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Abstract

A linear transmitter with correlated multiplicative and
additive Gaussian white noises may, under certain
conditions, display a stochastic resonance. We show
how this problem is related to that of a noisy logistic
equation.
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I. Linear kinetics and stochastic resonance

I Linear kinetics is easy to solve analytically.
Linear kinetics is a "skeletal" model of a few realistic
systems.
Linear kinetics is a final stage of many realistic,
dissipative processes.

I Gaussian white noise (GWN) corresponds to
equilibrium fluctuations.
Therefore. . .

I It will be nice to show that Stochastic Resonance
(SR) is present in linear systems driven by GWN.
However. . .

I SR is a phenomenon that is essentially nonlinear.

Can there be a way around?
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There have been many attempts to show LSR. These
I required colored noises;
I required a special preparation of the system (or the

signal);
I LSR was present only for transient times;
I LSR did not survive averaging over the phase;
I the power spectra were divergent, etc.

A robust linear stochastic resonance is still missing.

Many say it is simply not there.

Or isnt’t it?
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II. A noisy logistic equation

The logistic equation

ẋ = x(a− bx) (1)

a > 0, is one of the best known population models. Its
noisy generalization

ẋ = (1 + σξ(t))x(a− bx) (2)

has long since been discussed.

Lets admit that both the paramaters a, b fluctuate

ẋ = (a + pξm(t))x − (b + qξa(t))x2 . (3)

ξm, ξa are GWNs, possibly correlated.
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If we make the substitution

y =
1
x

(4)

Eq. (3) is formally converted to a linear equation

ẏ = −(a + pξm(t))y + b + qξa(t) . (5)

But can we do this substitution?

It turns out we can! In [1] Mao et al. have shown that, in
Ito interpretation, if p = 0 (only one noise is present),
solutions to (3) remain bounded and positive almost
surely. This proof was later generalized in [2] (PFG) to the
case of p 6= 0.
We can divide by x without risking a division by zero
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The linear transmitter

The lucky thing is, we can solve the linear equation

ẏ = −(a + pξm(t))y + b + qξa(t) (6)

exactly, provided we know what to do with the correlations
between the noises.

A parametric coupling between the dynamical variable
and the noise indicates a hidden nonlinearity.

Eq. (6) is an effective equation of motion — a "true"
dynamics is nonlinear.



Linear Stochastic
Resonance

P. F. Góra

Motivation

The linear
transmitter
Decomposing the noises

A couple of integrals

Excursion: A signal coupled
multiplicatively

Linear Stochastic
Resonance

The noisy logistic
equation

Summary

The linear transmitter

The lucky thing is, we can solve the linear equation

ẏ = −(a + pξm(t))y + b + qξa(t) (6)

exactly, provided we know what to do with the correlations
between the noises.

A parametric coupling between the dynamical variable
and the noise indicates a hidden nonlinearity.

Eq. (6) is an effective equation of motion — a "true"
dynamics is nonlinear.



Linear Stochastic
Resonance

P. F. Góra

Motivation

The linear
transmitter
Decomposing the noises

A couple of integrals

Excursion: A signal coupled
multiplicatively

Linear Stochastic
Resonance

The noisy logistic
equation

Summary

The linear transmitter

The lucky thing is, we can solve the linear equation
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Decomposing the noises

The GWNs ξa, ξm may be correlated:

〈
ξa(t)ξa(t ′)

〉
=

〈
ξm(t)ξm(t ′)

〉
= δ(t − t ′) , (7a)〈

ξa(t)ξm(t ′)
〉

= c δ(t − t ′) , c ∈ [−1, 1] . (7b)

Following the approach originated in [3], we represent the
noises as linear combinations of independent GWNs:

ξm(t) = ξ(t) , (8a)

ξa(t) = c ξ(t) +
√

1− c2 η(t) , (8b)

where ξ, η are uncorrelated GWNs.
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A couple of integrals

To calculate statistical properties of solutions to Eq. (5), we
need to know expectation values of three integrals:
The first is well-known [4] (Kubo)〈

exp
[∫ T

0 ϕ(t ′)ξ(t ′) dt ′
]〉

= exp
[

1
2

∫ T
0 [ϕ(t ′)]2 dt ′

]
, (9)

ξ is a GWN and ϕ is a regular function.
The other two were calculated in [5] (PFG)

〈
ξ(t1) exp

[∫ T
0 ϕ(t ′)ξ(t ′) dt ′

]〉
= ϕ(t1) exp

[
1
2

∫ T
0 [ϕ(t ′)]

2 dt ′
]
,

(10)〈
ξ(t1)ξ(t2) exp

[∫ T
0 ϕ(t ′)ξ(t ′) dt ′

]〉
= [δ(t1 − t2) + ϕ(t1)ϕ(t2)] exp

[
1
2

∫ T
0 [ϕ(t ′)]2 dt ′

]
. (11)
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Excursion: A signal coupled multiplicatively
[5] (PFG)

ẏ = −(a+pξ(t)+A cos(Ωt +ϕ))y +qc ξ(t)+q
√

1− c2 η(t)
(12)

Analytical results:

〈〈y(t)〉〉 = 1
2π

∫ 2π
0 〈y(t)〉dϕ =

− 1
2cpq

∫ t
0 e−(a− 1

2 p2)t ′ I0
(2A

Ω sin 1
2Ωt ′

)
dt ′ , (13)

convergent for p <
√

2a.

〈〈y(t)y(t − τ)〉〉 = (a complicated expression) , (14)

convergent for p <
√

a. Becomes stationary in the limit
t →∞.
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The constructive role of noise
The equation

ẏ = −(a+pξ(t)+A cos(Ωt +ϕ))y +qc ξ(t)+q
√

1− c2 η(t)

is, after a substitution

z = y − cq
p

, (15)

converted into

ż = −(a + pξ(t) + A cos(Ωt + ϕ))z − cq
p a

− cq
p A cos(Ωt + ϕ) + q

√
1− c2 η(t) . (16)

Correlations between the noises effectively introduce an
additive signal!
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Numerical results
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Numerical power spectra of the process (12) for various input signal frequencies and correlations

between the noises. The input signal frequency equals Ω = π/8 (panels (i)–(iii)) and Ω = 2π (panels

(iv)–(vi)). The multiplicative and additive noises are uncorrelated (c = 0) on panels (i), (iv), partially

correlated (c = 1/2) on panels (ii), (v), and fully correlated (c = 1) on panels (iii), (vi). Other parameters,

common for all panels, are a = 1/2, p =
√

a/2, q = 1/4, A = 1.

The higher harmonics present on panels (i)-(iii) indicate a nonlinear nature of
the coupling.
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(iv)–(vi)). The multiplicative and additive noises are uncorrelated (c = 0) on panels (i), (iv), partially

correlated (c = 1/2) on panels (ii), (v), and fully correlated (c = 1) on panels (iii), (vi). Other parameters,

common for all panels, are a = 1/2, p =
√

a/2, q = 1/4, A = 1.

The higher harmonics present on panels (i)-(iii) indicate a nonlinear nature of
the coupling.
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Back to the linear transmitter [6] (PFG)

The formal solution to the equation (6) reads

y(t) =
∫ t

0 e−a(t−t ′) exp
[
−p

∫ t
t ′ ξ(t

′′)dt ′′
]
×(

b + qc ξ(t ′) + q
√

1− c2 η(t ′)
)

dt ′ . (17)

The expectation value

〈y(t)〉 =
b− 1

2 cpq
a− 1

2 p2

(
1− e−(a− 1

2 p2)t
)

−→
t→∞

y∞ =
b− 1

2 cpq
a− 1

2 p2 . (18)

The expectation value exists if p <
√

2a.
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The variance

The variance:

D =
〈
y2(t)

〉
− 〈y(t)〉2 −→

t→∞
4b2p2−8abcpq+(4a2−4a(1−c2)p2+(1−c2)p4)q2

2(a−p2)(p2−2a)2 . (19)

The variance exists if p <
√

a.

The limiting cases:

D =
b2p2+(a− 1

2 p2)2q2

2(a−p2)(a− 1
2 p2)2

D = (bp∓aq)2

2(a−p2)(a− 1
2 p2)2

c = 0 c = ±1

The variance vanishes if c = ±1 and bp ∓ aq = 0.



Linear Stochastic
Resonance

P. F. Góra

Motivation

The linear
transmitter

Linear Stochastic
Resonance
Back to the linear
transmitter

The variance

Linear Stochastic
Resonance

Signal-To-Noise Ratio

LSR — conclusions

The noisy logistic
equation

Summary

The variance

The variance:

D =
〈
y2(t)

〉
− 〈y(t)〉2 −→

t→∞
4b2p2−8abcpq+(4a2−4a(1−c2)p2+(1−c2)p4)q2

2(a−p2)(p2−2a)2 . (19)

The variance exists if p <
√

a.

The limiting cases:

D =
b2p2+(a− 1

2 p2)2q2

2(a−p2)(a− 1
2 p2)2

D = (bp∓aq)2

2(a−p2)(a− 1
2 p2)2

c = 0 c = ±1

The variance vanishes if c = ±1 and bp ∓ aq = 0.



Linear Stochastic
Resonance

P. F. Góra

Motivation

The linear
transmitter

Linear Stochastic
Resonance
Back to the linear
transmitter

The variance

Linear Stochastic
Resonance

Signal-To-Noise Ratio

LSR — conclusions

The noisy logistic
equation

Summary

Linear Stochastic Resonance

Now add a signal:

ẏ = −(a + pξ(t))y + qc ξ(t) + b + q
√

1− c2 η(t)
+ A cos(Ωt + ϕ) (20)

We can analytically calculate the correlation function:

〈〈y(t)y(t + τ)〉〉 − 〈〈y(t)〉〉2 −→
t→∞

A2 cos Ωτ
2[(a− 1

2 p2)2+Ω2]
+

[
A2p2

4(a−p2)[(a− 1
2 p2)2+Ω2]

+ D
]

e−(a− 1
2 p2)τ ,

(21)

D is given by Eq. (19) above.
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Signal-To-Noise-Ratio

We can now calculate the power spectrum and the
Signal-To-Noise Ratio. For c = 1,

SNR = 10 log10
2A2(a−p2)(a− 1

2 p2)[(a− 1
2 p2)2+Ω2]

A2p2(a− 1
2 p2)2+2[(a− 1

2 p2)2+Ω2](bp−aq)2 . (22)

If c = 1, the SNR, as a function of q, the additive noise
strenght, has a maximum for bp − aq = 0.

A (weaker) maximum is also present for all c > 0.
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LSR — conclusions

I The LSR reported here is robust:
I needs GWN only;
I does not require any special preparations;
I characterized by a clear maximum of the SNR;
I persists to asymptotic times;
I survives phase averaging;
I parametric coupling means a hidden nonlinearity.

I Two factors are needed for the LSR:
1. The additive and multiplicative noises must be

correlated.
2. A constant forcing, apart form the external signal,

must be present.
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The noisy logistic equation

We turn back to the noisy logistic equation:

ẋ = (a + p ξm(t))x − (b + q ξa(t))x2 . (23)

The corresponding linear system can display a
vanishing variance and SR — can traces of those be

seen in the noisy logistic system?
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The Fokker–Planck equation

Results of [1] and [2] ensure that if x(0) > 0, the solution
remains positive and bounded almost surely. With that we
can construct the Fokker-Planck equation — otherwise
we would not know how to normalize the probability
distribution:

∂P(x ,t)
∂t = − ∂

∂x [(a− bx)xP(x , t)]

+ 1
2

∂2

∂x2

[
x2(p2 − 2cpqx + q2x2)P(x , t)

]
.(24)

We adopt the following sign convention: sgn(pq) = +1.
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Stationary solutions

If |c| 6= 1,

Pst(x) = Nx2(a−p2)/p2

(p2−2cpqx+q2x2)(a+p2)/p2

× exp

−2(bp−acq) arctan
�

qx−cp√
1−c2p

�
√

1−c2 p2q

 . (25)

I Normalizable if p <
√

2a — the corresponding linear system has
a convergent mean.

I If p <
√

a, Pst(x) goes to zero as x → 0+ — the corresponding
linear system has a convergent variance. For

√
a < p <

√
2a,

Pst(x) is mildly divergent at zero.
I If normalizable, Pst(x) ∼ x−4 for x →∞ for all values of

parameters.
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c = −1, p <
√

2a — normalizable stationary distribution:

Pst(x) = N x2(a−p2)/p2

(p+qx)2(a+p2)/p2 exp
[

2(bp+aq)
pq(p+qx)

]
. (26)

c = +1, any value of p such that bp − aq = 0:

Pst(x) = δ
(

x − p
q

)
(27)

c = +1, bp − aq 6= 0 — no normalizable solution.
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Add a deterministic signal. . .

. . . correspondng to, for example, seasonal changes in
the maximal population level:

ẋ = (a + p ξm(t))x − (b + A sin(Ωt +ϕ)+ q ξa(t))x2 . (28)

The corresponding linear system displays a SR. Does the
noisy logistic system display it?

If so, is it related to the LSR?

Is it related to the minima of the variance?
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Stochastic resonance in the system (28).
The upper panel — the condition p <

√
a

is satisfied, p = 0.5. The lower panel
— the condition p <

√
a is not satis-

fied, p = 1.1. Other parameters, com-
mon for the two panels, are a = b = 1,
A = 0.5, Ω = 2π. Curves presented cor-
respond, back to front, to c = 1.0, 0.99,
0.9 (lower panel only), 0.75, 0.5, 0.25, 0.0,
and −0.25, respectively.

One may expect that SR occurs where the
variance has its minimum. This is the case
when p <

√
a.

If
√

a < p <
√

2a, the system displays
a (weak) SR even in the regime where the
variance no longer displays a minimum.

The minimum of the variance and the SR
are different phenomena.
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I Correlations may induce surprising constructive
effects in linear systems

I Robust LSR is possible if the system is driven by
correlated additive and multiplicative GWNs

I Correlations influence the shape of stationary
distributions of the noisy logistic process

I Correlations lead to SR if the noisy logistic
system undergoes seasonal changes.
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