$

where $U_i \in U(N)$ are independent Haar random unitary matrices.

ii) The reduced state $\rho_A = \frac{\text{Tr}_B |\phi\rangle \langle \phi|}{\langle \phi | \phi \rangle} = \frac{(U_1 + \dots + U_k)(U_1^{\dagger} + \dots + U_k^{\dagger})}{\text{Tr}(U_1 + \dots + U_k)(U_1^{\dagger} + \dots + U_k^{\dagger})}$. is asymptotically characterized by the leads to a **Kesten** distribution $P_k(x) = \frac{1}{2\pi} \frac{\sqrt{4k(k-1)x - k^2 x^2}}{kx - x^2}$ which belongs to **free Meixner laws** (**Bożejko, Bryc** 2006)

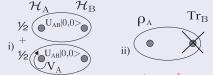
with support $x \in [0, 4(k-1)/k]$, where $x = N\lambda$. Observe that for $k \to \infty$ the distribution P_k tends to Marchenko-Pastur $\pi^{(1)}$, as the renormalized sum of many independent random unitaries bahaves as a Ginibre matrix.

KŻ (IF UJ/CFT PAN)

d) Bures ensemble

i) Consider a superposition of two pure states: a random state $|\psi_1\rangle$ and the same state transformed by a local unitary V_A ,

 $|\phi\rangle := (\mathbb{1} \otimes \mathbb{1} + V_A \otimes \mathbb{1})|\psi_1\rangle$, where $|\psi_1\rangle = U_{AB}|0,0\rangle$ while $V_A \in U(N)$ and $U_{AB} \in U(N^2)$ are Haar random unitary matrices.



ii) The reduced state $\rho_{\rm B} = \frac{(\mathbb{1}+V_A)GG^{\dagger}(\mathbb{1}+V_A^{\dagger})}{\operatorname{Tr}[(\mathbb{1}+V_A)GG^{\dagger}(\mathbb{1}+V_A^{\dagger})]}$ is distributed according

to the **Bures measure**, $P_B(\lambda_1, ...\lambda_N) = C_N^B \prod_i \lambda_i^{-1/2} \prod_{i < j}^{1...N} \frac{(\lambda_i - \lambda_j)^2}{\lambda_i + \lambda_j}$ (Osipov, Sommers, Życzkowski, 2010) characterized by the **Bures distribution**.

$$P_{\rm B}(x) = \frac{1}{4\pi\sqrt{3}} \left[\left(\frac{a}{x} + \sqrt{\left(\frac{a}{x}\right)^2 - 1} \right)^{2/3} - \left(\frac{a}{x} - \sqrt{\left(\frac{a}{x}\right)^2 - 1} \right)^{2/3} \right]^{2/3}$$

where $a = 3\sqrt{3}$. Square matrix *G* of size *N* from the **Ginibre ensemble** is obtained from the first column of U_{AB} od size N^2 which acts on $|0,0\rangle$.

KŻ (IF UJ/CFT PAN)

19 / 33

Composed mutipartite systems & projections

a) Four-partite system & $\pi^{(2)}$ distribution

Take a four-partite product state,

$$\begin{split} |\psi_0\rangle &= |0\rangle_A \otimes |0\rangle_B \otimes |0\rangle_C \otimes |0\rangle_D =: |0, 0, 0, 0\rangle \in \mathcal{H}_{\mathcal{N}}^{\otimes 4}.\\ \text{i) Apply two random unitary matrices } U_{AB} \text{ and } U_{CD} \text{ of size } N^2,\\ |\psi\rangle &= U_{AB} \otimes U_{CD} |\psi_0\rangle = \sum_{i,j=1}^N \sum_{k,l=1}^N G_{ij} E_{kl} |i\rangle_A \otimes |j\rangle_B \otimes |k\rangle_C \otimes |l\rangle_D\\ \text{ii) Consider projector } P := \mathbb{1}_A \otimes |\Psi_{BC}^+\rangle \langle \Psi_{BC}^+| \otimes \mathbb{1}_D\\ \text{on the maximally entangled state, } |\Psi_{BC}^+\rangle = \frac{1}{\sqrt{N}} \sum_{\mu=1}^N |\mu\rangle_B \otimes |\mu\rangle_C \end{split}$$

The spectrum of the iii) reduced state $\rho_A = \frac{\text{Tr}_D[\phi]\langle\phi|}{\langle\phi|\phi\rangle} = \frac{GEE^{\dagger}G^{\dagger}}{\text{Tr} GEE^{\dagger}G^{\dagger}}$ consists of squared singular values of the product GEof **two independent Ginibre matrices**, so the spectral density is described by the **Fuss-Catalan distribution** $\pi^{(2)}(x)$.

KŻ (IF UJ/CFT PAN)

b) 2*s*-partite system & $\pi^{(s)}$ Fuss-Catalan distribution

Take a 2s-partite product state,

$$\begin{split} |\psi_0\rangle &= |0\rangle_1 \otimes \cdots \otimes |0\rangle_{2s} \in \mathcal{H}_{\mathcal{N}}^{\otimes 2s}.\\ \text{i) Apply s random unitary matrices $U_{1,2}$, $U_{3,4}$...$ $U_{2s-1,2s}$ of size N^2 each, $|\psi\rangle U_{1,2} \otimes \cdots U_{2s-1,2s}|0,\ldots,0\rangle = \sum_{i_1,\ldots,i_{2s}} (G_1)_{i_1,i_2} \cdots (G_s)_{i_{2s-1},i_{2s}}|i_1,\ldots,i_{2s}\rangle \\ \text{ii) Project onto the product of $(s-1)$ maximally entangled states, $P_s := \mathbbm{1}_1 \otimes |\Psi_{2,3}^+\rangle \langle \Psi_{2,3}^+| \otimes \cdots \otimes |\Psi_{2s-2,2s-1}^+\rangle \langle \Psi_{2s-2,2s-1}^+| \otimes \mathbbm{1}_{2s} \\ \mathcal{H}_1 \mathcal{H}_2 \mathcal{H}_3 \mathcal{H}_4 \mathcal{H}_{2s-1} \mathcal{H}_{2s} \mathcal{H}_1 \mathcal{H}_2 \mathcal{H}_3 \mathcal{H}_4 \mathcal{H}_{2s-1} \mathcal{H}_{2s} \\ \mathcal{H}_1 \mathcal{H}_2 \mathcal{H}_3 \mathcal{H}_4 \mathcal{H}_{2s-1,2s} \mathcal{H}_1 \mathcal{H}_2 \mathcal{H}_3 \mathcal{H}_4 \mathcal{H}_{2s-1} \mathcal{H}_{2s} \mathcal{H}_{2s-2,2s-1} \\ \mathcal{H}_1 \mathcal{H}_2 \mathcal{H}_3 \mathcal{H}_4 \mathcal{H}_{2s-1,2s} \mathcal{H}_{2s-2,2s-1} \mathcal{H}_{2$$

The spectrum of the iii) reduced state $\rho_A = \frac{\text{Tr}_{2s}|\phi\rangle\langle\phi|}{\langle\phi|\phi\rangle} = \frac{G_1 G_2 \cdots G_s (G_1 G_2 \cdots G_s)^{\dagger}}{\text{Tr} [G_1 G_2 \cdots G_s (G_1 G_2 \cdots G_s)^{\dagger}]}$ consists of squared singular values of the product $G_1 \cdots G_s$ of *s* independent Ginibre matrices, so the spectral density is described by the Fuss-Catalan distribution $\pi^{(s)}(x)$.

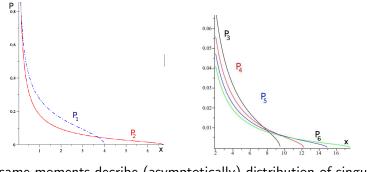
KŻ (IF UJ/CFT PAN)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Fuss-Catalan distribution $\pi^{(s)}$

defined for an integer number *s* is characterized by its **moments** $\int x^{p} \pi^{(s)}(x) dx = \frac{1}{sp+1} {sp+p \choose p} =: FC_{p}^{(s)}$ equal to the generalized Fuss-Catalan numbers.

The density $\pi^{(s)}$ is analitic on the support $[0, (s+1)^{s+1}/s^s]$, while for $x \to 0$ it behaves as $1/(\pi x^{s/(s+1)})$.



The same moments decribe (asymptotically) distribution of singular valuesfor s-th power of Ginibre G^s,(Alexeev, Götze, Tikhomirov 2010)KŻ (IF UJ/CFT PAN)Random Quantum StatesSeptember 9, 201022 / 33

Fuss-Catalan distributions $\pi^{(s)}$

The moments of $\pi^{(s)}$ are equal to Fuss-Catalan numbers. Using inverse **Mellin transform** one can represent $\pi^{(s)}$ by the **Meijer** *G*-function, which in this case reduces to *s* hypergeometric functions

Exact explicit expressions for FC $\pi^{(s)}$

$$\begin{split} s &= 1, \ \pi^{(1)}(x) = \frac{1}{\pi\sqrt{x}} \ {}_{1}F_{0}\left(-\frac{1}{2}; \ ; \ \frac{1}{4}x\right) = \frac{\sqrt{1-x/4}}{\pi\sqrt{x}} \ , \ \text{Marchenko-Pastur} \\ s &= 2, \ \pi^{(2)}(x) = \frac{\sqrt{3}}{2\pi x^{2/3}} \ {}_{2}F_{1}\left(-\frac{1}{6},\frac{1}{3}; \ \frac{2}{3}; \ \frac{4x}{27}\right) - \frac{\sqrt{3}}{6\pi x^{1/3}} \ {}_{2}F_{1}\left(\frac{1}{6},\frac{2}{3}; \ \frac{4}{3}; \ \frac{4x}{27}\right) = \\ &= \frac{\sqrt[3]{2}\sqrt{3}}{12\pi} \ \frac{\sqrt[3]{2}(27+3\sqrt{81-12x})^{\frac{2}{3}} - 6\sqrt[3]{x}}{x^{\frac{2}{3}}(27+3\sqrt{81-12x})^{\frac{1}{3}}} \ \text{Fuss-Catalan} \\ \text{Arbitrary } s, \ \Rightarrow \ \pi^{(s)}(x) \ \text{is a superposition of} \\ s \ \text{hypergeometric functions,} \\ &\pi^{(s)}(x) = \sum_{j=1}^{s} \beta_{j} \ {}_{s}F_{s-1}(a_{1}^{(j)}, \dots, a_{s}^{(j)}; \ b_{1}^{(j)}, \dots, b_{s-1}^{(j)}; \ \alpha_{j}x) \ . \end{split}$$

(Penson, Życzkowski, 2010)

KŻ (IF UJ/CFT PAN)

KŻ (IF UJ/CFT PAN)

Random Quantum States

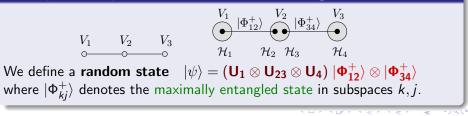
September 9, 2010 24 / 33

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Graph random states

Consider a graph Γ consisting of m edges $B_1, \ldots B_m$ and k vertices V_1, \ldots, V_k . It represents a composite **quantum system** consisting of 2m sub-systems described in the Hilbert space with 2m-fold tensor product $\mathcal{H} = \mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_{2m}$ of dimension N^{2m} . Each **edge** represents the **maximally entangled state** $|\Phi^+\rangle$ in both subspaces, while each **vertex** represents a **random unitary matrix U** (Haar measure ='generic' Hamiltonian), coupling connected systems.

A simple example: three vertices & two edges



KŻ (IF UJ/CFT PAN)

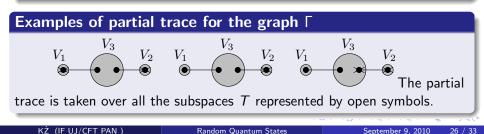
Multi-partite graph systems: mixed states

Partial trace over certain subspaces

Consider an **ensemble of random pure states** $|\psi\rangle$ corresponding to a given graph Γ . Select a fixed **subset** T of subspaces and define a (random) **mixed state** $\rho(T) = \text{Tr}_T |\psi\rangle \langle \psi|$. **Tasks**

• Determine the **spectral properties** of the ensemble of mixed states

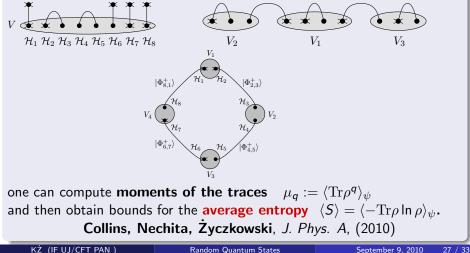
- $\rho(T)$ associated with the graph Γ .
- Find the mean **entropy** $\langle S(\rho) \rangle_{\psi}$ of the reduced state ρ averaged over the ensemble of graph random pure states $|\psi\rangle_{\Gamma,T}$.



Graphs and random multi-partite systems

Partial trace over certain subspaces

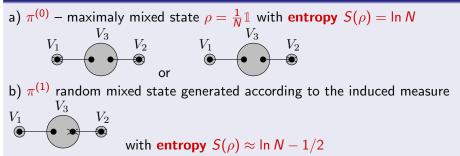
For ensembles of **random states** associated with certain **graphs** Γ and selected subspaces $T - cross(\times) - over which the partial trace takes place$



KŻ (IF UJ/CFT PAN)

Spectral properties of random mixed states I

Example 1: 2 bonds, 4 subsystems and one bi-partite interaction U_0



Let $|\psi\rangle = \sum_i \sum_j G_{ij} |i\rangle \otimes |j\rangle$ be a random pure state.

Then G is a random matrix of **Ginibre ensemble** consisting of independent complex Gaussian entries normalized as $|G|^2 = \text{Tr}GG^{\dagger} = 1$.

The distribution of eigenvalues of a **non–hermitian matrix** *G* is given by the **Girko circular law**, while positive **Wishart** matrices $\rho = \text{Tr}_{B}|\psi\rangle\langle\psi| = GG^{\dagger}$ are described by **Marchenko-Pastur** law $\pi^{(1)}$.

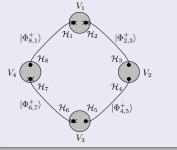
KŻ (IF UJ/CFT PAN)

Spectral properties of random mixed states II

Example 2: 4 bonds, 8 subsystems and four bi-partite interactions V_i

Random Quantum States

c) $\pi^{(2)}$ random mixed state generated by the 4–cycle graph



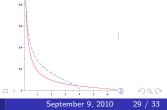
KŻ (IF UJ/CFT PAN)

After partial trace over **crossed** subsystems the random mixed state has the structure

$$o = \alpha G_2 G_1 G_1^{\dagger} G_2^{\dagger},$$

where G_1 and G_2 are independent **Ginibre** matrices and $\alpha = 1/\text{Tr} G_2 G_1 G_1^{\dagger} G_2^{\dagger}$.

Mixed states with spectrum given by the Fuss-Catalan distribution $\pi^{(2)}(x)$ characterized by mean entropy $S(\rho) \approx \ln N - 5/6$ $P_{MP}(x) = \pi^{(1)}(x)$ and $\pi^{(2)}(x)$.



Spectral properties of the ensembles analyzed

Spectral density P(x) of the rescaled eigenvalue $x = N\lambda$

matrix W	P(x)	$x \rightarrow 0$	support	mean entropy
1	$\pi^{(0)}$	—	$\{1\}$	0
1 + U	arcsine	$x^{-1/2}$	[0,2]	$\ln 2 - 1 \approx -0.307$
G	MP. $\pi^{(1)}$	$x^{-1/2}$	[0, 4]	-1/2 = -0.5
(1+U)G	Bures	$x^{-2/3}$	$[0, 3\sqrt{3}]$	$-\ln 2 pprox -0.693$
G_1G_2	F–C π ⁽²⁾	$x^{-2/3}$	$[0, 6\frac{3}{4}]$	-5/6pprox -0.833
$G_1 \cdots G_s$	F-C $\pi^{(s)}$	$x^{-s/(s+1)}$	[0, <i>b_s</i>]	$-\sum_{i=2}^{s+1} \frac{1}{i}$
			1	55

Table: Ensembles of random mixed states obtained as normalized Wishart matrices, $\rho = WW^{\dagger}/\text{Tr}WW^{\dagger}$. Here $b_s = (s+1)^{s+1}/s^s$ and the mean entropy $\langle S \rangle = -\int x \ln x P(x) dx$.

Let

$$W_{k,s} := \left(U_1 + U_2 + \cdots + U_k \right) \mathbf{G}_1 \cdots \mathbf{G}_s$$

where U_i are independent Haar random unitary matrices, while G_i are independent random **Ginibre matrices**. Define generalized ensemble of normalized random density matrices

$$ho_{k,s} := W_{k,s} W_{k,s}^{\dagger} / \mathrm{Tr}(W_{k,s} W_{k,s}^{\dagger})$$

Special cases:

- $s = 0, \ k = 1 \implies$ maximally mixed state
- $s = 0, k = 2 \implies$ arcsine ensemble
- $s = 0, \ k = k \implies k$ -Kesten ensemble
- $s = 1, k = 1 \implies$ Hilbert-Schmidt ensemble
- $s = 1, \ k = 2 \quad \Rightarrow$ Bures ensemble
- $s = s, k = 1 \implies s -$ Fuss Catalan ensemble

Concluding remarks

- Random pure state can be obtained from any initial state $|0\rangle$ by a generic unitary evolution operator U, (corresponding e.g. to a quantized chaotic evolution), $|\psi\rangle = U|0\rangle$.
- **Random mixed state** of size *N* from the **induced ensemble** (which leads to **Marchenko-Pastur** spectral density) is obtained by the partial trace of a composite system in an initially random pure state.
- 'Biased' ensembles of random pure states + partial trace lead to other ensembles of random states, including (Arcsine, *k*-Kesten, Bures, *s*-Fuss-Catalan).
- With any graph one can associate an ensemble of random pure states. Selecting a set A of subsystems we define an ensemble of mixed states ρ by performing the partial trace over them. Graphs leading (asymptotically) to Fuss-Catalan distributions π^(s)(x) are identified for any s = 0, 1, 2,
- Explicit exact expressions for the distribution Fuss-Catalan distributions $\pi^{(s)}(x)$ are derived.

KŻ (IF UJ/CFT PAN)

Working with pieces of the two kinds:
a) rectangular pieces (random Ginibre matrices)
b) round pieces (Haar random unitary matrices)
one can construct...

many various ensembles of mixed quantum states !

KŻ (IF UJ/CFT PAN)

Random Quantum States

September 9, 2010 33 / 33