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Introduction

While dynamic network models have been accepted and applied
in recent research (e.g. epidemic spread on dynamic small-worlds
[1]), it seems that we lack comparative study on how the

dynamics of the network influences the process taking

place on it. Hence, our aim is to compare epidemic spread for
static and dynamic small-world networks numerically and check it
against analytical studies.

Network

We adopt Watts-Strogatz model of a small-world net-

work [2]: first we take a 2-dimensional square lattice with L2 = N
nodes and 2N undirected edges. To avoid some finite-size effects we
impose periodic boundary conditions for the lattice. Then, we add
a number of undirected edges between random nodes. The number
of additional edges (‘shortcuts’) is set as 2φN , hence φ is short-
cut probability per underlying bond. Network with φ = 0 is just
a regular lattice. For nonzero φ we call the network a static

small-world.

In the dynamic small-world network we choose 2φN nodes ran-
domly, and keep them fixed for the whole run of epidemics. In every
time step we randomly launch shortcuts anchored in these nodes, so
the dynamics consists in rewiring the shortcuts. This construction of
the source nodes launching shortcuts allows for an easier interpreta-
tion of the network: the fixed nodes could correspond to centers of
activity that can be identified as in the real world networks.

Epidemics

The SIR (Susceptible-Infectious-Removed) model is adopted,
where p is the probability of infecting a susceptible node by an
infectious neighbour during one time step. The latency time l of
the disease is measured in discrete time units (we take l = 3− 4), i.e.
the infectious node can infect others with probability p for l turns,
and after that time it is removed.

Grassberger [3] related the probability of infection to the probabilityT

in bond percolation through T =
∑l

t=1 p(1−p)t−1 = 1−(1−p)l,
where T is the so called ”transmissibility” (it is the total probability
of a node infecting one of its neighbours during the whole latency
time). In the case of 2-dimensional square lattice the bond percolation
threshold is Tc = 0.5.

Figure 1: Snapshots of epidemic spread slightly above percolation
threshold. L = 512, the number of shortcuts is 10 (which gives
φ = 2 · 10−5). T gives epidemics’ time steps. The snapshots in
the lower row show a dynamic infection (the two joined blue lines
appear).

Theoretical corrections

We can account for the change between static and dynamic networks
analytically using the model known for static small-world network [4].
One can estimate the number of nodes infected through shortcuts by

Nstat = φstatN · T = φstatN ·
l∑

t=1

p(1− p)t−1 , (1)

i.e. the number of shortcuts in the static network multiplied by the
total probability of infecting a neighbouring node. The analogous
expression for the dynamic network is found easily (the first term
corresponds to Fig.3b, the second to Fig.3c)

Ndyn = φdynN/2 · lp + φdynN/2 · (l + 1) p . (2)

We assume that Ndyn = Nstat if epidemics on both networks should
have the same percolation threshold. Thus, we can obtain the ratio
of the two shortcuts’ densities

r(p, l) = φstat/φdyn =
p (l + 1/2)

T
=

p (l + 1/2)

1− (1− p)l
, (3)

which tells us, how many more static shortcuts are needed

to have the same effect as the fewer dynamic ones. Now,
we can calculate Tc(rφ) numerically (the lower solid line in Fig.2),
just as the fitted Tc((1 + x)φ) in the Fig.2.

0.0 0.1 0.2 0.3 0.4 0.5
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

density of shortcuts Φ

p
er

co
la

ti
o

n
th

re
sh

o
ld

T
c

Dynamic, theory

Dynamic, fit

Static, theory

Dynamic, simulations

Static, simulations

Figure 2: Blue (upper) dataset - static small-world. Purple (lower)
dataset - dynamic network. The solid blue line (upper) is the analytic
approximation [4] for Tc(φ) and the dashed line gives Tc((1 + x)φ)),
with the fit parameter x = 0.200± 0.013. The solid purple line (lower)
represents theoretical approximation from Eq.3.

Calculating percolation threshold

In the study of epidemic spread on networks, we stick to the

percolation theory as a reference point. Here, we cal-
culate thresholds from average epidemics’ size (average over a
number of reruns for different shortcut drawings). We define per-
colation thresholdTc as the point at which the average epidemics’
size divided by N rises above a certain value (here, set to 0.15).
As we can perform simulations only for finite sizes, we take the
results for a relatively large network of

√
N = 500.

Numerical results

In Fig.2 the resulting data points for static small-world network
agree with the analytical approximation [4]. The lower dataset
marks the effect of network dynamics. The difference between
the two is systematic and significant. The dashed line is a fit
of the analytical model for the static network. It follows from
the fit that percolation thresholds for dynamic network

are lower as if the shortcut density were greater by

x = 20.0± 1.3%. However, qualitatively the epidemics

behaves in the same way on dynamic small world as on the
static network for the given range of parameters (φ = 0.5 means
that on average every node in the network has two additional
links).

(a) (b) (c)

Figure 3: (a) Infections through static shortcuts are symmetric. (b)
Infection of the dynamic links’ source through regular lattice. (c) Infec-
tion of the dynamic links’ source through a shortcut.
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Figure 4: Dependence on dynamics for φ = 0.25, latency l = 4.

Dependence on the rate of dynamics

The analysis can be generalised for various rates of dynamics. Let
us notice that there are two time scales in the model:
the latency time l of the infection and the duration 1/d between
consecutive rewirings of dynamic links. As the choice of latency l only
rescales the total probability T (p, l) of infection, we can dispose of it,
and the crucial parameter ld that accounts for the shift of percolation
thresholds is defined as the number of shortcut movements during
latency time. Obviously, for a static network we get d = 0, while for
all the above analysis of dynamic network we have ld = 3 (l = 3 and
the rewiring was performed every turn, so d = 1).

Now, one can easily obtain expressions for Ndyn for any d = 1/i, i ∈
Z. Below we give only the general expression for 1/d ≥ l where l = 4:

Ndyn =
φdynN

2
d·

·((2A1(l) + A2(l) + (1/d + 1− l)A0(l))+

+(2A1(l + 1) + 2A2(l + 1) + (1/d− l)A0(l)))

(4)

where

A0(p, l) =T (p, l) = 1− (1− p)l, l ≥ 1

A1(p, l) =T (p, 1) (1− T (p, l − 1)) +

+ (1− T (p, 1))T (p, l − 1) + 2T (p, 1)T (p, l − 1)

A2(p, l) =T (p, 2) (1− T (p, l − 2)) +

+ (1− T (p, 2))T (p, l − 2) + 2T (p, 2)T (p, l − 2)

(5)

The first term in the brackets in Eq.4 corresponds to Fig.3b and the
second to Fig.3c. The result is plotted against simulated data in Fig.4.

Conclusions

The results prove that network dynamics lowers percolation
thresholds for epidemics, however the overall dependence on
number of shortcuts stays the same. The result should be
taken into account in any calculations of epidemic risk or
cost analysis for the given network structure.
It should be noted that the shift of percolation thresholds
depends on the relative measure of dynamics of the network
with respect to the process on the network (rewiring rate
and latency time, respectively). Any analytical calculation
or simulation must include this quantity as an important pa-
rameter, to be estimated for a particular disease and social
(or other) network.
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