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Introduction

* 4G Wireless Communications: High rates, very mobile, network-centric

e Multi-antenna arrays are standard on both terminals and base-stations

— How much information can you send?

— Depends on many things...
« Randomness
» Mobility
* Coding
— Many regimes have analyzed analytically, numerically
 Tails of distribution?

» Important for real applications and intuition

* Use of Coulomb gas method to analyze tails

— (Majumdar et al)
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Wireless Setting
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« Noise n: uncorrelated ~CN(0,1)

» Scattering creates spatiotemporal fluctuations
* G: random N x M channel matrix: i.i.d. ~ CN(0,1/N)
* Assume =M/N>=1

Aris Moustakas, University of Athens




Mutual Information

|, =logdet|l+ pGG* |

N
= log(l+p4)
k=1

. |N Mutual Information also random

« Strategy for fast fading channel G (e.g. racing car):
— Transmit message with ergodic rate

R,., = E[logdet(+ pGG" )

“heroic coding” (message lasts long enough to ride over all G-waves)

» Strategy for slowly fading channel G :
— Transmit with rate R and hope for the best (sometimes you loose)
— Define outage criterion for given rate R

o (R)=Pr(l, <R) = [ dXE[s(x~1, )],

 Calculate Statistics:

— What is mean, variance etc?
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Asymptotic Approaches

Two parameters involved

« Large N:

— Make large antenna arrays

« LargeS:

— Increase p
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Asymptotics in N

* Calculate Mean (Ergodic) Mutual Information
— All you need for fast fading.

— For large N capacity per antenna | N / N becomes a deterministic quantity
« Randomness subleading in N

— Underlying Idea:

* Empirical distribution of eigenvalues hardens to deterministic function

pMP(X):\/(b_X)(X_a) a,b=(\/Ei1)2

27X
» Ergodic capacity = average over MP distribution

b
Rerg = E[I N ]: NJ.a dxPye (X) log(1+ pX)

 Shannon Transform

r({X}) = EHTr(log{I + px})}

— For given “channel” distribution produces the (normalized) mutual information
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Asymptotics in N

* However...
e y does not harden

— Fluctuations of O(1) important, especially for finite N
e “Central Limit Theorem”

— For N large (but finite) and R “close” to the ergodic MI
» Actually for [R-Rerg| fixed and large N
. ( R- Rerg )2
e 2000

V2o (p)

— Many ways to skin this cat (all essentially moment based)

P(R) =

— Calculation of 6(p) has to do with fluctuations of eigenvalues “close” to the mean
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— Higher moments vanish O(1/N)




Asymptotics in p

e But...

* In practice need tails of mutual information distribution
— Low outage probabilities for better fidelity
— Need to address tail distribution
— One way: Large SNR
« Large p focuses on the tails of the eigenvalue distribution (low outage)
— Scale quantities properly: R = (] ]()g o with (< N
— Surprising result: As P —> 0
« Outage Probability be comes

lim =—
777 logp

— where d(q) piecewise linear function of rate variable q with endpoints
d, =(M-k)(N -k)
k=0,...,N

log POut (q lOg /0) _ d (q)
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Asymptotics in p

Plot of diversity exponent d(g) vs q
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d, =(M —K)(N —K)

k=0,...,N

« Example 5x4, 4x4, 4x3

Piecewise linear behavior of the diversity
exponent

e Pros:

Very intuitive result
Diversity — Multiplexing Tradeoff

Prompted design of codes that have this
exact structure (for large p)

Applicable to a huge number of
applications

e Cons:

Scale of y-axis (exp(20) = 100dB !!)
Extremely small outages
Not clear how large SNR necessary

* Original Zheng-Tse paper never
mentioned any scales

No prediction for  O((log p)°) term
Caseof R > Rerg ? CCDF(R)?
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Comparison

* How do Gaussian and large p approaches compare?
— Look in regions where both are valid (large p and large N)

 Case M=N (B=1)

— Gaussian approximation:

E[IN ]: Rerg ~ N lng
Var|l,, |~ log\/;

* Thus

(Nlog p—R)’
log p

log P R —

out,Gaussian

— DMT (large p) approximation:

R ) _ (Nlogp-R)
log p logp
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log B, = —log p( N —

— So far so good...




Comparison

* How do Gaussian and large p approaches compare?
— Look in regions where both are valid (large p and large N)

 Case M>N (B>1)

— Gaussian approximation:

E[IN]: Rerg ~ N logp

Var|l, |~ log(ilj

* Thus

2
P N_(Nlogp—R)

out,Gaussian ~
2log wa
p—1

— DMT (large p) approximation:

5 ._(Nlogp-RfMIlogp-R)

out ~ 1
og o
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Comparison

« lmy  lim #lim _ limg

Yo,

* For large SNR Gaussian approximation VERY wrong
e Why?
— Gaussian approximation assumes freezing of eigenvalues of GG’

— For large SNR the outage probability focuses on probability of
eigenvalues close to zero (1/p)

e (Can we get a unified behavior (working well for small and large SNR)?

* Good news:
— Both asymptotics have identical scaling with N

R R
logP,, z—Nzlogp[ﬂ— v logpj(l_ Y logpj

_(Nlogp—R)2 _ 5
2‘10g(1—,8‘1} O(N )

log P

out,Gaussian "~

» Extend large N method to capture rare events
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Coulomb — Gas Analogy

Joint probability distribution of eigenvalues of GG’

P(A,, Ay, Ay ) oC exp{— N A +(M=N)>log A +2> logl4, —zmq

k>m

« Exponent is energy of point charges repelling logarithmically in the presence of
external field

— Most probable configuration of A’s corresponds to minimum energy
P oc g N'SIPI

« Extend argument to large number of charges (Use of Dyson conjecture)
— N plays role of temperature

S =J' dX p(XV (x)+j I dxdy p(y)p(x)logx—Yy|
Vi (X) = X+ (B—-1)log X

— (Existence of another term to set normalization contraint)

* Minimizing S w.r.t p(x) gives the Marcenko Pastur distribution

J(x—a)(b-x)

Puve (X) =
27X <,
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Coulomb — Gas Analogy

» To calculate P(r) need to impose constraint

P(r) = E{&(Nr —Zk:log(l+ oy )ﬂ

— Fourier transform (or use large deviations arguments — Lagrange multiplier)
S—>S—k j dx p(x)(log(1+ px)—r)
Vygr (X) = Vo (X) —k log(1 + px)

« k plays role of strength of logarithmic attraction/repulsion at x, =—p™'

— k>0 shifts charge density to larger values (R>Rerg), k<0 to smaller ones (R<Rerg)

* Minimizing S w.r.t p(x) gives the generalized Marcenko Pastur distribution
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Coulomb — Gas Analogy

Qualitative features of solution >1 from V(x)

Minimum always at x>0, irrespective of sign of k

p )

X-(B-1)log(x)-k log(|

effective potential >1; V(x)

15

vy
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Coulomb — Gas Analogy

1

Qualitative features of solution =

0 to x>0

For k>kc>0 minimum shifts from x

:x—k*log(p'l+x)

1: V(x)

effective potential for

A

O
—
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Generalized MP equation

» Use of Tricomi theorem to calculate p(x) and closed form expr. for energy S[p]
« Case p>1

J(b—x)(x—a)( @J
272X(1+ pX) 'OXJF\/%

p(X) =

— a, b, k calculated from
p(b)=p(a)=0
b
r= J.a dxp(X) log(l + px)
1= j: dxp(x)

° Case[3=1 (X)_\/(b—X)(X—a)

N r>rc(p)>rerg(10) P - 272'(,0_1+X)

r<r.(p) _ Wb=x ke
p(X)_27z(1+pX)(l+pX 1/1+pr

— 3 order phase transition (Vivo, Majumdar et al)
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Generalized MP equation

Examples
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Generalized Marcenko Pastur distribution for p
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Generalized MP equation

Examples

=4

Generalized Marcenko-Pastur distributions for r=5.86;

——————— p:50
p=100
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N
—
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Special Cases

Limit k=0 gives Gaussian approximation

— Not surprising: finite k gives the MGF of mutual information

As usual CLT can be derived from small k-behavior of MGF

— kIS the replica number

vative of El(r, p) at r:rerg) Vs p

Plot of serg(p) (third r-der

Skewness??

0]y

2

1 — large p: “Gaussian”

B=

B> 1 —large p: NOT Gaussian

Small p: NOT Gaussian

p (dB)
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Special Cases

Small p

— Ty, small so Gaussian approx cannot be true

107

outage N=3; M=3; p= -20dB; Nruns

P

===== Gaussian ||
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Special Cases

Large p 3x6

Gaussian

DMT,

9

Compare LD

1
1
1
1
1
L
1
1
1

—@— Monte Carlo
===== Gaussian

6; 16bpcu

Pout N=3 M=
SNRdb
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Special Cases

Large p 3x3

DMT, Gaussian

DMT linear behavior visible

9

Compare LD

© N=2 M= _108
out ’ N=3 M=3 runs=10

P

O(1) term in DMT significant

LD robust
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Special Cases

Large p 6x6

Compare LD, DMT, Gaussian

=10°%

6; runs

: M=N=

DMT linear behavior less visible
O(1) term in DMT significant

LD robust

vy

SNR (dB)
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Special Cases

1 case

B:

Look at CCDF

=107

3; M=3; p= 20dB; Nruns

Complementary CDF for N

__ Yy

Monte Carl
===== Gaussian
LD

Relevant for scheduled transmission

Transmit to user with higher inst. rate

CCDF shows gains in trans rate

Phase transition visible between

a_v
o o
- —

~

“Gaussian”
— Newphase I'>Tr.(p)> Ferg (o
31 order discontinuity
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Special Cases

« Largerandp
— By expanding S[p] for large p, fixed

_ I
log p

logP,, ~—N?log p(5-q)1-q)

— Correctly recover DMT outage behavior

4

« r=R/N<<lgives S =-/log (ij

Mp
—MN
Mp

— Intuition: all elements of GG* have to be less than R/p, 1.e. all MN elements of G

small
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Large N Validation

10 LoglOP(r) (dB)

-100
4

B=2,N=5,SNR =100, 10" runs

Coulomb Gas Method
Gaussian Approximation
Large SNR Approximation
Numerical Simulation

4.2

4.4 4.6

4.8

5

5.2 5.4 5.6 5.8

Throughput r (nats/sec/Hz)
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Summary

* Distribution of MIMO mutual information:
— Large N, arbitrary SNR
— Smooth transition between known approximations
— Understanding of all interesting limiting cases

* Generalized Marcenko — Pastur distributions:
— Provides distributions of eigenvalues at the tails of the MI distribution

— Fully characterized by information-theoretic quantities/parameters of
system (R, N, B)

* Open Questions:
— Correlated Channels?
— Applications to other IT problems
— Waterfilling solution statistics
— MMSE SINR distribution
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