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Ensembles of random density operators

Mixed quantum state = density operator which is

a) Hermitian, ρ = ρ†,
b) positive, ρ ≥ 0,
c) normalized, Trρ = 1.

Let MN denote the set of density operators of size N.

Ensembles of random states in MN

Let A be matrix from an arbitrary ensemble of random matrices.
Then

ρ = AA†

TrAA†

forms a random quantum state
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The ensemble analyzed

Wk,s :=
(

p1U1 + p2U2 + · · · + pkUk

)

G1 · · ·Gs

where Ui are independent Haar random unitary matrices in U(N),
while Gi are independent (rectangular) random Ginibre matrices and
p = {p1, . . . , pk} is a probability vector.
Define ensemble of normalized random density matrices of size N

ρk,s := Wk,sW
†
k,s/Tr(Wk,sW

†
k,s)

* 1) What ensembles can be generated in this way?
* 2) What are their statistical properties ?
* 3) How these random states may emerge in quantum physics?
* 4) How to generate numerically random matrices from certain
ensembles, (e.g. Bures ensemble) ?
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Having at your disposal LEGO pieces of two kinds:
a) rectangular pieces (random Ginibre matrices)
b) round pieces (Haar random unitary matrices)

What can you construct out of them ?
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How random mixed states
appear in quantum physics ?

Reduction of random pure states

1) Consider an ensemble of random pure states |ψ〉 of
a composite system distributed according to a given
measure µ.

2) Perform partial trace over a chosen subsystem B to
get a random mixed state

ρ : = TrB |ψ〉〈ψ|

Depending on the structure of the composite system, the initial measure
µ in the space of the pure states and the choice of the subsystem B, over
which the averaging is performed
one obtaines different ensembles of random mixed states.
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Pure states in a finite dimensional Hilbert space HN

Space of normalized complex pure states for an arbitrary N :

Since 〈ψ|ψ〉 = 1 a normalized state belongs to the sphere S2N−1.

Two states equal up to a phase are identified, |ψ〉 ∼ e iα|ψ〉, so the set of
states is equivalent to the complex projective space CPN−1

of 2N − 2 real dimensions.

N = 2: For qubit = quantum bit the word geometry
can be treated literally!

|ψ〉 = cos
ϑ
2 |1〉 + e

iφ sin
ϑ
2 |0〉

CP1 = Bloch sphere of N = 2 pure states
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Random Pure states in HN

’Quantum chaotic’ dynamics (pseudo-random evolution)

described by a random unitary matrix U acting on a pure state produces
(almost surely) a ’generic pure state’ |ψ〉 = U|φ0〉.
• Formally one defines an (unique) Fubini–Study measure µ on complex
projective spaces which is unitarily invariant: for any (measurable) set A

of states one requires µ(A) = µ(U(A)).

• This measure covers the entire space CPN−1 uniformly, and for N = 2
it is just equivalent to the uniform, Lebesgue measure on the sphere S2.

How to obtain numerically a random pure state |ψ〉 ?

a) Take a column (a row) of a random unitary U so that |ψ〉 = U|i〉.
b) generate N independent complex random numbers zi according to
the normal distribution. Write |ψ〉 =

∑N
i=1 ci |i〉 where the expansion

coefficients read ci = zi/
√

∑

i |zi |2 .
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Ryszard with Ewa during an earlier Smoluchowski Symposium
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Composed systems & entangled states

bi-partite systems: H = HA ⊗HB

separable pure states: |ψ〉 = |φA〉 ⊗ |φB〉
entangled pure states: all states not of the above product form.

Two–qubit system: d = 2 × 2 = 4

Maximally entangled Bell state |ϕ+〉 := 1√
2

(

|00〉 + |11〉
)

Entanglement measures

For any pure state |ψ〉 ∈ HA ⊗HB define its partial trace σ = TrB |ψ〉〈ψ|.
Definition: Entanglement entropy of |ψ〉 is equal to von Neumann
entropy of the partial trace

E (|ψ〉) := −Tr σ lnσ

The more mixed partial trace, the more entangled initial pure state...
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Entanglement of two real qubits

Entanglement entropy at the tetrahedron of d = 4 real pure states

KŻ (IF UJ/CFT PAN ) Random Quantum States September 9, 2010 11 / 33



More on this is can be found in
I. Bengtsson and K. Życzkowski, Geometry of Quantum States

(Cambridge, 2006, 2008)
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Generic pure states of a bi-partite system

’Two quNits’ = N × N quantum system

The space CPN2−1 of all states in H = HN ⊗HN has dtot = N2 − 2
dimensions.
The subspace of separable (product) states CPN−1 ×CPN−1 has only
dsep = 2(N − 2) dimensions. For large N we observe that
dsep ∼ 2N << dtot ∼ N2 so the separable states form a set of measure
zero in the space of all states.

Thus a ’typical’ random state is entangled!
How much entangled?

Mean entropy of the reduced density matrix ρ

Let us call H = HA ⊗HB . Take any pure state |ψ〉 ∈ H and define its
partial trace ρ := TrB |ψ〉〈ψ| = TrA|ψ〉〈ψ|.
The von Neumann entropy S of the reduced mixed state ρ is a
measure of entanglement of the initially pure bi-partite state |ψ〉.
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Average entanglement entropy for a bipartite system

N × N system

〈S(ψ)〉ψ ≈ lnN − 1

2
+ O

( lnN

N

)

N × K system: formula of Don Page (1993/1995)

valid for random states in HN ⊗HK with K ≥ N

〈S(ψ)〉ψ = Ψ(NK + 1) − Ψ(K + 1) − N − 1

2K
≈ lnN − N

2K
.

N × K system: probability measure

Let λ = {λ1, . . . λN} denote the spectrum of the reduced matrix
ρ := TrB |ψ〉〈ψ|. If |ψ〉 is taken uniformly on HN ⊗HK then

PN,K (λ) = CN,K δ
(

1 − ∑

i λi

)
∏

i λ
K−N
i

∏

i<j(λi − λj)
2
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Composed bi–partite systems on HA ⊗HB

Ensembles obtained by partial trace: a) induced measure

i) natural measure on the space of pure states obtained by acting on a
fixed state |0, 0〉 with a global random unitary UAB of size NK

|ψ〉 =
N

∑

i=1

K
∑

j=1

Gij |i〉 ⊗ |j〉

ii) partial trace over the K dimensional subsystem B gives
ρA = TrB |ψ〉〈ψ| and leads to the induced measure PN,K (λ) in the space
of mixed states of size N. Integrating out all eigenvalues but λ1 one
arrives (for large N) at the Marchenko–Pastur distribution Pc(x = Nλ1)
with the parameter c = K/N.
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Spectral properties of random matrices

Non-hermitian matrix G of size N of the Ginibre ensemble

Under normalization TrGG † = N

the spectrum of G fills uniformly
(for large N!) the unit disk

The so–called circular law of Girko !

Hermitian, positive matrix ρ = GG † of the Wishart ensemble

Let x = Nλi , where {λi} denotes the spectrum of ρ. As Trρ = 1 so
〈x〉 = 1. Distribution of the spectrum P(x) is asymptotically given by the
Marchenko–Pastur law

π(1)(x) = PMP(x) = 1
2π

√

4
x
− 1 for x ∈ [0, 4]

KŻ (IF UJ/CFT PAN ) Random Quantum States September 9, 2010 16 / 33



Composed bi–partite systems II

b) Arcsine ensemble

i) Consider a superposition of two maximally entangled states on
HN ⊗HN

|φ〉 = |ψ+
AB〉 + (UA ⊗ 1N)|ψ+

AB〉, where |ψ+
AB〉 = (1/

√
N)

∑N
i=1 |i , i〉,

while UA ∈ U(N) is a Haar random unitary matrix with phases αi .

ii) The reduced state ρA = TrB |φ〉〈φ|
〈φ|φ〉 =

21+UA+U
†
A

2N+Tr(UA+U
†
A
)
.

has the spectrum λi = (1 + cosαi )/N for i = 1, . . . ,N. Thus for large N

the spectral density has the form of the arcsine distribution,
Parc(x) = 1

π
√

x(2−x)
with support x ∈ [0, 2], where x = Nλ.
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c) Generalization for k states

i) Superposition of k maximally entangled states on HN ⊗HN

|φ〉 =
∑k

i=1(Ui ⊗ 1N)|ψ+
AB〉,

where Ui ∈ U(N) are independent Haar random unitary matrices.

ii) The reduced state ρA = TrB |φ〉〈φ|
〈φ|φ〉 =

(U1+···+Uk)(U†
1 +···+U

†
k
)

Tr(U1+···+Uk)(U†
1 +···+U

†
k
)
. is

asymptotically characterized by the leads to a Kesten distribution

Pk(x) = 1
2π

√
4k(k−1)x−k2x2

kx−x2

which belongs to free Meixner laws (Bożejko, Bryc 2006)

with support x ∈ [0, 4(k − 1)/k],
where x = Nλ.

Observe that for k → ∞ the
distribution Pk tends to
Marchenko-Pastur π(1), as the
renormalized sum of many
independent random unitaries bahaves
as a Ginibre matrix .
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d) Bures ensemble

i) Consider a superposition of two pure states: a random state |ψ1〉 and
the same state transformed by a local unitary VA,

|φ〉 := (1⊗ 1+ VA ⊗ 1)|ψ1〉, where |ψ1〉 = UAB |0, 0〉
while VA ∈ U(N) and UAB ∈ U(N2) are Haar random unitary matrices.

ii) The reduced state ρB =
(1+VA)GG†(1+V

†
A
)

Tr[(1+VA)GG†(1+V
†
A
)]

is distributed according

to the Bures measure, PB(λ1, ...λN) = CB
N

∏

i λ
−1/2
i

∏1...N
i<j

(λi−λj )
2

λi+λj

(Osipov, Sommers, Życzkowski, 2010) characterized by the
Bures distribution,

PB(x) = 1
4π

√
3

[

(

a
x

+
√

(

a
x

)2− 1

)2/3

−
(

a
x
−

√

(

a
x

)2− 1

)2/3
]

where a = 3
√

3. Square matrix G of size N from the Ginibre ensemble is
obtained from the first column of UAB od size N2 which acts on |0, 0〉.
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Composed mutipartite systems & projections

a) Four-partite system & π(2) distribution

Take a four-partite product state,
|ψ0〉 = |0〉A ⊗ |0〉B ⊗ |0〉C ⊗ |0〉D =: |0, 0, 0, 0〉 ∈ HN⊗4.

i) Apply two random unitary matrices UAB and UCD of size N2,
|ψ〉 = UAB ⊗ UCD |ψ0〉 =

∑N
i ,j=1

∑N
k,l=1 GijEkl |i〉A ⊗ |j〉B ⊗ |k〉C ⊗ |l〉D

ii) Consider projector P := 1A ⊗ |Ψ+
BC 〉〈Ψ+

BC | ⊗ 1D

on the maximally entangled state, |Ψ+
BC 〉 = 1√

N

∑N
µ=1 |µ〉B ⊗ |µ〉C

The spectrum of the iii) reduced state ρA = TrD |φ〉〈φ|
〈φ|φ〉 = GEE†G†

Tr GEE†G†

consists of squared singular values of the product GE

of two independent Ginibre matrices, so the spectral density
is described by the Fuss-Catalan distribution π(2)(x).
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b) 2s-partite system & π(s) Fuss-Catalan distribution

Take a 2s-partite product state,
|ψ0〉 = |0〉1 ⊗ · · · ⊗ |0〉2s ∈ HN⊗2s .

i) Apply s random unitary matrices U1,2, U3,4,.. U2s−1,2s of size N2 each,
|ψ〉U1,2 ⊗ · · ·U2s−1,2s |0, . . . , 0〉 =

∑

i1,...i2s
(G1)i1,i2 · · · (Gs)i2s−1,i2s

|i1, . . . , i2s〉
ii) Project onto the product of (s − 1) maximally entangled states,

Ps := 11 ⊗ |Ψ+
2,3〉〈Ψ+

2,3| ⊗ · · · ⊗ |Ψ+
2s−2,2s−1〉〈Ψ+

2s−2,2s−1| ⊗ 12s

The spectrum of the iii) reduced state

ρA = Tr2s |φ〉〈φ|
〈φ|φ〉 = G1G2···Gs(G1G2···Gs)

†

Tr [G1G2···Gs(G1G2···Gs)†]
consists of squared singular values of the product G1 · · ·Gs

of s independent Ginibre matrices, so the spectral density
is described by the Fuss-Catalan distribution π(s)(x).
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Fuss-Catalan distribution π(s)

defined for an integer number s is characterized by its moments
∫

xpπ(s)(x)dx = 1
sp+1

(

sp+p
p

)

=: FC
(s)
p

equal to the generalized Fuss-Catalan numbers .

The density π(s) is analitic on the support [0, (s + 1)s+1/ss ],
while for x → 0 it behaves as 1/(πx s/(s+1)).

The same moments decribe (asymptotically) distribution of singular values
for s–th power of Ginibre G s , (Alexeev, Götze, Tikhomirov 2010)
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Fuss-Catalan distributions π(s)

The moments of π(s) are equal to Fuss-Catalan numbers.
Using inverse Mellin transform one can represent π(s) by the Meijer
G–function, which in this case reduces to s hypergeometric functions

Exact explicit expressions for FC π(s)

s = 1, π(1)(x) = 1
π
√

x 1F0

(

−1
2 ; ; 1

4x
)

=

√
1−x/4

π
√

x
, Marchenko–Pastur

s = 2, π(2)(x) =
√

3
2πx2/3 2F1

(

−1
6 ,

1
3 ; 2

3 ; 4x
27

)

−
√

3
6πx1/3 2F1

(

1
6 ,

2
3 ; 4

3 ; 4x
27

)

=

=
3√2

√
3

12π

3√2(27+3
√

81−12x)
2
3 −6 3√x

x
2
3 (27+3

√
81−12x)

1
3

Fuss–Catalan

Arbitrary s, ⇒ π(s)(x) is a superposition of
s hypergeometric functions,

π(s)(x) =
∑s

j=1 βj sFs−1

(

a
(j)
1 , . . . , a

(j)
s ; b

(j)
1 , . . . , b

(j)
s−1; αjx

)

.

(Penson, Życzkowski, 2010)
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Multi–partite systems: graphs

Graph random states

Consider a graph Γ consisting of m edges B1, . . .Bm and k vertices
V1, . . .Vk . It represents a composite quantum system consisting of 2m

sub–systems described in the Hilbert space with 2m–fold tensor product
H = H1 ⊗ · · · ⊗ H2m of dimension N2m.
Each edge represents the maximally entangled state |Φ+〉 in both
subspaces, while each vertex represents a random unitary matrix U
(Haar measure =’generic’ Hamiltonian), coupling connected systems.

A simple example: three vertices & two edges

V1 V3V2

V2V1 V3

H2H1 H3 H4

|Φ+

12〉 |Φ+

34〉

We define a random state |ψ〉 = (U1 ⊗ U23 ⊗ U4) |Φ+
12〉 ⊗ |Φ+

34〉
where |Φ+

kj〉 denotes the maximally entangled state in subspaces k , j .
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Multi–partite graph systems: mixed states

Partial trace over certain subspaces

Consider an ensemble of random pure states |ψ〉 corresponding to a
given graph Γ. Select a fixed subset T of subspaces and define a
(random) mixed state ρ(T ) = TrT |ψ〉〈ψ|.

Tasks

• Determine the spectral properties of the ensemble of mixed states
ρ(T ) associated with the graph Γ.

• Find the mean entropy 〈S(ρ)〉ψ of the reduced state ρ averaged over
the ensemble of graph random pure states |ψ〉Γ,T .

Examples of partial trace for the graph Γ

V1

V3

V2 V1 V2

V3

V2V1

V3

The partial
trace is taken over all the subspaces T represented by open symbols.
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Graphs and random multi–partite systems

Partial trace over certain subspaces

For ensembles of random states associated with certain graphs Γ and
selected subspaces T – cross (×) – over which the partial trace takes place

H3 H4 H5 H6 H7 H8H1 H2

V

V2 V1 V3

V1

V3

V4 V2

H3

H4

H5H6

H8

H7

H1 H2|Φ+
8,1〉

|Φ+
6,7〉

|Φ+
2,3〉

|Φ+
4,5〉

one can compute moments of the traces µq := 〈Trρq〉ψ
and then obtain bounds for the average entropy 〈S〉 = 〈−Trρ ln ρ〉ψ.

Collins, Nechita, Życzkowski, J. Phys. A, (2010)
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Spectral properties of random mixed states I

Example 1: 2 bonds, 4 subsystems and one bi-partite interaction U0

a) π(0) – maximaly mixed state ρ = 1
N
1 with entropy S(ρ) = lnN

V1

V3

V2

or

V1 V2

V3

b) π(1) random mixed state generated according to the induced measure

V2V1

V3

with entropy S(ρ) ≈ lnN − 1/2

Let |ψ〉 =
∑

i

∑

j Gij |i〉 ⊗ |j〉 be a random pure state.

Then G is a random matrix of Ginibre ensemble consisting of
independent complex Gaussian entries normalized as |G |2 = TrGG † = 1.

The distribution of eigenvalues of a non–hermitian matrix G is given
by the Girko circular law, while positive Wishart matrices
ρ = TrB |ψ〉〈ψ| = GG † are described by Marchenko-Pastur law π(1).
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Spectral properties of random mixed states II

Example 2: 4 bonds, 8 subsystems and four bi-partite interactions Vi

c) π(2) random mixed state generated by the 4–cycle graph
V1

V3

V4 V2

H3

H4

H5H6

H8

H7

H1 H2|Φ+
8,1〉

|Φ+
6,7〉

|Φ+
2,3〉

|Φ+
4,5〉

After partial trace over crossed subsystems
the random mixed state has the structure

ρ = αG2G1G
†
1G

†
2 ,

where G1 and G2 are independent Ginibre
matrices and α = 1/TrG2G1G

†
1G

†
2 .

Mixed states with spectrum given by the
Fuss-Catalan distribution π(2)(x)

characterized by mean entropy
S(ρ) ≈ lnN − 5/6

PMP(x) = π(1)(x) and π(2)(x).
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Spectral properties of the ensembles analyzed

Spectral density P(x) of the rescaled eigenvalue x = Nλ

matrix W P(x) x → 0 support mean entropy

1 π(0) – {1} 0

1+ U arcsine x−1/2 [0, 2] ln 2 − 1 ≈ −0.307

G M.-P. π(1) x−1/2 [0, 4] −1/2 = −0.5

(1+ U)G Bures x−2/3 [0, 3
√

3] − ln 2 ≈ −0.693

G1G2 F–C π(2) x−2/3 [0, 63
4 ] −5/6 ≈ −0.833

... ... ... ... ...

G1 · · ·Gs F–C π(s) x−s/(s+1) [0, bs ] −∑s+1
j=2

1
j

Table: Ensembles of random mixed states obtained as normalized Wishart
matrices, ρ = WW †/TrWW †. Here bs = (s + 1)s+1/ss and the mean entropy
〈S〉 = −

∫

x ln xP(x)dx .
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Generalized ensemble of random states

Let

Wk,s :=
(

U1 + U2 + · · · + Uk

)

G1 · · ·Gs

where Ui are independent Haar random unitary matrices,
while Gi are independent random Ginibre matrices.
Define generalized ensemble of normalized random density matrices

ρk,s := Wk,sW
†
k,s/Tr(Wk,sW

†
k,s)

Special cases:
s = 0, k = 1 ⇒ maximally mixed state
s = 0, k = 2 ⇒ arcsine ensemble
s = 0, k = k ⇒ k–Kesten ensemble
s = 1, k = 1 ⇒ Hilbert-Schmidt ensemble
s = 1, k = 2 ⇒ Bures ensemble
s = s, k = 1 ⇒ s – Fuss Catalan ensemble
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Concluding remarks

Random pure state can be obtained from any initial state |0〉 by a
generic unitary evolution operator U, (corresponding e.g. to a
quantized chaotic evolution), |ψ〉 = U|0〉.
Random mixed state of size N from the induced ensemble (which
leads to Marchenko-Pastur spectral density) is obtained by the
partial trace of a composite system in an initially random pure state.

’Biased’ ensembles of random pure states + partial trace lead to
other ensembles of random states, including (Arcsine, k–Kesten,
Bures, s–Fuss-Catalan).

With any graph one can associate an ensemble of random pure
states. Selecting a set A of subsystems we define an ensemble of
mixed states ρ by performing the partial trace over them. Graphs
leading (asymptotically) to Fuss–Catalan distributions π(s)(x) are
identified for any s = 0, 1, 2, ....

Explicit exact expresstions for the distribution Fuss–Catalan
distributions π(s)(x) are derived.
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Working with pieces of the two kinds:
a) rectangular pieces (random Ginibre matrices)
b) round pieces (Haar random unitary matrices)
one can construct...

many various ensembles of mixed quantum states !
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