For matrix A $(p \times p)$ with real eigenvalues, define F^{A}, the empirical distribution function of the eigenvalues of A, to be

$$
F^{A}(x) \equiv(1 / p) \cdot(\text { number of eigenvalues of } A \leq x)
$$

For and p.d.f. G the Stieltjes transform of G is defined as

$$
m_{G}(z) \equiv \int \frac{1}{\lambda-z} d G(\lambda), \quad z \in \mathbb{C}^{+} \equiv\{z \in \mathbb{C}: \Im z>0\}
$$

Inversion formula

$$
G\{[a, b]\}=(1 / \pi) \lim _{\eta \rightarrow 0^{+}} \int_{a}^{b} \Im m_{G}(\xi+i \eta) d \xi
$$

(a, b continuity points of G).
Notice

$$
m_{F^{A}}(z)=(1 / p) \operatorname{tr}(A-z I)^{-1} .
$$

Theorem [S. (1995)]. Assume
a) For $n=1,2, \ldots X_{n}=\left(X_{i j}^{n}\right), n \times N, X_{i j}^{n} \in \mathbb{C}$, i.d. for all n, i, j, independent across i, j for each n, $\mathrm{E}\left|X_{11}^{1}-\mathrm{E} X_{11}^{1}\right|^{2}=1$.
b) $N=N(n)$ with $n / N \rightarrow c>0$ as $n \rightarrow \infty$.
c) $T_{n} n \times n$ random Hermitian nonnegative definite, with $F^{T_{n}}$ converging almost surely in distribution to a p.d.f. H on $[0, \infty)$ as $n \rightarrow \infty$.
d) X_{n} and T_{n} are independent.

Let $T_{n}^{1 / 2}$ be the Hermitian nonnegative square root of T_{n}, and let $B_{n}=(1 / N) T_{n}^{1 / 2} X_{n} X_{n}^{*} T_{n}^{1 / 2}$ (obviously $F^{B_{n}}=F^{(1 / N) X_{n} X_{n}^{*} T_{n}}$). Then, almost surely, $F^{B_{n}}$ converges in distribution, as $n \rightarrow \infty$, to a (nonrandom) p.d.f. F, whose Stieltjes transform $m(z)\left(z \in \mathbb{C}^{+}\right)$ satisfies

$$
\begin{equation*}
m=\int \frac{1}{t(1-c-c z m)-z} d H(t) \tag{*}
\end{equation*}
$$

in the sense that, for each $z \in \mathbb{C}^{+}, m=m(z)$ is the unique solution to $(*)$ in $\left\{m \in \mathbb{C}:-\frac{1-c}{z}+c m \in \mathbb{C}^{+}\right\}$.

We have

$$
\begin{gathered}
F^{(1 / N) X^{*} T X}=\left(1-\frac{n}{N}\right) I_{[0, \infty)}+\frac{n}{N} F^{(1 / N) X X^{*} T} \\
\xrightarrow{\text { a.s. }}(1-c) I_{[0, \infty)}+c F \equiv \underline{F} .
\end{gathered}
$$

Notice m_{F} and $m_{\underline{F}}$ satisfy

$$
\frac{1-c}{c z}+\frac{1}{c} m_{\underline{F}}(z)=m_{F}(z)=\int \frac{1}{-z m_{\underline{F}} t-z} d H(t) .
$$

Therefore, $\underline{m}=m_{\underline{F}}$ solves

$$
z=-\frac{1}{\underline{m}}+c \int \frac{t}{1+t \underline{t \underline{m}}} d H(t) .
$$

Facts on F:

1. The endpoints of the connected components (away from 0) of the support of F are given by the extrema of

$$
f(\underline{m})=-\frac{1}{\underline{m}}+c \int \frac{t}{1+t \underline{m}} d H(t) \quad \underline{m} \in \mathbb{R}
$$

[Marčenko and Pastur (1967), S. and Choi (1995)].
2. F has a continuous density away from the origin given by

$$
\frac{1}{c \pi} \Im \underline{m}(x) \quad 0<x \in \text { support of } F
$$

where

$$
\underline{m}(x)=\lim _{z \in \mathbb{C}^{+} \rightarrow x} m_{\underline{F}}(z)
$$

solves

$$
x=-\frac{1}{\underline{m}}+c \int \frac{t}{1+t \underline{t} \underline{m}} d H(t) .
$$

(S. and Choi 1995).
3. F^{\prime} is analytic inside its support, and when H is discrete, has infinite slopes at boundaries of its support [S. and Choi (1995)].
4. c and F uniquely determine H.
5. $F \xrightarrow{D} H$ as $c \rightarrow 0$ (complements $B_{n} \xrightarrow{\text { a.s. }} T_{n}$ as $N \rightarrow \infty, n$ fixed).

(a)

(b)

$T_{n}=I_{n} \Longrightarrow F=F_{c}$, where, for $0<c \leq 1, F_{c}^{\prime}(x)=f_{c}(x)=$

$$
\frac{1}{2 \pi c x} \sqrt{\left(x-b_{1}\right)\left(b_{2}-x\right)} \quad b_{1}<x<b_{2}
$$

0 otherwise, where

$$
b_{1}=(1-\sqrt{c})^{2}, \quad b_{2}=(1+\sqrt{c})^{2},
$$

and for $1<c<\infty$,

$$
F_{c}(x)=(1-(1 / c)) I_{[0, \infty)}(x)+\int_{b_{1}}^{x} f_{c}(t) d t
$$

Marčenko and Pastur (1967)
Grenander and S. (1977)

Multivariate F matrix: $T_{n}=\left(\left(1 / N^{\prime}\right) \underline{X}_{n} \underline{X}_{n}^{*}\right)^{-1}, \underline{X}_{n} n \times N^{\prime}$ containing i.i.d. standardized entries, $n / N^{\prime} \rightarrow c^{\prime} \in(0,1) \Longrightarrow F=$ $F_{c, c^{\prime}}$, where, for $0<c \leq 1, F_{c, c^{\prime}}^{\prime}(x)=f_{c, c^{\prime}}(x)=$

$$
\frac{\left(1-c^{\prime}\right) \sqrt{\left(x-b_{1}\right)\left(b_{2}-x\right)}}{2 \pi x\left(x c^{\prime}+c\right)} \quad b_{1}<x<b_{2},
$$

where
$b_{1}=\left[\frac{1-\sqrt{1-(1-c)\left(1-c^{\prime}\right)}}{1-c^{\prime}}\right]^{2}, \quad b_{2}=\left[\frac{1+\sqrt{1-(1-c)\left(1-c^{\prime}\right)}}{1-c^{\prime}}\right]^{2}$, and for $1<c<\infty$,

$$
F_{c, c^{\prime}}(x)=(1-(1 / c)) I_{[0, \infty)}(x)+\int_{b_{1}}^{x} f_{c, c^{\prime}}(t) d t
$$

S. (1985)

Let, for any $d>0$ and d.f. $G, F^{d, G}$ denote the limiting spectral d.f. of $(1 / N) X^{*} T X$ corresponding to limiting ratio d and limiting $F^{T_{n}} G$.

Theorem [Bai and S. (1998)]. Assume:
a) $X_{i j}, i, j=1,2, \ldots$ are i.i.d. random variables in \mathbb{C} with $\mathrm{E} X_{11}=0$, $\mathrm{E}\left|X_{11}\right|^{2}=1$, and $\mathrm{E}\left|X_{11}\right|^{4}<\infty$.
b) $N=N(n)$ with $c_{n}=n / N \rightarrow c>0$ as $n \rightarrow \infty$.
c) For each $n T_{n}$ is an $n \times n$ Hermitian nonnegative definite satisfying $H_{n} \equiv F^{T_{n}} \xrightarrow{D} H$, a p.d.f.
d) $\left\|T_{n}\right\|$, the spectral norm of T_{n} is bounded in n.
e) $B_{n}=(1 / N) T_{n}^{1 / 2} X_{n} X_{n}^{*} T_{n}^{1 / 2}, T_{n}^{1 / 2}$ any Hermitian square root of $T_{n}, \underline{B}_{n}=(1 / N) X_{n}^{*} T_{n} X_{n}$, where $X_{n}=\left(X_{i j}\right), i=1,2, \ldots, n$, $j=1,2, \ldots, N$.
f) The interval $[a, b]$ with $a>0$ lies in an open interval outside the support of $F^{c_{n}, H_{n}}$ for all large n.

Then
$\mathrm{P}\left(\right.$ no eigenvalue of B_{n} appears in $[a, b]$ for all large $\left.n\right)=1$.

Theorem [Bai and S. (1999)]. Assume (a)-(f) of the previous theorem.

1) If $c[1-H(0)]>1$, then x_{0}, the smallest value in the support of $F^{c, H}$, is positive, and with probability one $\lambda_{N}^{B_{n}} \rightarrow x_{0}$ as $n \rightarrow \infty$.
The number x_{0} is the maximum value of the function

$$
z(m)=-\frac{1}{m}+c \int \frac{t}{1+t m} d H(t)
$$

for $m \in \mathbb{R}^{+}$.
2) If $c[1-H(0)] \leq 1$, or $c[1-H(0)]>1$ but $[a, b]$ is not contained in $\left[0, x_{0}\right]$ then $m_{F^{c, H}}(b)<0$. Let for large n integer $i_{n} \geq 0$ be such that

$$
\lambda_{i_{n}}^{T_{n}}>-1 / m_{F^{c, H}}(b) \quad \text { and } \quad \lambda_{i_{n}+1}^{T_{n}}<-1 / m_{F^{c, H}}(a)
$$

(eigenvalues arranged in non-increasing order). Then

$$
\mathrm{P}\left(\lambda_{i_{n}}^{B_{n}}>b \quad \text { and } \quad \lambda_{i_{n}+1}^{B_{n}}<a \quad \text { for all large } n\right)=1 .
$$

From the work of X. Mestre (2008):
For fixed n, N, and $H_{n}=F^{T_{n}}$, let $\underline{m}=\underline{m}(z)=m_{F^{c_{n}, H_{n}}}(z)$. Then

$$
\begin{aligned}
z=z(\underline{m}) & =-\frac{1}{\underline{m}}+c_{n} \int \frac{t}{1+t \underline{m}} d H_{n}(t) \\
& =\frac{1}{\underline{m}}\left(c_{n}-1\right)-\frac{c_{n}}{\underline{m}^{2}} \int \frac{1}{t+\frac{1}{\underline{m}}} d H_{n}(t) \\
& =\frac{1}{\underline{m}}\left(c_{n}-1\right)-\frac{c_{n}}{\underline{m}^{2}} m_{H_{n}}\left(-\frac{1}{\underline{m}}\right) .
\end{aligned}
$$

Suppose T_{n} has positive eigenvalue t_{1} with multiplicity n_{1}. Then on any contour in \mathbb{C} positively oriented, encircling only eigenvalue t_{1} of T_{n} we have

$$
\begin{aligned}
& -\frac{n}{n_{1}} \frac{1}{2 \pi i} \oint y m_{H_{n}}(y) d y=-\frac{n}{n_{1}} \frac{1}{2 \pi i} \oint y \int \frac{1}{\lambda-y} d H_{n}(\lambda) d y \\
& =\frac{n}{n_{1}} \frac{1}{2 \pi i} \int \oint \frac{y}{y-\lambda} d y d H_{n}(\lambda)=\frac{n}{n_{1}} \int_{\left\{t_{1}\right\}} \lambda d H_{n}(\lambda)=t_{1} .
\end{aligned}
$$

Substitute $\underline{m}=-\frac{1}{y}$. Then

$$
\begin{aligned}
t_{1} & =\frac{n}{n_{1}} \frac{1}{2 \pi i} \oint \frac{1}{\underline{m}} m_{H_{n}}\left(-\frac{1}{\underline{m}}\right) \frac{1}{\underline{m}^{2}} d \underline{m} \\
& =\frac{n}{n_{1}} \frac{1}{c_{n}} \frac{1}{2 \pi i} \oint \frac{1}{m}\left(\frac{1}{\underline{m}}\left(c_{n}-1\right)-z(\underline{m})\right) d \underline{m} \\
& =-\frac{N}{n_{1}} \frac{1}{2 \pi i} \oint \frac{z(\underline{m})}{\underline{m}} d \underline{m},
\end{aligned}
$$

the contour contained in the negative real portion of \mathbb{C}, encircling $-\frac{1}{t_{1}}$ and no other $-\frac{1}{t_{j}}, t_{j}$ an eigenvalue of T_{n}.
Suppose exact separation occurs for the eigenvalues of B_{n} for all n large, associated with t_{1}. Then the contour can be chosen so that it intersects the real line at two places $\underline{m}_{a}<\underline{m}_{b}$ for which $x_{a}=z\left(\underline{m}_{a}\right)$ and $x_{b}=z\left(\underline{m}_{b}\right)$ are outside the support of $F^{c_{n}, H_{n}}$, and $\left[x_{a}, x_{b}\right]$ contains only the support of $F^{c_{n}, H_{n}}$ associated with t_{1}. Then, with substitution $\underline{m}=\underline{m}(z)$ we have

$$
t_{1}=-\frac{N}{n_{1}} \frac{1}{2 \pi i} \oint \frac{z \underline{m}^{\prime}(z)}{\underline{m}(z)} d z
$$

the contour, \mathcal{C}, only containing the support of $F^{c_{n}, H_{n}}$ associated with t_{1}.

Let $\underline{m}_{n}=m_{F^{(1 / N) x_{n}^{*} T_{n} x_{n}}}$. We have, with probability 1 ,

$$
\sup _{z \in \mathcal{C}} \max \left|\underline{m}(z)-\underline{m}_{n}(z)\right|,\left|\underline{m}^{\prime}(z)-\underline{m}_{n}^{\prime}(z)\right| \rightarrow 0
$$

as $n \rightarrow \infty$. Thus

$$
-\frac{N}{n_{1}} \frac{1}{2 \pi i} \oint \frac{z \underline{m}_{n}^{\prime}(z)}{\underline{m}_{n}(z)} d z
$$

can be taken as an estimate of t_{1}. This quantity equals

$$
\frac{N}{n_{1}}\left(\sum_{\lambda_{j} \in\left[x_{a}, x_{b}\right]} \lambda_{j}-\sum_{\mu_{j} \in\left[x_{a}, x_{b}\right]} \mu_{j}\right)
$$

where λ_{j} 's are the eigenvalues of B_{n}, μ_{j} 's are the zeros of $\underline{m}_{n}(z)$. We have

$$
\begin{aligned}
\underline{m}_{n}(z)= & \frac{1}{N} \sum_{j=1}^{n} \frac{1}{\lambda_{j}-z}+\frac{N-n}{N} \frac{1}{-z}=0 \\
& \Longleftrightarrow \frac{1}{N} \sum_{j=1}^{n} \frac{\lambda_{j}}{\lambda_{j}-z}=1
\end{aligned}
$$

The solutions are the eigenvalues of the matrix

$$
\operatorname{Diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)-N^{-1} s s^{*},
$$

where $s=\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{n}}\right)^{*}$.

$$
\begin{array}{cccc}
\text { Population eigenvalues } & 1 & 3 & 10 \\
\text { Estimates } & .9946 & 2.9877 & 10.0365
\end{array}
$$

Theorem [Bai, S. (2009)]. Replace assumption a) in S. (1995) with:
For $n=1,2, \ldots X_{n}=\left(X_{i j}^{n}\right), n \times N, X_{i j}^{n} \in \mathbb{C}$ are independent with common mean, unit variance, such that for any $\eta>0$

$$
\frac{1}{\eta^{2} n N} \sum_{i j} \mathrm{E}\left(\left|X_{i j}^{n}\right|^{2} I\left(\left|X_{i j}^{n}\right| \geq \eta \sqrt{n}\right)\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Then the conclusion of S. (1995) remains true.

Theorem [Couillet, S., Bai, Debbah (to appear in IEEE Transactions on Information Theory)]. Replace assumption a) in Bai and S. (1998) with:

1) $X_{i j}, i, j=1,2, \ldots$ are independent random variables in \mathbb{C} with $\mathrm{E} X_{11}=0$ and $\mathrm{E}\left|E_{11}\right|^{2}=1$.
2) There exists a $K>0$ and a random variable X with finite fourth moment such that, for any $x>0$

$$
\frac{1}{n_{1} n_{2}} \sum_{i \leq n_{1}, j \leq n_{2}} \mathrm{P}\left(\left|X_{i j}\right|>x\right) \leq K \mathrm{P}(|X|>x)
$$

for any positive integers n_{1}, n_{2}.
3) There is a positive function $\psi(x) \uparrow \infty$ as $x \rightarrow \infty$, and $M>0$, such that

$$
\max _{i j} \mathrm{E}\left[\left|X_{i j}\right|^{2} \psi\left(\left|X_{i j}\right|\right)\right] \leq M
$$

Then the conclusions of Bai and S. $(1998,1999)$ remain true.

Extension to power estimation of multiple signal sources in multiantenna fading channels (Couillet, S., Bai, Debbah):

Consider K entities transmitting data. Transmitter $k \in\{1, \ldots, K\}$ has (unknown) transmission power P_{k} with n_{k} antennas. They transmit data to N sensing devices (receiver). The multiple antenna channel matrix between transmitter k and the receiver is denoted by $H_{k} \in \mathbb{C}^{N \times n_{k}}$, where the entries of $\sqrt{N} H_{k}$ are i.i.d. standardized.
At time instant $m \in\{1, \ldots, M\}$, transmitter k emits signal $x_{k}^{(m)} \in$ $\mathbb{C}^{n_{k}}$, entries independent and standardized, independent for different m 's. At the same time the receive signal is impaired by additive noise $\sigma w^{(m)} \in \mathbb{C}^{N}(\sigma>0)$, the entries of $w^{(m)}$ are i.i.d. standardized (independent across m). Therefore at time m the receiver senses the signal

$$
y^{(m)}=\sum_{k=1}^{K} \sqrt{P_{k}} H_{k} x_{k}^{(m)}+\sigma w^{(m)} .
$$

Therefore, with $Y=\left[y^{(1)}, \ldots, y^{(M)}\right] \in \mathbb{C}^{N \times M}, X_{k}=\left[x_{k}^{(1)}, \ldots, x_{k}^{(M)}\right]$ $\in \mathbb{C}^{n_{k} \times M}$, and $W=\left[w^{(1)}, \ldots, w^{(M)}\right] \in \mathbb{C}^{N \times M}$ we have

$$
Y=\sum_{k=1}^{K} \sqrt{P_{k}} H_{k} X_{k}+\sigma W=H P^{1 / 2} X+\sigma W
$$

where, with $n=n_{1}+\cdots+n_{K}, H=\left[H_{1}, \ldots, H_{K}\right]$,

$$
X=\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{K}
\end{array}\right] \in \mathbb{C}^{n \times M}
$$

and $P^{1 / 2}$ is the positive square root of the $n \times n$ diagonal matrix P having first n_{1} diagonal entries equal to P_{1}, next n_{2} diagonal matrices equal to P_{2}, etc.

Goal is to estimate the P_{k} 's. Notice Y is the first N rows of

$$
\left(\begin{array}{cc}
H P^{1 / 2} & I_{N} \\
0_{1} & 0_{2}
\end{array}\right)\binom{X}{W},
$$

($I_{N} N \times N$ identity matrix, $0_{1}, n \times n, 0_{2} n \times N$ zero matrices) so previous results apply.

Theorem. Assume σ and K are fixed, $M / N \rightarrow c>0$, and each $N / n_{k} \rightarrow c_{k}>0$, as $N \rightarrow \infty$. Let $B_{N}=(1 / M) Y Y^{*}$. Then, almost surely, $F^{B_{N}}$ converges in distribution, as $N \rightarrow \infty$, to a (nonrandom) p.d.f., whose Stieltjes transform, $m_{F}(z)\left(z \in \mathbb{C}^{+}\right)$ satisfies

$$
m_{F}(z)=c m_{\underline{F}}(z)+(c-1) \frac{1}{z},
$$

where $m_{\underline{F}}$ is the unique solution with positive imaginary part to the equation

$$
\frac{1}{m_{\underline{F}}}=-\sigma^{2}+\frac{1}{f}-\sum_{k=1}^{K} \frac{1}{c_{k}} \frac{P_{k}}{1+P_{k} f}
$$

with

$$
f=(1-c) m_{\underline{F}}-c z m_{\underline{F}}^{2} .
$$

Theorem. Assuming $M>N, n<N, P_{1}<P_{2}<\cdots<P_{K}$, and certain assumptions on the size of c, and the c_{k} 's, exact separation occurs. Let λ_{i} denote the i-th smallest eigenvalue of B_{N} and $s=$ $\left(\sqrt{\lambda_{1}}, \ldots, \sqrt{\lambda_{N}}\right)^{T}$. Then with probability $1 \hat{P}_{k} \rightarrow P_{k}$ as $N \rightarrow \infty$ where

$$
\hat{P}_{k}=\frac{N M}{n_{k}(M-N)} \sum_{i \in \mathcal{N}_{k}}\left(\eta_{i}-\mu_{i}\right),
$$

where $\mathcal{N}_{k}=\left\{N-\sum_{i=k}^{K} n_{i}+1, \ldots, N-\sum_{i=k+1}^{K} n_{i}\right\}$, the η_{i} 's are the ordered eigenvalues of $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)-(1 / N) s s^{*}$, and the μ_{i} 's are the ordered eigenvalues of $\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)-(1 / M) s s^{*}$.

