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Our studies are essentially based on the martingale differences
method developed in my previous papers for resolvents of random
matrices. This method possesses the self-averaging property of the
entries of resolvents of random matrices and, hence, we can de-
duce the stochastic canonical equation. The lecture contains the
most important results from numerous papers and books deal-
ing with the theory of Unitary random matrices and functions of
random matrices. We give the REFORM method of proving of
all results, avoiding the method of moments. We do not try to
describe here all known properties of the eigenvalues and eigen-
vectors for all classes of random matrices. However, our aim is
rather to present the theory of stochastic canonical equations,
and to give rigorous proofs of the procedures used to deduce these
equations on the base of the author’s General Statistical Anal-
ysis. Additionally, we consider some important applications for
the system of linear algebraic equations with random coefficients.
We consider special classes of analytic functions of random matri-
ces. The description problem for normalized spectral functions of
some analytic functions of random matrices is discussed in detail.
Specifically, we present here the new theory: L.I.F.E., which is the
abbreviation for: Limit Independence of Functions of Ensembles.

Random matrix theory is a rapidly developing field and it has
a great influence to fundamental and applied sciences: statistics,
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nuclear physics, and linear programming. Recent results in ran-
dom matrix theory promoted the interest of researchers in the field
of statistical physics to the methods and ideas developed for nu-
clear systems. One of the most intriguing applications of random
matrix theory is the application to quantum mechanics.

We assume that energy levels of an atom are described by the
eigenvalues of a random Hermitian operator, called the random
Hamiltonian. It is very important that the eigenvalues of certain
random matrices of large dimension converge to some nonrandom
values, when the dimension of the matrix tends to infinity. In
this manner, we can reach an agreement with the experimental
observation of an atom.

Most of the areas under consideration are strongly corre-
lated with the spectral theory of nonsymmetric random matri-
ces. The attention of scientists in the physics of random matri-
ces is mainly focused on the matrices with zero expectations of
their entries. The actual situation in the application of random
matrices to physics is quite different. As a rule, the entries of
matrices have nonzero means. We continue the development of a
new V-analysis for nonsymmetric random matrices from Girko’s
ensemble when the pairs of the entries of random matrices are
independent. Therefore, the main aim of the present lecture is to
attract physicists to the new analysis of random matrices appear-
ing in numerous contemporary problems.

If the dimensionality of observations is large, then most statis-
ticians would agree that the efficiency of the classical parametric
approaches is doubtful. In the GSA we try to find new statistical
estimators under two general assumptions. First, we do not re-
quire the existence of a density of observations. For example, we
do not require that the observations have normal distributions.
Second, we develop this analysis for the case where the number of
parameters mn can increase together with the number of observa-
tions n. Using these two assumptions we can obtain on the base
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of developed theory of canonical equations many new results and
I am sure that the general statistical analysis will be a turning
point in the multidimensional statistical analysis.
1. CANONICAL EQUATION K1. Main assertion

Theorem 1. Assume that the entries ξ
(n)
ij ; i ≥ j, i, j = 1, ..., n, of

a symmetric random matrix Ξn×n = (ξ(n)
ij )n

i,j=1 are independent
for each n = 1, 2, . . . and defined on a common probability space,

E ξ
(n)
ij = a

(n)
ij , Var ξ

(n)
ij = σ

(n)
ij , i ≥ j, i, j = 1 , . . . , n,

sup
n

max
i=1, ... ,n

n∑

j=1

σ
(n)
ij < ∞, (1.1)

sup
n

max
i=1, ... ,n

n∑

j=1

∣∣∣ a
(n)
ij

∣∣∣
2

< ∞, (1.2)

and Lindeberg’s condition is satisfied, i.e., for any τ > 0,

lim
n→∞

max
i=1, ... ,n

n∑

j=1

E [ξ(n)
ij − a

(n)
ij ]2χ

{|ξ(n)
ij − a

(n)
ij | > τ

}
= 0,

(1.3)
where χ is the indicator of a random event,

µn {x, Ξn×n} = n−1
n∑

k=1

χ(ω : λk < x),

and λ1 ≥ · · · ≥ λn are the eigenvalues of the symmetric random

matrix Ξn×n = (ξ(n)
ij )n

i,j=1.
Then, for almost all x
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lim
n→∞

|µn {x, Ξn×n} − Fn (x)| = 0, (1.4)

with probability one. If, in addition,

inf
s,l=1,...,n

nσ
(n)
sl ≥ c > 0, (1.5)

then, with probability one,

lim
n→∞

sup
x
|µn {x, Ξn×n} − Fn (x)| = 0, (1.6)

where Fn(x) are distribution functions whose Stieltjes transforms
are equal to

∫ ∞

−∞
(x− z)−1dFn(x) = n−1

n∑

i=1

ci(z), z = t + is, s 6= 0,

and the functions ci(z), i = 1, ..., n, satisfy the canonical system
of equations K1:

ci(z) =





[
An×n − zIn×n −

(
δp l

n∑
s=1

cs(z)σ(n)
s l

)n

p,l=1

]−1




ii

,

(1.7)
where i = 1, . . . , n δpl is the Kronecker symbol, An×n =(a(n)

ij )n
i,j=1,

and In×n is the identity matrix of the n-th order. There exists a
unique solution ci(z), i = 1, ..., n, of the system of equations K1

in a class of analytic functions

L = {z : Im z Im ci(z) > 0, Im z 6= 0, i = 1, . . . , n}

4



and the functions ci(z), i = 1, . . . , n, are the Stieltjes transforms
of certain distribution functions.

Note that, for some special cases, equation K1 has been
found. In the case where the matrix An×n is diagonal, the vari-
ances of the entries of a random matrix Ξn×n are equal, and Linde-
berg’s condition is satisfied for the components of each row vector
of the matrix Ξn×n, a special case of this equation was obtained
by L. Pastur. In the case where An×n is a zero matrix and the
variances of the entries of a random matrix Ξn×n are bounded, it
was established by Berezin. The case where the matrix An×n is
diagonal and the variances of the entries of a random matrix ξ

(n)
ij

may be different and satisfy Lindeberg’s condition was studied by
Girko.

2. CANONICAL EQUATION K27 FOR NORMALIZED
SPECTRAL FUNCTIONS OF RANDOM
SYMMETRIC BLOCK MATRICES

Consider random symmetric matrices Ξn×n =
(
ξ
(n)
ij

)n

i,j=1
with asymptot-

ically independent entries. It is proved that, for almost all x and any ε > 0,
under certain restrictions,

lim
n→∞

P
{|µn(x)− Fn(x)| > ε

}
= 0,

where

µn(x) = n−1
n∑

k=1

χ(λk < x),

χ(λk < x) is the indicator function, λk are eigenvalues of the matrix

Ξn×n =
(
ξ
(n)
ij

)n

i,j=1
, Fn(x) is the distribution function whose Stieltjes

transform is equal to

∫ ∞

−∞
(x− z)−1 dFn(x) = n−1

p∑

k=1

Tr Ckk(z), z = t + is, s 6= 0,
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and the block matrices Ckk(z), k = 1, . . . , p, of dimensionality q × q
satisfy the system of canonical equations K27

Ckk(z)=
{[

Apq−zIpq−
(
δlj

p∑
s=1

EH
(n)
js Css(z)H(n)∗

js

)p

l,j=1

]−1
}

kk

where k = 1, . . . , p, Apq×pq is a nonrandom matrix, Ipq×pq is the identity

matrix, H
(n)
js are random matrices of dimensionality q×q, p and q are some

integers and notation {A}kk means the kth diagonal block of size q × q of

the matrix A.

3. SOS-LAWS

Recall that the first limit density for the n.s.f. of symmetric ran-
dom matrices was obtained by E. Wigner, and the graph of this
density is a certain semicircle(semielliptic). But this density dis-
appointed him and other physicists. The real densities of the
energy levels of atom nucleus have another form. But we are
now in a position to find such limit density for the random block
matrices. For the simple random block matrices, we have Block
Matrix Density which, for some matrices Aq×q and Bq×q, is equal
to sum of the Semicircle laws (SOS-Laws) with different centers
and radii. Therefore, it is possible to approximate any density us-
ing such SOS-Law and it is possible to achieve an agreement with
the observed densities of energy levels of atoms and the spectral
density of our random block matrix.

To obtain the simplest result, we assume that the matrices
Aq×q and Bq×q commute.

Theorem. If, in addition to the conditions of Section 2, we have

Aq×q = Hq×qΛ
(1)
q×qH

T
q×q, Bq×q = Hq×qΛ

(1)
q×qH

T
q×q, where

Λ(1)
q×q = (δijλi(Aq×q)),
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Λ(2)
q×q = (δijλi(Bq×q)),

λ1(Aq×q) ≤ · · · ≤ λq(Aq×q), λ1(Bq×q) ≤ · · · ≤ λq(Bq×q) are
eigenvalues of matrices Aq×q and Bq×q, and Hq×q is an orthogonal
matrix, then, for all x with probability one

lim
p,q→∞

|µpq (x, Ξpq×pq)− Fq (x)| = 0,

where Fq(x) is the distribution function whose density is equal to

d
dx

Fq (x)=
1
q

q∑

k=1

1
2πλ2

k(Bq×q)
χ

{
[x−λk (Aq×q)]

2
< 4λ2

k(Bq×q)
}

×
√

4λ2
k(Bq×q)− [x− λk (Aq×q)]

2
,

which is equal to the sum of semicircular laws (SOS-Laws).

4. THE CANONICAL EQUATION K96 FOR GIRKO’S
ENSEMBLE OF RANDOM ACE-MATRIX Ξn.
ELLIPTICAL GALACTIC LAW

The structure of this Section is the following: at first we repeat
the first 20 years old proof of the strong Elliptic law for random
matrices Ξn = {ξ(n)

ij }. Then we prove the strong Elliptic law for
random matrices Ξn of the general form, i.e. when their diagonal
entries ξ

(n)
ii have nonzero expectations, and when we require the

existence of the probability densities of the entries of random ma-
trices and Lyapunov condition. In this case the Elliptical Galactic
law means that the support of the accompanying spectral density
of eigenvalues looks like the picture of several galaxies made by
telescope. If the distances between the centers of these galaxies
are large enough we have several almost elliptical galaxies. These
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statements are based on the VICTORIA-transform of random ma-
trix which is the abbreviation of the following words: Very Im-
portant Computational Transformation Of Random Independent
Arrays.

We follow the main strategy of the theory of limit theorems
of the probability theory, i.e. we try to solve the problem of
description of all limits of normalized spectral functions

νn (x, y,AnΞnBn+Cn)

=
1
n

n∑

k=1

χ {Reλk(AnΞnBn+Cn) < x, Imλk(AnΞnBn+Cn) < y},

where λk(AnΞnBn +Cn) are eigenvalues of the matrix AnΞnBn +
Cn, An, Bn, and Cn are nonrandom matrices, under general (as
only possible) conditions on the entries ξ

(n)
ij of random matrices

Ξn, χ is the indicator function. We emphasize that the spec-
tral theory of Hermitian random matrices is rather profound. For
example, in 1975 in [Gir12] V. Girko proved the general stochas-
tic canonical equation for ACE(Asymptotically Constant Entries)-
symmetric matrices: Assume that for any n, the random en-
tries ξ

(n)
ij , i ≥ j, i, j = 1, ..., n, of a symmetric matrix Ξn×n =[

ξ
(n)
ij − α

(n)
ij

]n

i,j=1
are independent and they are asymptotically

constant entries (ACE), i.e., for any ε > 0,

lim
n→∞

sup
p,l=1,...,n

P
{|ξ(n)

pl | > ε
}

= 0, α
(n)
ij =

∫

|x|<τ

xdP
{

ξ
(n)
ij < x

}

and τ > 0 is an arbitrary constant, and that, for every 0 ≤ u ≤ 1
and 0 ≤ v ≤ 1,

Kn (u, v, z) ⇒ K (u, v, z) , −∞ < z < ∞,
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where the symbol ⇒ denotes the weak convergence of distribution
when n →∞,

Kn (u, v, z) = n

∫ z

−∞
y2

(
1 + y2

)−1
dP

{
ξ
(n)
ij − α

(n)
ij < y

}
,

in−1 ≤ u < (i + 1) n−1, jn−1 ≤ v < (j + 1) n−1, and
K (u, v, z) is a nondecreasing function with bounded variation in
z and continuous in u and v in the domain 0 ≤ u, v ≤ 1. Then,
with probability one, for almost all x,

lim
n→∞

∣∣∣∣∣n
−1

n∑

k=1

χ{λk (Ξn×n) < x} − F (x)

∣∣∣∣∣ = 0,

where λk (Ξn×n) are eigenvalues, F (x) is a distribution function
whose Stieltjes transform satisfies the relation

∫ ∞

−∞

dF (x)
1 + itx

= lim
α↓0

∫ 1

0

[∫ 1

0

xdxGα (x, y, t)
]

dy,

Gα (x, y, t), as a function of x, is a distribution function satisfy-
ing the regularized stochastic canonical equation K3[3, 23] at the
points x of continuity,

Gα (x, z, t) = P
{[

1 + t2ξα {Gα (∗, ∗, t) , z}]−1
< x

}
, 0 ≤ x ≤ 1,

ξα {Gα (∗, ∗, t) , z} is a random real functional whose Laplace
transform of one-dimensional distribution is equal to

E e{−sξα[Gα(∗,∗,t),z]}=exp





1∫

0

1∫

0



∞∫

0

[
exp

{
− syx2

(1+α |x|)2
}

−1]
1 + x2

x2
dxK (v, z, x)

]
dyGα (y, v, t) dv

}
,

α > 0, s ≥ 0, 0 ≤ z ≤ 1.
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The integrand
[
exp

{
−syx2 (1 + α |x|)−2

}
− 1

] (
1 + x−2

)
is de-

fined at x = 0 by continuity as −sy. There exists a unique so-
lution of the canonical equation K3 in the class L of functions
Gα (x, y, t) that are distribution functions of x (0 ≤ x ≤ 1) for any
fixed 0 ≤ y ≤ 1, −∞ < t < ∞, such that, for any integer k > 0
and z, the function

∫ 1

0
xkdxGα (x, z, t) is analytic in t (excluding,

possibly, the origin). The solution of the canonical equation K3

can be found by the method of successive approximations.
For the first time in 1980[4] and in 1990 in [G] this equation

was rewritten in the following form (here we use the simplest
equation, when α = 0)

m(s, t, z)− 1 =
∫ ∞

0

exp
{∫ 1

0

∫ 1

0

[∫ ∞

0

[m(t2yx2, t, v)− 1]

× 1 + x2

x2
dxK(v, z, x)

]
dv

}
∂

∂y
J0(2

√
sy)e−ydy,

where

m(s, t, z) =
∫ 1

0

e−sxdxG0(x, z, t), s ≥ 0,

J0(x) is the Bessel function which is equal to

J0(x) =
∞∑

k=0

(−1)kx2k 1
22lk!k!

.

In [G] a technical improvement and a new proof of the uniqueness
of solution of canonical equation K3 are presented, where m(s, t, z)
has a unique representation in the family of integrable functions.
The analytic details of the statement and of the proof are elabo-
rate[4]. English translation: Ukrainian Math. J. 32 (1980), no. 6,
546–548 (1980).
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We prove the strong Elliptical Galactic law for random ma-
trices Ξn of the general form, i.e. their diagonal entries ξ

(n)
ij have

nonzero expectations and the pairs of the entries (ξ(n)
ij , ξ

(n)
ji ) have

nonzero covariances. In this case the Elliptical Galactic law means
that the support of the accompanying spectral density of eigen-
values of matrix Ξn looks like the picture of several galaxies made
by telescope:
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Figures 1 and 2

The picture 1 shows the collision of elliptic supports of the limit
spectral density of n.s.f. of random matrix An+ΛnΞn, where An is
a diagonal complex matrix with diagonal entries (0.7, 0), (−1, 0),
(0, 0.7i) for corresponding three equal parts of the main diago-
nal, and random matrix Ξn has equal covariances ρ(

√
ρ = 0.2 +

i0.8) of independent pairs of entries (ξ(n)
ij , ξ

(n)
ji ) with zero mean

and is multiplied by diagonal matrix Λn with diagonal entries
(1, 0), (0.5, 0.5i), (−1, 0) for corresponding three equal parts of the
main diagonal. We have chosen in picture 1 three different di-
agonal entries of the matrix An at a short distance. In pic-
ture 2, we consider the diagonal matrix An with diagonal en-
tries (2, 0), (−2, 0), (0, 2i) at a large distant for corresponding three
equal parts of the main diagonal. In the letter case we have several
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domains-supports like ellipses. For the exposition of the Elliptic
Law we have chosen the random matrix Ξn of dimension 30 and
300 its Monte-Carlo simulation. If the distances between the cen-
ters of these galaxies are large enough we have several almost
elliptical galaxies.
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Figures 3 and 4.

These pictures show the elliptic support of the limit spec-
tral density of n.s.f. of random matrix An + Ξn, where An is a
diagonal matrix with 5 different diagonal entries (1, 0); (−1, 0);
(−0.5,−i); (0, 0.5i); (0, i) and random matrix Ξn has equal covari-
ances ρ(

√
ρ = 0.5 + i0.5)of the entries (ξij , ξji). We have chosen

five different diagonal entries of the matrix An at a short distance
in picture 1 and at a large (2, 0); (−2, 0); (−1,−2i); (0, i); (0, 2i)
in picture 2. In the letter case we have several domains-supports
like ellipses. For the exposition of the Elliptic Law we have chosen
the random matrix Ξn of dimension 50 and 300 its Monte-Carlo
simulation

If the distances between the centers of these galaxies are large
enough we have several almost elliptical galaxies.

Maybe the reader remembers the Monte Carlo simulations of
eigenvalues of matrices Ξn +An, where Ξn belongs to the domain
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of attraction of Circular law and An is the diagonal matrix whose
diagonal entries forms letter R on a complex plain[25]–[27]. For
the case when the matrix Ξn belongs to the domain of attraction
of Elliptic law the simulation of eigenvalues of the matrix Ξn +An

looks like the following picture:

0 1 2 3 4 5

-4

-2

0

2

4

There are essentially three methods of the proof of Elliptic
Laws that have been proposed: the REFORM method and Berry-
Esseen inequality[11], the method of perpendiculars[15,16], the
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method of the central limit theorem and limit theorems for eigen-
values of random matrices[23]. The main advantage of REFOEM
approach is that it enables the results of the previous version of
Elliptic law to be extended to the case under consideration. The
REFORM-method(or G-martingale approach) enables us to sug-
gest a new method for construction of stochastic canonical equa-
tions.

We prove the following Elliptical Galactic Law which gener-
alizes the Strong Circular Law and Weak Circular Law(see the
sketch of the proof of this law in the paper V-transform, Dopovidi
Akademii nauk Ukrainskoi RSR, Seria A Fizyko-Matematychni ta
technichni nauky, 1982, N3, pp.5-6.): For every n, let the pairs of
random entries (ξ(n)

ij , ξ
(n)
ji ); i = 1, ..., n, j = 1, ..., n, of the complex

matrix Ξn×n = (ξ(n)
ij )j=1,...n

i=1,...,n be independent and given on a com-

mon probability space, E ξ
(n)
ij = 0,E

∣∣∣ξ(n)
ij

∣∣∣
2

= σ
(n)
ij n−1, 0 < r1 <

σ
(n)
ij < r2 < ∞,E ξ

(n)
ij ξ

(n)
ji = ρ

(n)
ij n−1, i 6= j, i, j = 1, ..., n, and

sup
n

max
i=1,...,n,
j=1,...,n





n∑

j=1

∣∣(A−1
n CnB−1

n )ij

∣∣2 +
n∑

i=1

∣∣(A−1
n B−1

n )ij

∣∣2

+
n∑

j=1

∣∣(A−1
n CnB−1

n )ji

∣∣2 +
n∑

i=1

∣∣(A−1
n B−1

n )ji

∣∣2


 < ∞,

where An =
{

a
(n)
ij

}
i,j=1,...,n

, Bn =
{

b
(n)
ij

}
i,j=1,...,n

and Cn =
{

c
(n)
ij

}
i,j=1,...,n

are nonrandom matrices, det An 6= 0, detBn 6= 0,

and the real and imaginary parts of entries
√

nξ
(n)
ij ,

√
nξ

(n)
ji , i > j
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have the densities

p
(n)
ij (x1, x2, y1, y2)

=
∂4

∂x1 ∂x2 ∂y1 ∂y2
P

{
Re
√

nξ
(n)
ij < x1, Re

√
nξ

(n)
ji < x2,

Im
√

nξ
(n)
ij < y1, Im

√
nξ

(n)
ji < y2

}

satisfying the corrected Elliptic condition: for some β > 1

sup
n

max
l=1,...,n

k 6=l

∫ ∞

−∞

∫ ∞

−∞
max

k=1,..,n

×
[∫ ∞

−∞

[∫ ∞

−∞
p
(n)
kl (x, y, u, v)dy

]β

dx

]1/β

dudv < ∞,

or

sup
n

max
l=1,...,n

k 6=l

∫ ∞

−∞

∫ ∞

−∞
max

k=1,..,n

×
[∫ ∞

−∞

[∫ ∞

−∞
p
(n)
kl (x, y, u, v)dx

]β

dy

]1/β

dudv < ∞,

and there exist the densities p
(n)
ii (x) of the entries

√
nReξ(n)

ii , or
the densities q

(n)
ii (x) of the entries

√
nIm ξ

(n)
ii , satisfying the con-

dition: for some β1 > 1

sup
n

max
k=1,...,n

∫ ∞

−∞

[
p
(n)
kk (x)

]β1

dx < ∞,
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or
sup

n
max

k=1,...,n

∫ ∞

−∞

[
q
(n)
kk (x)

]β1

dx < ∞,

the Lyapunov condition is fulfilled: for some δ > 0,

max
p,l=1,...,n

E
∣∣∣ξ(n)

pl

√
n
∣∣∣
2+δ

≤ c < ∞.

Then, with probability one, for almost all x and y

lim
α↓0

lim
n→∞

|νn (x, y, AnΞnBn + Cn)− Fn,α (x, y)| = 0,

where

νn (x, y, AnΞnBn + Cn) = n−1
n∑

k=1

χ {Reλk < x, Im λk < y},

λk are eigenvalues of the matrix AnΞnBn + Cn, the Global prob-
ability density pn,α(t, s) = (∂2/∂t ∂s)Fn,α(t, s) is equal to

pn,α (t, s)=

{
− 1

4π

∫∞
α

[
∂2

∂t2 + ∂2

∂s2

]
bn (y, t, s) dy for (t, s) /∈ Gn,

0 for (t, s) ∈ Gn,

where α > 0,

bn

(
y, t, s

)
=

i
2
√

y
n−1Tr [I2ni

√
y −Q2n(y, t, s) + C2n(y, t, s)]−1

,

Q2n(y, t, s)=
(
δijQ

(ii)
2×2(y, t, s)

)
i,j=1,...,n

, C2n(t, s)={C(ij)
2×2(t, s)},
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where C2n(t, s) =
(
c
(ij)
2×2(t, s)

)
i,j=1,...,n

is a block matrix, C
(ij)
2×2 =

{
0 s

(n)
ij

s̄
(n)
ji 0

}
, s

(n)
ij (t, s) are entries of the matrix

Sn(t, s) = A−1
n (Cn − Inτ)B−1

n = {s(n)
ij (t, s)},

and Q2n(y, t, s) =
(
δijQ

(ii)
2×2(y, t, s)

)
i,j=1,...,n

is the block diagonal

matrices, whose diagonal block Q
(ii)
2×2(t, s) satisfy the system of

canonical equations K97

Q
(jj)
2×2(y, t, s) = {iI2n

√
y + C2n(t, s)

−
[
δij

n∑

i=1

E
{

0 ξij

ξ∗ji 0

}
Q

(ii)
2×2(y, t, s)

{
0 ξij

ξ∗ji 0

}∗ ]

i,j=1,...,n

}−1

jj

j = 1, ..., n, and Ḡ is a support of the Global probability density,
where

G = {(t, s) : lim
α↓0

lim sup
n→∞

α
∂

∂α
bn(α, t, s) = 0.}

There exists a unique solution of canonical equation K97 in
the class of positive definite block matrices Q

(ii)
2×2(y, t, s) > 0, y >

0, i = 1, ..., n of the order 2× 2, analytic in y > 0, t, s.

5. The border of the support of limit spectral density
p(x, y) for pure G-ensemble when only two constant of
diagonal matrix An are pure imaginary numbers. Sand
clock density

The next example is the simplest case of matrices from G-
ensemble, when only two diagonal complex entries of diagonal
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matrix An are different and random matrix Ξn is Hermitian ma-
trix. We can find the border support of accompanying spectral
density, but even in this simple case the solution is not simple and
the mathematical equation for the curve of the border of accom-
panying support of limit spectral density occupies almost the half
of a page.

Theorem. If additionally to the conditions of Theorem 97.1
ρ(n) = 1, ak = ir, k = 1, ..., [n/2]; al = −ir, l = [n/2] + 1, ..., n
then the border of the support of accompanying probability spec-
tral density is given by the following equation

(d4k4 + d3k2(((−2)bkl + 2al2 − 4akq)) + d2((c2k3l + b2k2l2 −
2abkl3 + a2l4 + 3bck3p− 5ack2lp− 3abk2p2 + 4a2klp2 + 2b2k3q +
2abk2lq−4a2kl2q+6a2k2q2))+d(((−c3)k3p−b2ck2lp+2abckl2p−
a2cl3p+b3k2p2 +3ac2k2p2−2ab2klp2 +a2bl2p2−3a2ckp3 +a3p4−
4bc2k3q − 2b3k2lq2ac2k2lq + 4ab2kl2q − 2a2bl3q + 2abck2pq+

2a2cklpq+2a2bkp2q−4a3lp2q−4ab2k2q2+2a2bklq2+2a3l2q2−
4a3kq3)) − q(((−c4)k3 − b2c2k2l + 2abc2kl2 − a2c2l3 + b3ck2p +
3ac3k2p−2ab2cklp+a2bcl2p−3a2c2kp2+a3cp3−b4k2q−4abc2k2q+
2ab3klq + 3a2c2klq − a2b2l2q + 5a2bckpq − 3a3clpq − a3bp2q −
2a2b2kq2 + 2a3blq2 − a4q3))) = 0, where a = 1, k = 1, p =
0, b = t2

2 − 2r2, c = − 2r2

s , d = t4

16 + t2r2

2 + r4, l = t2

2 − 1 − 2r2,

q = t4

16 + t2r2

2 + r4 − t2

4 − r2.

6. Several examples of the border support and Monte
Carlo simulations performed by Mathematica 5 for pure
Girko’s ensemble. Sand clock density

We give here several examples. For the reader conveniences we
provide them by corresponding program of Mathematica 5. Enjoy
considering different cases of random matrices.
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Figures 5 and 6

This picture shows the elliptic support of the limit spectral
density of n.s.f. of random matrix An + Ξn. We have chosen the
constant r = 0.5, ρ = 1. In this case we have one domain like
ellipse. For the exposition of the Elliptic Law we have chosen the
random Hermitian matrix Ξn of dimension 20 and 500 its Monte-
Carlo simulation.
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Figures 7 and 8

This picture shows the elliptic support of the limit spectral
density of n.s.f. of random matrix An +Ξn considered in Theorem
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19.1. We have chosen the constant r = 1, ρ = 1. In this case we
have two domain like ellipses with one common point which look
like Sand clock . For the exposition of the Elliptic Law we have
chosen the random Hermitian matrix Ξn of dimension 20 and 300
its Monte-Carlo simulation.
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Figures 9 and 10
This picture shows the elliptic support of the limit Sand Clock

spectral density of n.s.f. of random matrix An + Ξn. We have
chosen the constant r = 1.5, ρ = 1. In this case we have two
separated domain like ellipses. For the exposition of the Elliptic
Law we have chosen the random matrix Ξn of dimension 20 and
100 its Monte-Carlo simulation.

7. THE CANONICAL EQUATION K91 FOR GROW-
ING MATRIZANT

∏m
i=1{In + In

f(i/n)
m + g(i/n)√

m
Ξ(i)

n } OF IN-
DEPENDENT RANDOM
ACE-MATRICES Ξ(i)

n WITH DIFFERENT
VARIANCES OF THEIR ENTREES

We consider the random matrizant
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m∏

i=1

[
In + In

f( i
m )

m
+

g( i
m )√
m

Ξ(i)
n

]

of random ACE(asymptotical constant entries) matrices Ξ(i)
n

whose entrees may have different variances.

8. V.I.C.T.O.R.I.A.-transform for the matriciant of the
growing dimension

We give a new method of deriving general canonical equation
for the V.I.C.T.O.R.I.A.-transform of normalized spectral func-
tions (n.s.f.)

νn(u, v) = n−1
n∑

k=1

χ{=λk(Z(m)
n×n) < u,<λk(Z(m)

n×n) < u}

of the product of random matrices (matriciant)

Z
(m)
n×n =

m∏

i=1

[
In×n + In×n

f( i
m )

m
+

g( i
m )√
m

Ξ(i)
n×n

]

of the independent matrices Ξ(i)
n , which was recently obtained in

for some particular cases on the base of free probability theory.
Here λk(Z(m)

n×n), k = 1, ..., n mean the eigenvalues of matrix, f(x)
and g(x) are certain functions, In×n is identity matrix and the
product of random matrices is taken from the left to the right.
We will use for quadratic matrices two notations: An×n and An.
We apply the REFORM-method and Girko’s theory of the proof
of the Circular law ([22-24]) for the deduction of the system of
canonical equations K91 for normalized spectral functions νn(u, v)
of this matriciant Z

(m)
n×n. The probability distributions of random
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matrices Ξ(i)
n×n, i = 1, 2, ... belong to the domain of attraction of

the Circular law.

9. G-method

In this section we show the power of our G-method with compari-
son to replica trick, the supersymmetry approach and free probabil-
ity theory , on the example of the product of two random matrices.
Other examples when we can consider more matrices will easily
follow from this example.
Step 1. We can establish the self averaging property of n.s.f. of
Permutation matrices A2n×2nA∗2n×2n due to the presence the log-
arithmic function in the V -transform .
Step 2. We can make the V -regularization choosing very small
parameter of regularization like α = n−q2 . Where q2 is a number
and for our theory the value of this number is not important. For
our purposes it is enough that this number is fixed and does not
depend on n.
Step 3. Then we extend det[αnI2n×2n + A2n×2nA∗2n×2n] once
again:

det[αnI2n×2n + A2n×2nA∗2n×2n]

= (−1)2n det
[

i
√

αnI2n×2n A∗2n×2n

A2n×2n i
√

αnI2n×2n

]

and now we consider the n.s.f. of Hermitian matrices

G4n×4n =
[

0 A∗2n×2n

A2n×2n 0

]
.

Step 4. We find a canonical equation for the Stieltjes transform
of the non-random accompanying n.s.f. µn(t, s, x).
Step 5. Then we can use the rough estimator of convergence of
the n.s.f. of the corresponding random permutation matrix with
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the speed of convergency like n−q3 . All calculations are almost the
same which were used in the G-theory.

10. G-method, the Berry-Esseen inequality

We are using the Berry-Esseen inequality, the random variable γ
and we do not pursue the precise order of convergency of n.s.f.
νn(G4n×4n, t, s, x, ) to the accompanying n.s.f. µn(t, s, x) :

sup
x
|νn(G4n×4n, t, s, x, )− µn(t, s, x)| ≤ cn−q3 , c > 0.

Then we can perform the limit procedure in V -transform.

11. G-method. Canonical equation K91 for the product
of two independent matrices with independent entries

Theorem . If the real matrices Ξ(j)
n = {ξ(n,j)

pl }, j = 1, 2; p, l =
1, ..., n be independent for every n = 1, 2, ... and their entries sat-
isfy the conditions of Circular law, Then for every t and s

lim
α↓0

p lim
n→∞



νn

[
t, s,

2∏

j=1

(In + εjΞ(j)
n )

]

+
1
4π

∫ ∞

α

(
∂2

∂s2
+

∂2

∂t2

)
1

−2i
√

y
bn

(
y, t, s

)
dy

}
= 0,

where bn

(
y, t, s

)
= 1

n

∑4n
p=1 r

(n)
pp

(
y, t, s

)
and r

(n)
pp (y, t, s), p =

1, ..., 4n satisfy the following system of canonical equations K91 :

r
(n)
kk =

([
iy(1/2)I4n×4n+B4n×4n−G4n×4n

(
y, t, s

)]−1
)

kk
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k = 1, ..., 4n, where

B4n×4n

(
t, s

)
=

(
b
(n)
ij

(
t, s

))j=1,...,4n

i=1,...,4n

=





0 0 Inτ (1/2) L1

0 0 L2 Inτ (1/2)

Inτ̄ (1/2) L∗2 0 0
L∗2 Inτ̄ (1/2) 0 0





,

Li = In + εiEΞ(i)
n

G4n×4n

(
y, t, s

)
=

(
g
(n)
ij

(
y, t, s

))j=1,...,4n

i=1,...,4n

=





ε2
1G

(1)
n 0 0 0

0 ε2
2G

(2)
n 0 0

0 0 ε2
1G

(3)
n 0

0 0 0 ε2
2G

(4)
n





,

G(1)
n

(
y, t, s

)
=

[
δil

1
n

4n∑
p=3n

r(n)
pp

(
y, t, s

)
σ

(n),1
pl

]

i,l=1,...,n

,

G(2)
n

(
y, t, s

)
=

[
δil

1
n

3n∑
p=2n

r(n)
pp

(
y, t, s

)
σ

(n),2
pl

]

i,l=1,...,n

,

G(3)
n

(
y, t, s

)
=

[
δil

1
n

2n∑
p=n

r(n)
pp

(
y, t, s

)
σ

(n),1
pl

]

i,l=1,...,n

,
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G(4)
n

(
y, t, s

)
=

[
δil

1
n

n∑
p=1

r(n)
pp

(
y, t, s

)
σ

(n),2
pl

]

i,l=1,...,n

.

There exists a unique solution of this equation in the class of
analytical functions in t and s.

After obtaining the results for n.s.f. of a single symmetric,
non symmetric and unitary random matrices we now move in this
paper toward the main goal, namely to the most general solu-
tion of the problems of the limit theorems of the theory of ran-
dom matrices: to find limit distributions of n. s. f. of random
matrices f [(Ξ(j)

n )k, (Ξ(j)∗
n )p, j, k, p = 1, 2, ...], where f(x1, x2, ...)

is an analytical function and Ξ(j)
n , j = 1, 2, ... are independent

ACE(Asymptotically Constant Entries)-random matrices (in par-
ticular, unitary random matrices). Particularly, using the canoni-
cal equation K91 we derive so called L.I.F.E.-Law: under a certain
conditions

∏m
j=1 Ξ(j)

n ∼ ˜L.I.F.E. ∼ {Ξ(1)
n }m.

Roughly speaking L.I.F.E. means that n.s.f. of the sum of
nonrandom matrix An and the power of a non Hermitian matrix
Hk

n with independent ACE-entries(Asymptotically Constant En-
tries) is approximately equal to n.s.f. of the sum of nonrandom
matrix An and the product of k independent random matrices
H

(1)
n H

(2)
n · · ·H(k)

n having the same structure as the initial random
matrix Hn but their entries may have any distributions from class
G3. The similar assertion we can prove for other certain func-
tion f [(Ξ(j)

n )k, (Ξ(j)∗
n )p, j, k, p = 1, 2, ...]. This assertion is a simple

Corollary from Equation K91.
By tradition of choosing the names of Laws in probability

theory(Arcsine law, Law of iterated logarithm, etc.) we call this
unusual behavior of the n.s.f. of the power of random matrix Ξk

n as
the Halloween Law keeping in mind that the appearance
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instead in n.s.f. of k copies of the same random matrix Ξn its k

independent copies Ξ(j)
n , j = 1, ..., k looks like phantom or illusion.

More important that the histogram and the density of this law
look like a hat that people wear during Halloween days(see these
pictures 7 and 8 below).

12. The ∼ ˜L.I.F.E. ∼-phenomenon
For the first time the powers of matrices Ξn from class G1 were
investigated by Wegmann. In our case when the matrix Ξn is
non Hermitian and belongs to the class G2 or G3 the Wegmann’s
method is not valid. Nevertheless, we can find some relatively sim-
ple relation for the spectra of functions of random matrices using
the L.I.F.E. phenomenon(the main statement): in the L.I.F.E.
sense the spectra of random matrix Ξk

n, Ξn ∈ G1 ÷ G3, where
k > 1 and the matrix Ξn is not Hermitian, approximately is equal
to the spectra of the product of k independent random matrices∏k

j=1 Ξ(j)
n , where Ξ(j)

n ≈ Ξn, the symbol ≈ staying between two
matrices Ξn and Hn means coincidence of distributions of these
matrices. (This assertion is a simple Corollary from Equation
K91.
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Figures 3 and 4.

The picture 3 shows the 300 Monte Carlo simulation of the
support of the accompanying spectral density of the sum of di-
agonal matrix A60 with six different diagonal entries a = 1, b =
−1, c = −1− i, d = i, e = −i, f = 1.5 + 1.5i chosen in equal parts
and the product of five independent random matrices with inde-
pendent entries Ξ(p)

60 = (ξ(p)
ij ), p = 1, 2, 3, 4, 5;E ξij = 0,E [ξij ]2 =

1/60, i, j = 1, ..., 60. The pictures 4 shows the 300 Monte Carlo
simulation of the support of spectral densities of the sum of the
same matrix A60 and the power of matrix: [Ξ(1)

60 ]5 and these pic-
tures give the conformation of the L.I.F.E-law: approximately
the support of spectral densities of two matrices A60 +[Ξ(1)

60 ]5 and
A60 +

∏5
p=1 Ξ(p)

60 are approximately the same.
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Figures 7, 8, 9 and 10
The picture 7 shows the 300 Monte Carlo simulation of the sup-
port of the accompanying limit spectral density p(x, y) = 1

5π (x2 +
y2)

1
5−1χ{x2 + y2 ≤ 1} of the product of five independent random

matrices with independent entries Ξ(p)
60 = (ξ(p)

ij ), p = 1, ..., 5;E ξij =
0,E [ξij ]2 = 1/60, i, j = 1, ..., 60. The picture 8 shows the Hal-
loween density for k = 5. This picture gives the conformation of
the L.I.F.E-law: approximately the supports of spectral densi-
ties of the product of five matrices

∏5
j=1 H

(j)
60 , and {H(1)

60 }5 are
the same. The pictures 9 and 10 shows the histograms(Halloween
Law) and support of the accompanying limit spectral density.
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These pictures give the conformation of the L.I.F.E-law. We
see that figure 8 looks like a hat that some people wear during
Halloween days.

13. Monte Carlo simulations for
Sombrero Law AnΞm

n

L.I.F.E. phenomenon is working also for a matrices AnΞk
n, where

An is a diagonal non random and Ξn is a random matrices. We
do not present here corresponding calculations, because all proofs
are almost the same as for matrices An + Ξk

n.

14. The border G93(t, s) of the support of
the accompanying spectral density p93(t, s)
for random matrices whose entries have
equal variances and nonzero
expectations for diagonal entries
It is difficult to find the accompanying probability spectral density
of the product of two matrices, but surprisingly more easily to find
the border of the support G of the accompanying spectral density
for random matrices.

Then from Theorem we obtain that the border of the support
G of the accompanying spectral density for random matrices with
equal variances. Now we can consider many interesting cases of
distribution of eigenvalues of the product of two matrices. For
example, if EΞn(1) = EΞn(2) = An,E |ξ(j)

pl −a
(j)
pl |2 = n−1, ε(j) =

1, j = 1, 2, then we have equation for the border of the support of
accompanying spectral density

1=
1
n

Tr
{
|τ |+(In +An)(In +An)∗− [

√
τ(In +An)∗+

√
τ̄(In +An)]

× [|τ |+(In +An)(In +An)∗]−1[
√

τ(In +An)∗+
√

τ̄(In +An)]
}−1

.
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The second example, if EΞ(1)
n = EΞ(2)

n = An and the matrix
In+An is a symmetric real matrix with eigenvalues λk, k = 1, ..., n.
then the border G91(t, s) of the support of the limit spectral den-
sity of the product of two matrices (In + Ξ(1)

n )(In + Ξ(2)
n ) is equal

to

1
n

n∑

k=1

1
√

t2 + s2 + λ2
k − |

√
τ̄ +

√
τ |2 λ2

k√
t2+s2+λ2

k

= 1.

We have chosen in the pictures below two points λk = 0.55, k =
1, ..., [n/2], λj = 2, j = [n/2] + 1, ..., n in two equal parts for all
eigenvalues, and similarly we have chosen in the second picture
eigenvalues 0.55; 1.8;3 in three equal parts and 0.55;1.6;2,4; 3,4 in
four equal parts. Then we can see the structure of the border sup-
port for the limit spectral density of the product of two matrices
(In + Ξ(1)

n )(In + Ξ(2)
n )
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Of course, we can consider any matrix An in our equation
for the border support, for example, we can consider diagonal
complex matrix, but behavior of border will be similar, i.e. if the
distance between diagonal entries of diagonal matrix An are large
enough, then the border support looks like several closed almost
circles.
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