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•
 

4G Wireless Communications: High rates, very mobile, network-centric

•
 

Multi-antenna arrays are standard on both terminals and base-stations
–

 

How much information can you send?
–

 

Depends on many things…
•

 

Randomness 
•

 

Mobility
•

 

Coding
–

 
Many regimes have analyzed analytically, numerically

•

 

Tails of distribution?
•

 

Important for real applications and intuition

•
 

Use of Coulomb gas method to analyze tails 
–

 
(Majumdar et al)

Introduction
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Wireless Setting

• Noise η: uncorrelated ~CN(0,1)

• Scattering creates spatiotemporal fluctuations   

• G: random N x M channel matrix:
 

i.i.d. ~ CN(0,1/N) 

• Assume β=Μ/Ν>=1
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•
 

Mutual Information also random
•

 
Strategy for fast fading channel G

 
(e.g. racing car):

–

 

Transmit message with ergodic rate 

–

 

“heroic coding”

 

(message lasts long enough to ride over all G-waves)
•

 
Strategy for slowly fading channel G

 
:

–

 

Transmit with rate R and hope for the best (sometimes you loose)
–

 

Define outage criterion for given rate R

•
 

Calculate Statistics:
–

 

What is mean, variance etc?

Mutual Information
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Asymptotic Approaches

Two parameters involved

•
 

Large N :
–

 

Make large antenna arrays

•
 

Large S :
–

 

Increase ρ
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•
 

Calculate Mean (Ergodic) Mutual Information
–

 

All you need for fast fading.
–

 

For large N capacity per antenna                becomes a deterministic quantity
•

 

Randomness subleading in N
–

 

Underlying Idea:
•

 

Empirical distribution of eigenvalues hardens to deterministic function

•

 

Ergodic capacity = average over MP distribution

•
 

Shannon Transform

–

 

For given “channel”

 

distribution produces the (normalized) mutual information
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•
 

However…
•

 
does not harden

–

 

Fluctuations of O(1) important, especially for finite N
•

 
“Central Limit Theorem”

–

 

For N large (but finite) and R “close”

 

to the ergodic MI 
•

 

Actually for |R-Rerg| fixed and large N

–

 

Many ways to skin this cat (all essentially moment based)

–

 

Calculation of σ(ρ) has to do with fluctuations of eigenvalues “close”

 

to the mean

–

 

Higher moments vanish O(1/N)

Asymptotics in N
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•
 

But…

•
 

In practice need tails of mutual information distribution 
–

 

Low outage probabilities for better fidelity
–

 

Need to address tail distribution
–

 

One way: Large SNR
•

 

Large ρ

 

focuses on the tails of the eigenvalue distribution (low outage)
–

 

Scale quantities properly:                               with
–

 

Surprising result: As 
•

 

Outage Probability be comes

–

 

where d(q) piecewise linear function of rate variable q with endpoints

Asymptotics in ρ
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•
 

Example 5x4, 4x4, 4x3
–

 

Piecewise linear behavior of the diversity 
exponent

•

 

Pros:
–

 

Very intuitive result
–

 

Diversity –

 

Multiplexing Tradeoff
–

 

Prompted design of codes that have this 
exact structure (for large ρ)

–

 

Applicable to a huge number of 
applications

•

 

Cons:
–

 

Scale of y-axis (exp(20) = 100dB !!)
–

 

Extremely small outages
–

 

Not clear how large SNR necessary
•

 

Original Zheng-Tse paper never 
mentioned any scales

–

 

No prediction for                            term
–

 

Case of                     ?  CCDF(R)?

Asymptotics in ρ
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Comparison

•
 

How do Gaussian and large ρ
 

approaches compare?
–

 

Look in regions where both are valid (large ρ

 

and large N)
•

 
Case M=N (β=1)

–

 

Gaussian approximation: 

•

 

Thus

–

 

DMT (large ρ) approximation:

–

 

So far so good…
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Comparison

•
 

How do Gaussian and large ρ
 

approaches compare?
–

 

Look in regions where both are valid (large ρ

 

and large N)
•

 
Case M>N (β>1)

–

 

Gaussian approximation: 

•

 

Thus

–

 

DMT (large ρ) approximation:
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Comparison

•

•
 

For large SNR Gaussian approximation VERY wrong
•

 
Why? 

–
 

Gaussian approximation assumes freezing of eigenvalues of GG’
–

 
For large SNR

 
the outage probability focuses on probability of 

eigenvalues close to zero (1/ρ)
•

 
Can we get a unified behavior (working well for small and large SNR)?

•
 

Good news:
–

 

Both asymptotics have identical scaling with N

•

 

Extend large N method to capture rare events
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Coulomb –
 

Gas Analogy

•
 

Joint probability distribution of eigenvalues of GG’

•
 

Exponent is energy of point charges repelling logarithmically in
 

the presence of 
external field

–

 

Most probable configuration of λ’s corresponds to minimum energy

•
 

Extend argument to large number of charges (Use of Dyson conjecture)
–

 

N plays role of temperature

–

 

(Existence of another term to set normalization contraint)
•

 
Minimizing S w.r.t p(x) gives the Marcenko Pastur distribution
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Coulomb –
 

Gas Analogy

•
 

To calculate P(r) need to impose constraint

–

 

Fourier transform (or use large deviations arguments –

 

Lagrange multiplier) 

•
 

k plays role of strength of logarithmic attraction/repulsion at

–

 

k>0 shifts charge density to larger values (R>Rerg), k<0 to smaller ones (R<Rerg)

•
 

Minimizing S w.r.t p(x) gives the generalized Marcenko Pastur distribution
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Coulomb –
 

Gas Analogy

•
 

Qualitative features of solution β>1
 

from V(x)
–

 

Minimum always at x>0, irrespective of sign of k
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Coulomb –
 

Gas Analogy

•
 

Qualitative features of solution β=1
–

 

For k>kc>0 minimum shifts from x=0 to x>0
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Generalized MP equation

•
 

Use of Tricomi theorem to calculate p(x) and closed form expr. for energy S[p]
•

 
Case β>1

–

 

a, b, k calculated from 

•
 

Case β
 

= 1
–

–

–

 

3rd

 

order phase transition (Vivo, Majumdar et al)
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Generalized MP equation

•
 

Examples
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Generalized MP equation

•
 

Examples
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Special Cases

•
 

Limit k=0 gives Gaussian approximation
–

 

Not surprising: finite k gives the MGF of mutual information
–

 

As usual CLT can be derived from small k-behavior of MGF
–

 

k IS

 

the replica number  
•

 
Skewness??

–

 

β=1 –

 

large ρ: “Gaussian”

–

 

β

 

> 1 –

 

large

 

ρ: ΝΟΤ

 

Gaussian

–

 

Small ρ: ΝΟΤ

 

Gaussian 
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Special Cases

•
 

Small ρ: 
–

 

rerg small so Gaussian approx cannot be true
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Special Cases

•
 

Large ρ
 

3x6
–

 

Compare LD, DMT, Gaussian
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Special Cases

•
 

Large ρ
 

3x3
–

 

Compare LD, DMT, Gaussian
–

 

DMT linear behavior visible

–

 

O(1) term in DMT significant

–

 

LD robust
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Special Cases

•
 

Large ρ
 

6x6
–

 

Compare LD, DMT, Gaussian
–

 

DMT linear behavior less visible

–

 

O(1) term in DMT significant

–

 

LD robust
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Special Cases

•

 

β

 

= 1 case

•

 

Look at CCDF

•

 

Relevant for scheduled transmission
–

 

Transmit to user with higher inst. rate
–

 

CCDF shows gains in trans rate

•

 

Phase transition visible between
–

 

“Gaussian”

–

 

New phase

–

 

3rd

 

order discontinuity

)()(  ergc rrr 

14 15 16 17 18 19 20 21 22 23 24
10-6

10
-5

10-4

10-3

10-2

10-1

100
Complementary CDF for N=3; M=3; = 20dB; Nruns= 107

Rate (bpcu)

C
C

D
F

 

 

Monte Carlo
Gaussian
LD



Aris Moustakas, University of Athens 26

Special Cases

•
 

Large r and ρ
–

 

By expanding S[p] for large ρ, fixed

–

 

Correctly recover DMT outage behavior

•
 

r=R/N<<1 gives 

–

 

Intuition: all elements of GG* have to be less than R/ρ, i.e. all MN elements of G 
small 
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Summary

•
 

Distribution of  MIMO mutual information:
–

 

Large N, arbitrary SNR
–

 

Smooth transition between known approximations
–

 

Understanding of all interesting limiting cases

•
 

Generalized Marcenko
 

–
 

Pastur
 

distributions:
–

 

Provides distributions of eigenvalues

 

at the tails of the MI distribution
–

 

Fully characterized by information-theoretic quantities/parameters of 
system (R, N, β)

•
 

Open Questions:
–

 

Correlated Channels?
–

 

Applications to other IT problems
–

 

Waterfilling

 

solution statistics
–

 

MMSE SINR distribution
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