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Outline

e Diffusion of large (huge) matrices (physics,
telecommunication, life sciences..)

@ Non-linear Smoluchowski-Fokker-Planck equations and shock
waves

@ Finite N as viscosity in the spectral flow — Burgers equations

@ Order-disorder phase transition in large N YM theory, colored
catastrophes and universality

@ Summary
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Motivation

Simplest diffusion — additive Brownian walk of huge matrices

Motivation

Justification for novel approach

@ Contemporary physical and other complex systems are
characterized by huge matrices (Large N, MIMO systems,
DNA data, dEEG data...)

@ Systems evolve due to dynamic evolution as a function of
exterior parameters (time, length of the wire, area of the
surface, temperature ...)

@ Can we achieve mathematical formulation for this setup?

@ Can noise improve our understanding?
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Motivation

Two probability calculi

Simplest diffusion — additive Brownian walk of huge matrices

CLASSICAL
o pdf < ...>= [..p(x)dx

e Fourier transform F(k) of
pdf generates moments

@ In F(k) of Fourier generates
additive cumulants

@ Gaussian — Non-vanishing
second cumulant only

statistics...

MATRICIAL (FRV for N = o0)

@ spectral measure
<..>= [..P(H)dH

@ Resolvent G(z) = <T1“Z,1H>

@ R-transform generates
additive cumulants
G[R(z)+1/z] =2z

@ Wigner semicircle —
Non-vanishing second
cumulant only

Exact analogies for CLT, Lévy processes, Extreme values J

Maciej A. Nowak Random Crowds



Motivation

Simplest diffusion — additive Brownian walk of huge matrices

Inviscid Burgers equation

] H,'j-) Hij+5H,'j with < (SH,'J':O > and
< (5H,'J')2 >=(1+ (5,'J')(5t

@ For eigenvalues x;, random walk undergoes in the "electric
field” (Dyson) < dx; >= >, (%) and < (6x;)? >= ot

p——

@ Resulting SFP equation for the resolvent in the limit N = oo
and 7 = Nt reads 0,G(z,7) + G(z,7)0,G(z,7) =0

@ Non-linear, inviscid complex Burgers equation, very different
comparing to Fick equation for the "classical” diffusion
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Motivation

Simplest diffusion — additive Brownian walk of huge matrices

Inviscid Burgers equation - details

o SFP eq:
P({x}.t) = 3 22 03P({x}, t) = 2; Oi(E(x) P({x}, 1))
@ Integrating, normalizing densities to 1 and rescaling the time
7 = Nt we get
D:p(x) + Dup(x)P.V. [ dy )
S02.p(x) + P.V. jdyf’c”)
°or h s. tends to zero in the large N limit
xi:e =pP.Vv.i = Fimo(x)
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Shock waves Complex viscid Burgers Equation
Tsunami

Complex Burgers Equation and viscosity

e Burgers equation for G(z, )
0:G+ GI,6G=0

@ Complex characteristics
6(z,7) = Gol¢lz.7))  Golz) = G(r=0,2) =1
E=2z—Go(&)T (£ = x — vt), so solution reads
G(z,7) = Go(z — 7G(z,7))

@ Shock wave when = = o0

@ Universal preshock - expansion at the singularity for finite N
We define f(z,7) = 9, In < det(z — H(7)) >
Orf + 0, f = —v0,,f v= ﬁ

e Exact ( for any N) viscid Burgers equation with negative
viscosity, similar equation for
g(z,7)=0,In <1/det(z — H(1)) >

@ Universal oscillations anticipating the shock, contrary to

smoothening of the shock in hydrodynamics — Airy universalit
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Shock waves Complex viscid Burgers Equation
Tsunami

"Behind the Great Wave at Kanagawa” (by Hokusai) Color woodcut,
Metropolitan Museum of Art, New York.
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Unitary matrices
Tsunami

Multiplicative matricial random walk - not so obvious... Physical manifestation
Caustics

Diffusion of unitary matrices:

e Similar Burgers equation for G(z, 1)

@ Collision of two shock waves, since they propagate on the
circle

@ Universal preshock - expansion at the singularity for finite N

e Similar, exact ( for any finite V) viscid Burgers equation with
negative viscosity (for < det > and < 1/det >)

@ Universal, wild oscillations anticipating the shock, contrary to
smoothening of the shock in standard hydrodynamics — here
Pearcey universality
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Unitary matrices
Tsunami
Multiplicative matricial random walk - not so obvious...

Physical manifestation
Caustics

o e

k73

Colliding Great Waves at # = 7 (by Hocus Pocusai, Microsoft Paint based on
Hokusai woodcut)
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Unitary matrices
Tsunami
Multiplicative matricial random walk - not so obvious... Physical manifestation

Caustics

Wilson loops in large N Yang-Mills theories (time = area)
Numerical studies on the lattice (Narayanan and Neuberger, 2006-2007)

W(c) = <Pexp(ifAudx“)>YM
Qn(z, A) = (det(z — W(A)))

Double scaling limit...

® 6 o6 o

z=—e"Y

y = gyt
-1 _ g*—1 o 1
A+t =A T AN
° Qn(z,A) —

. 1/4

limnsee (4 Zy(0, A) = _ _

_ f+oo duye—ut—au?+Eu Closing of the gap is
- universal in d = 2,3,4
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itary matrices

Multiplicative matricial random walk - not so obvious... Physical manifestation
Caustics

Universal scaling visualization - " classical” analogy

Caustics, illustration from Henrik Wann Jensen

Fold and cusp fringes, illustrations by Sir Michael Berry
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Critical exponents
Summary
Catastrophes

Morphology of singularity (Thom, Berry, Howls)

GEOMETRIC OPTICS
(wavelength A = 0) (v=5y=0)

@ trajectories: rays of light

N — oo Yang-Mills

@ trajectories: characteristics

@ intensity surface: caustic @ singularities of spectral flow

WAVE OPTICS (A — 0) FINITE N YM (viscosity v — 0)

)

Universal Scaling, Arnold (1) and Berry (o) indices

"Wave packet” scaling Yang-Lee zeroes scaling with N
(interference regime) (for N — o0)

@ YL zeroes of Wilson loop

o N?2/3 scaling at the edge

= o N'/2 and N3/% scaling at
the closure of the gap

[y

ofold,u—gcr:%A
ocusp,u:ZUX:%
Pearcey
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Critical exponents
Summary
Catastrophes

Conclusions

@ Powerful "spectral” formalism for matrix-valued diffusions
(also for Ginibre-Girko matrices)

@ Turbulence (in Kraichnan sense) as a mechanism for Haar
measure in CUE

@ Nonlinear effects, shock waves, universality

o New insight for several order-disorder transitions (e.g.
Durhuus-Olesen transition)

@ Multiple realizations of the universality, presumably also in
several real complex systems

@ New paradigm: for large matrices, noise is more helpful then
distractive, improving predictability (" classical” limit)

@ Hint for new mathematical structures?

More details:
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