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Motivation

What truncations of unitary matrices are good for?

(1) Quantum transport problems (Beenakker ’97) Additive stats of EVs of
TT † describe phys quantities of interest, i.e. trTT † for conductance of quasi
one-dimensional wires

(2) Open chaotic sys (Fyodorov & Sommers, ’97 Życzkowski & S. ’00 )
Eigenvalues of T are used to model resonances

(3) Combinatorics of vicious walkers (Novak ’09) < | trT |N >T enumerates
configs of random-turn vicious walkers

Singular values of T (1); eigenvalues of T (2,3)

Why truncation of orthogonal matrices? To explore the degree of
universality of EVs statistics in the complex plane (no mathematical theory
known).



Setup

G is either unitary or orthogonal group, i.e. G = U(n) or G = O(n).

Choose a matrix from G at random and consider its top-left block T of size
m×m. This talk is concerned with eigenvalues of T which is a random
contraction.

‘Choose at random’ - implicit referral to uniform distribution on the group
surface, known as the Haar measure.

Thus, consider the unitary group G equipped with the normalised Haar
measure. The property of invariance determines this measure uniquely.
This can be used for sampling the Haar distribution via Gram-Schmidt.

The Haar measure induces a probability distribution dρn,m×m(T ) on
truncated unitaries (orthogonals). It does not depend on the block’s
position (because of the invariance of the Haar measure). Thus, may as
well consider bottom-left corner, etc.



Matrix measure for truncations

Truncation: U =
(

T S
Q R

)

7→ T , where T is m×m, S is m× (n−m)

Since UU † = I we have TT †+SS† = I. Hence, (typically) SS† has rank m
if n ≥ 2m and the image of G is the entire matrix ball TT † ≤ I in this case.

Thm 1 (Friedman&Mello ’85, Fyodorov&Sommers ’03, Forrester ’06)

For n ≥ 2m

dρn,m×m(T ) =
1

C
det(I − TT †)

β
2
(n−2m+1)−1χTT †≤I(T ) dT

where β = 2 for unitary matrices and β = 1 for orthogonal matrices.

By changing to EVals and EVecs of TT †, the normalization constant is
given by Selberg’s integral (multivariate version of Euler’s beta integral)

C =

∫ 1

0
. . .

∫ 1

0

∏

j<k

|λj − λk|β
m
∏

j=1

λ
β

2
−1

j (1− λj)
β

2
(n−2m+1)−1

m
∏

j=1

dλj



Matrix measure

If n < 2m (e.g., deleting just one column and rows) then λ = 1 is an EV of
TT † of multiplicity 2m− n. Hence the image of G is a set on the boundary
of TT † ≤ I. Useful explicit expression for dρn,m×m(T ) is unknown in this
case. However, for statistics depending on EVs only, e.g. trace, det, etc

Thm 2 (Fyodorov & Kh. ’07) Let n < 2m. Then for invariant f
∫

f(TT †)dρn,m×m(T ) = const.×

∫

f

(

ZZ† 0
0 I

)

det(I − ZZ†)
β

2
(2m−n+1)−1χZZ†≤I(Z)dZ

(matrices T are m×m and Z are (n−m)× (n−m))

SVs of truncations: with Thms 1 and 2 in hand one can study distr. of
(nontrivial) eigenvalues of TT †.



Gaussian approximation and beyond

Borel (1906): if U is drawn at random from G then the distribution of U11

converges to normal distribution as n → ∞.

It is easy to see from Thm 1 that in the limit when n → ∞ and m is kept
finite the distribution of T becomes Gaussian (entries are independent
normals). This is known as the Borel Theorem (Gallardo 1982, Yor 1985).

[More generally, if m = o(
√
n) then the distribution of T converges to

standard normal. (Diaconis & collaborators, 1987, 1992, Jiang 2009.]

Two other interesting regimes (non-Gaussian):

(i) n → ∞, l := n−m = const. (weak non-unitarity/orthogonality)

(ii) n → ∞, m
n
= const. (strong non-unitarity/orth.)



Eigenvalue scatter plots
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“Standing on the shoulders of giants”

Gaussian random matrices with no symmetry conditions imposed (known
as the Ginibre family of ensembles)

1965 Ginibre (complex matrices)

1991 Lehmann & Sommers (jpdf of EVs for real matrices)

1993 Edelman (published ’98) (density of complex EVs)

1994 Edelman, Kostlan & Shub (density of real EVs)

2005 Kanzieper & Akemann (probabilities of k real EVs)

2007 Forrester & Nagao (paffian representation for EV corr fncs via
skew-orthogonal pols)

2007 Sommers and Sommers & Wieczorek (alternative derivation of pfaff
representation via Grassmann integration)



Truncations: joint distribution of eigenvalues zj

Thm 3 (Życzkowski & Sommers ’00) For truncated Haar unitaries, the
prob of having real eigvs is zero, and (|zj| < 1)

dµ(z1, . . . , zm) ∝
∏

1≤j<k≤m

|zj − zk|2
m
∏

j=1

(1− |zj|2)l−1
m
∏

j=1

dzj ∧ dz∗j

Thm 4 (Kh. Sommers & Życzkowski ’10) For truncated Haar
orthogonals, the prob of having real eigvs is not zero, and (|zj| < 1)

dµ(z1, . . . , zm) ∝
∏

1≤j<k≤m

(zj − zk)
m
∏

j=1

f(zj)
m
∏

j=1

dzj

with f2(z) = 2|1− z2|l−2

∫ 1

2| Im z|

|1−z2|

(1− t2)
l−3

2 dt.

Caveats: pairs of complex conjugated eigvs, ordering, conditioning by no
of real eigvs, f2(z) = (2π|1− z2|)−1 for l = 1. Similarity to the Ginibre ens.



(Mean) EV densities

Density of complex eigenvalues ρ
(C)
m (z): For D in C\R:

average number of EVs in D given by
∫

D

ρ(C)
m (z)d2z

Density of real eigenvalues ρ
(R)
m (x):

average number of EVs in (a, b) given by
∫ b

a

ρ(R)
m (x)dx

Normalisation :

∫

ρ(C)
m (z)d2z +

∫

ρ(R)
m (x)dx = m

where m is the matrix dimension.



EV densities of truncated Haar unitaries

Let l be the no. of columns (rows) removed, i.e. l = n−m. The following
is a corollary of Thm 3:

Thm 5 Consider truncated random unitary matrices. Then ρ
(R)
m (x) = 0

and

ρ(C)
m (z) =

l

π

1

(1− |z|2)l−1

m−1
∑

j=0

(

l +m

m

)

|z|2j, |z| ≤ 1.

The truncated binomial series on the rhs can be expressed in terms of the

incomplete Beta function Ix(a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1 dt leading

to

ρ(C)
m (z) =

l

π

1

(1− |z|2)2 I1−|z|2(l + 1,m), |z| ≤ 1.

This comes in handy for asymptotic analysis (large truncation size).



EV densities of truncated Haar orthogonals

Let l be the no. of columns (rows) removed, i.e. l = n−m. The following
is a corollary of Thm 4 (involves evaluating 〈| det(z − T )|2〉T ):

Thm 6 Consider truncated random orthogonal matrices. Assume m is
even (technical). Then (|x| ≤ 1)

ρ(R)
m (x) =

I1−x2(l + 1,m− 1)

B( l2 ,
1
2)(1− x2)

+
(1− x2)

l
2
−1|x|m−1Ix2(m−1

2 , l+2
2 )

B(m2 ,
l
2)

and (|z| ≤ 1)

ρ(C)
m (z = x+ iy) =

l(l − 1)

π

I1−|z|2(l + 1,m− 1)

(1− |z|2)l+1
|y| f2(z)

with f2(z) = 2|1− z2|l−2

∫ 1

2|y|

|1−z2|

(1− t2)
l−3

2 dt

These expressions become rather simple for m large!



Strong non-unitarity/orthogonality - density of complex E Vs

Consider m, l → ∞, m ∝ n. For truncated unitaries :

ρ(C)
m (z) ≃ l

π

1

(1− |z|2)2 Θ
(m

n
− |z|2

)

Same limiting form of ρ(C)
m (z) for truncated orthogonals away from

the real axis (recall that ρ(C)
m vanishes on the real axis for m finite, hence

finite size corrections to ρ
(C)
m differ).

Close to the real line (y ∝ 1√
m

) the density of complex EVs of truncated
orthogonals is described by the scaling law

ρ(C)
m (z) ≃ ρ(R)

m (x)2h(yρ(R)
m (x)), h(y) = 4π|y|e4πy2 erfc(

√
4π|y|)

where ρ
(R)
m (x) =

√

l
2π

1
1−x2 is the density of real EVs (more on this later).

Same form as for the real Ginibre except ρ(R)
m is different. Universality?



Eigenvalue scatter plots
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Strong non-unitarity: transition at the boundary of EV dist ribution
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Bulk: the radial part of eigvs of truncated Haar unitaries
 M = 100,  N = 200, no. of samples = 200.

When one traverses the boundary of the support of EV distribution, the
density vanishes at a Gaussian rate. In the transitional region

ρ(C)
m

(
√

m

n
+

x√
m

)

≃ mα

2π
erfc

(√
2αx

)

, α =
n2

lm

Same Erfc Law as for the Ginibre ensemble (Forrester ’99, Kanzieper ’03)



Weak non-unitarity/orthogonality: density of complex EVs

Assume m → ∞, l is finite (delete l rows& columns). In this limit the EVs
of truncated Haar unitaries lie close to the unit circle, typically at
distance ∝ 1

m
. Scaling z accordingly, one finds the EV density

ρ(C)
m

((

1− r

m

)

eiϕ
)

≃ m2

π

(2r)l−1

(l − 1)!

∫ 1

0
e−2rttl dt.

Away from the real axis same result for truncated orthogonals .
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Truncated orthogonal matrices - average no. of real EVs

N (R)
m =

∫ 1

−1
ρ(R)
m (x)dx is the average number of real EVs

Finite matrix dimension:

N (R)
m = 1 +

l

2

∫ 1

0

ds

sl+1
Is2 (l/2, 1/2) I 2s

1+s
(l + 1,m− 1)

In the limit of strong non-orthogonality, m, l → ∞, l ∝ m:

N (R)
m ≃

√

l

2π
ln

√
n+

√
m√

n−√
m

∝
√
m

In the limit of weak non-orthogonality, m → ∞, l is finite :

N (R)
m ≃ logm

B
(

l
2 ,

1
2

)

Cf.: N (R)
m ∝ √

m in the real Ginibre (Edelman,Kostlan & Shub, 1994);

N
(R)
m ∝ logm for random real polynomials (Kac, 1948).



Strong non-orthogonality - density of real EVs,

Consider m, l → ∞, m ∝ n. In this limit the distribution of the real EVs of
truncated Haar orthogonals is described by the ‘Artanh Law’

ρ(R)
m (x) ≃

√

l

2π

1

1− x2
Θ
(m

n
− x2

)

.
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Weak non-orthogonality - density of real EVs

Consider m → ∞, l is finite. In this limit the bulk of the real EVs lie in the
vicinity of ±1. The (average) number of real EVs away from these
accumulation points is finite and they are distributed there with density
(compare with strong non-orthogonality!)

ρ(R)
m (x) ≃

√

l

2π

1

1− x2
, x ∈ (−1 + ε, 1− ε).

Interesting behaviour near the acc. pnts, below ρ := ρ
(R)
32 (x)/N

(R)
32
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Weak non-orthogonality - density of real EVs near the acc. pn ts

Real EVs are accumulating near x± 1. Need to rescale x = 1− u
m

and

pm(u) = 1
m
ρ
(R)
m (1− u

m
) to see the shape of distribution. We have

pm(u) ≃ p(u) =
1

2u

1

B( l2 ,
1
2)

2u
∫

0

tle−t dt

Γ(l + 1)
+

u
l
2
−1e−u

2Γ( l2)

∞
∫

u

t
l
2 e−t dt

Γ( l2 + 1)
.

The 2nd term describes density for small u; have p(u) ≃ u
l−2

2

2Γ( l2)

Note different behaviour when l = 1, l = 2, l = 3 and l ≥ 4. In the latter
case the real EVs are ‘repelled’ from x = 1.

The 1st term describes behaviour for large u; have p(u) ∝ 1
u

, a heavy
tail leading to the logm growth of the number of real eigenvalues.



EV correlations

- Away from the real axis

Same (scaling limit) for complex Ginibre, real Ginibre, truncated Haar
unitaries and orthogonals in the regime of strong non-orthogonality.

Same for truncated Haar unitaries and orthogonals in the regime of
weak non-orthogonality.

- Near the real axis

Same (scaling limit) real Ginibre and truncated Haar orthogonals in the
regime of strong non-orthogonality.

New correlations in the regime of weak non-orthogonality.

- On the real axis

Same (scaling limit) real Ginibre and truncated Haar orthogonals

New correlations in the regime of weak non-orthogonality.



Outlook/Open Problems
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