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White noise

The most popular form of a noise, or a random contamination of a signal, is
called the white noise.

Formally, the white noise is a stochastic process η(t) such that

• for any possible t, η(t) is a Gaussian random variable with the standard
distribution

N(0,1)(η) =
1√
2π
e−

1
2η

2
(1)

• for any possible t, t′ 〈
η(t)η(t′)

〉
= δ(t− t′) , (2)

where 〈· · · 〉 stands for stochastic averaging and δ is the Dirac δ-function.
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It follows immediately that

〈η(t)〉 = 0 (3a)〈
(η(t))2

〉
= 1 (3b)

We will frequently use the abbreviation GWN for the Gaussian White Noise.

A discrete GWN is an infinite sequence {ηn} ∞−∞ such that any ηn is a Gaussian
random variable with the standard N(0,1) distribution, satisfying

〈ηn〉 = 0 (4a)
〈ηnηm〉 = δnm (4b)

Equations (2) and the second of the equations (4) say that η’s taken at different
times are statistically independent.
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Power spectrum of the white noise
. . . or why is this noise “white”?

The white noise is stationary and we can obtain its power spectrum from the
Wiener-Khinchin theorem

N(f) =
〈
|N (f)|2

〉
(5)

where N (f) is the Fourier transform of the GWN:

N (t) =

∞∫
−∞

η(t)e2πift dt = lim
T→∞

T/2∫
−T/2

η(t)e2πift dt . (6)

In (5) we need to take the statistical average as the Fourier transform of a sto-
chastic process is also a stochastic process, but in Fourier domain.
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Setting aside the limit to simplify notation, we get

N(f) =

〈∣∣∣∣∣∣∣∣
T/2∫
−T/2

η(t)e2πift dt

∣∣∣∣∣∣∣∣
2〉

=

〈 T/2∫
−T/2

T/2∫
−T/2

η(t)η(t′)e2πifte−2πift′ dt dt′
〉

=

T/2∫
−T/2

T/2∫
−T/2

〈
η(t)η(t′)

〉
e2πifte−2πift′ dt dt′

=

T/2∫
−T/2

T/2∫
−T/2

δ(t− t′)e2πif(t−t′) dt dt′ =

T/2∫
−T/2

dt = T . (7)
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We can see that the power spectrum (7) is divergent as T →∞: the white noise
contains infinite power. However, any practically interesting process must have
a finite duration (the process is exactly zero outside a certain interval) and we do
not need to evaluate infinite integrals. The mathematically correct white noise is
only a model, an idealisation of more realistic processes.

Another consequence of (7) is that the power spectrum is flat: The power den-
sity does not depend on the frequency, all frequencies contribute equally to the
power spectrum. Therefore we call this process white.
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Reasons for using GWN

1. GWN has nice mathematical properties that are easy to handle ,.

2. The other reason for using GWN comes by virtue of the Central Limit The-
orem:

Theorem: Let {x1, x2, . . . xn} be a random sample, or a sequence of indepen-
dent and identically distributed (iid’s) random variables, drawn from a distribution
of expected value given by µ and finite variance given by σ2. Then the distribu-
tion of the rescaled sample average

√
n

1

n

n∑
i=1

xi − µ

 (8)

approaches the normal distribution N(0, σ2) as n→∞.
Copyright c© 2009-22 P. F. Góra 3–7



It is a consequence of the Central Limit Theorem that if a random distribution is
an accumulation of many microscopic, very difficult to predict events, like colli-
sions with air molecules, their collective effect is practically Gaussian. Therefore,
many random events, like thermal fluctuations of local density in a gas, thermal
currents, fluctuations of the magnetic field of the Earth and even measurement
errors, are very well approximated by a GWN. A more thorough analysis shows
that a series formed by fluctuations in any macroscopic body in thermal equili-
brium are approximated by GWN. It was one of the discoveries of Marian Smo-
luchowski, a great Polish physicists.
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Marian Smoluchowski (1872-1917)
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The random walk

GWN may be considered as a series of steps {ηn} taken by a 1-d random walker.
The cumulative effect of those steps

xn = xn−1 + ηn (9)

is called a random walk or a Brownian motion.
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It is easy to see that the Brownian motion (9) satisfies

xn =
n∑
i=1

ηi . (10)

Therefore 〈xn〉 = 0 and

〈
x2
n

〉
=

〈 n∑
i=1

ηi

2〉
=

〈 n∑
i=1

n∑
j=1

ηiηj

〉

=
n∑
i=1

n∑
j=1

〈
ηiηj

〉
=

n∑
i=1

n∑
j=1

δij =
n∑
i=1

1

= n . (11)
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Probability: α-stable distributions
A probability distribution is α-stable if the sum of two independent random variables drawn from
this distribution has the same distribution, possibly shifted and rescaled. The Gaussian (or nor-
mal) distribution is α-stable. There are infinitely many α-stable distributions but the Gaussian
distribution is the only α-stable distribution that has a finite mean and a finite variance. Two other
well known α-stable distributions are
• Cauchy distribution:

ρ(x) =
1

π
·

1

1 + x2

(does not have a variance, has a mean as a principal value only)
• Lévy-Smirnov distribution (x > 0):

ρ(x) =
1√
2π

x−3/2 e−
1

2x

(does not have neither a variance, nor a mean).
If we generalize the Central Limit Theorem and omit the part about a finite mean and a finite
variance, it turns out that the distribution of the sample average approaches an α-stable distri-
bution.
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Wiener filter (optimal filter)

A system generates a stationary signal u(t). We record this signal with a device
that has a known response function r(t). In addition, the signal is contaminated
with Gaussian White Noise (GWN), not correlated with the signal. We actually
register

c(t) = s(t) + η(t) =

∞∫
−∞

r(t− τ)u(τ) dτ + η(t) . (12)

We record c(t), we know r(t), we make assumptions about η(t). What can we
say about u(t)?
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We will construct an estimate ũ(t) that is optimal in the least squares∗ sense.〈 ∞∫
−∞
|u(t)− ũ(t)|2 dt

〉
= minimum , (13)

〈· · · 〉 stands for averaging over realizations of the noise. By Parseval identity we
have for the Fourier transforms〈 ∞∫

−∞

∣∣∣U(f)− Ũ(f)
∣∣∣2 df〉 = minimum . (14)

S(f) = U(f)R(f). We seek an estimate in the Fourier domain:

Ũ(f) =
C(f)Φ(f)

R(f)
. (15)

∗The errors are Gaussian!
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We need to minimize with respect to Φ:

〈 ∞∫
−∞

∣∣∣∣∣[S(f) +N(f)]Φ(f)

R(f)
−
S(f)

R(f)

∣∣∣∣∣
2

df

〉

=

∞∫
−∞
|R(f)|−2

〈
|(S(f) +N(f))Φ(f)− S(f)|2

〉
df

=

∞∫
−∞
|R(f)|−2

〈
|S(f)|2|Φ(f)|2 + S(f)N∗(f)|Φ(f)|2

+ S(f)∗N(f)|Φ(f)|2 + |N(f)|2|Φ(f)|2 − |S(f)|2Φ(f)

−N(f)S∗(f)Φ(f)− |S(f)|2Φ∗(f)−N∗(f)S(f)Φ∗(f) + |S(f)|2
〉
df

(16)
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Products of the noise and the signal are marked in red. Their averages vanish
by the assumption of their statistical independence. All that remains is

∞∫
−∞
|R(f)|−2

(
|S(f)|2

(
|Φ(f)|2 −Φ(f)−Φ∗(f) + 1

)
+
〈
|N(f)|2

〉
|Φ(f)|2

)
df =

∞∫
−∞
|R(f)|−2

(
|S(f)|2|1−Φ(f)|2 +

〈
|N(f)|2

〉
|Φ(f)|2

)
df = minimum .

(17)
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Assuming that Φ is real, (17) is minimized for:

Φ(f) =
|S(f)|2

|S(f)|2 +
〈
|N(f)|2

〉 . (18)

The power spectra are defined for positive frequancies only but we want to have
a filter that acts on components with negative frequencies as well. We therefore
generalize (18) to

Φ(f) =
|S(|f |)|2

|S(|f |)|2 +
〈
|N(|f |)|2

〉 . (19)

This is the Wiener filter , also known as (AKA) the optimal filter . We estimate the
average noise level via the power spectrum. The filter (19) (almost) vanishes in
a region where there is (almost) no signal, and is close to unity where there is
(almost) no noise.
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Caveat emptor!

In practice, we try to guess both |S(f)|2 and |N(f)|2, using the same power
spectrum. Let P (f) be the power spectrum. For signals independent form the
noise, P (f) = |S(f)|2 +

〈
|N(f)|2

〉
. Therefore, we need to use

Φ(f) =


P (|f |)− |N(|f |)|2

P (|f |)
if P (|f |) > |N(|f |)|2 ,

0 otherwise.
(20)

P (f) stands for the power spectrum of the full signal c(t). |N(f)|2 is an appro-
ximate power spectrum of the noise, usually fitted to the high frequency part. It is
most important that Φ(f) > 0. P (f) can be calculated with a window function.

Copyright c© 2009-22 P. F. Góra 3–19



Noisy and clean signals
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Naive denoising, P (f) < threshold⇒ C(f) = 0, fails:
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Wiener filter (square window)
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Wiener filter (Welch window)
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A common form of noise
Frequently, the power spectrum of the noise has the form

N(f) =
N0

1 +
∣∣∣ ff0

∣∣∣a . (21)

We estimate N0, f0, a by fitting Eq. (21) to “experimental” data.

10-6

10-5

10-4

10-3

10-2

10-1

10 0

10 1

2-6 2-4 2-2 2 0 2 2 2 4 2 6 2 8

N
(f

)

f

N0 = 1, f0 = 1, a = 2
N0 = 1, f0 = 4, a = 2

N0 = 1/2, f0 = 1, a = 3/2

For |f | � 1, N(f) ∼ |f |−a. In the log-log
plot, the “tail” is a straight line with a slope
−a. a > 1!
If 1 < a < 2, we have a fractal noise.
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Example
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A fitted line (21) with N0 = 9.5 · 10−4, f0 = 5/32, a = 1.9.
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In practice, the spectra are of lower quality. . .

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

2-6 2-5 2-4 2-3 2-2 2-1 2 0 2 1 2 2 2 3 2 4

P
(f

)

f

A fitted line (21) with N0 = 9.5 · 10−4, f0 = 5/32, a = 1.9.

Copyright c© 2009-22 P. F. Góra 3–26



Before filtering
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After filtering
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Spectrum after filtering
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Filtering the filtered: A cascade Wiener filter
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Spectrum after the cascade filter
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Yet another example
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frequencies.
Copyright c© 2009-22 P. F. Góra 3–32



10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

2-2 1 22 24 26 28

f

P
(f

)

10-12

10-10

10-8

10-6

10-4

10-2

100

2-2 1 22 24 26 28

f

power spectrum of the clean signal

P
(f

)

The power spectrum of the signal The power spectrum of the clean signal

Copyright c© 2009-22 P. F. Góra 3–33



-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8

The filtered signal

Copyright c© 2009-22 P. F. Góra 3–34



Wiener filter and non-Gaussian noises

The Wiener filter is optimal under the assumption that the noise is Gaussian.
How does the Wiener filter perform for non-Gaussian noises? In particular, how
does the filter perform if the second or the first moments of the noise do not exist,
or if the noise has “heavy tails”?

We will analyse a process generated with

g(t) = sin 2πt+
1

16
ζ(t) , (22)

with ζ(t) drawn from the Cauchy distribution and 〈ζ(t1)ζ(t2)〉 = 0 for t1 6= t2.
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1st realization: The signal before filtering
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1st realization: The power spectrum of the unfiltered signal
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1st realization: After filtering
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1st realization: After filtering twice, in a cascade
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So far, so good.

The signal has a unique, and known, characteristic frequency. Note that (i) the
amplitude of the filtered signal has dropped (the filter is lossy), and (ii) the

average of the denoised signal is shifted from zero,

Now, do the same trick with a different realization of the same process (22):
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2nd realization: The signal before filtering
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2nd realization: Power spectrum of the unfiltered signal
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2nd realization: After filtering
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The signal has deteriorated as a result of filtering!
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Conclusions?

• If the second moment of the noise contaminating the signal does not exist,
in particular, if the noise is a Lévy process, it may so happen that the Wiener
filter filters out the noise.

• It may also happen that the Wiener filter deteriorates the signal!

• Either of the above may happen for different realizations of the same pro-
cess.

• There are no rules.

• If the noise is Gaussian and the signal is stationary , the filter cleans the
noise almost surely (with probability 1 in the limit of an infinite signal).
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