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Joseph effect

According to the Book of Genesis, patriarch Joseph interpreted dreams of
a pharaoh:

Pharaoh dreamed that he was standing by the Nile,
and behold, there came up out of the Nile seven
cows, attractive and plump, and they fed in the reed
grass. And behold, seven other cows, ugly and thin,
came up out of the Nile after them, and stood by the
other cows on the bank of the Nile. And the ugly, thin
cows ate up the seven attractive, plump cows.

Gen. 41
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Joseph interpreted this dream that after seven years of abundant harvests
there would be seven years of poor harvests and provisions needed to be
made to feed the people during the years of poor harvests. As harvests in
ancient Egypt depended entirely on Nile flooding, this can be interpreted as
seven years of high flooding to be followed by seven years of low flooding.
We can see that good/bad years tend to cluster . Benoit Mandelbrot has
coined the term “Joseph effect” for this phenomenon. The ancient people
understood that this clustering was a very important natural phenomenon
and included its description, in a literary form, in their holy book.
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Consider a random time series that can assume only two values,
{+1,−1}.

The lowest curve: similar states tend to cluster. The middle curve: an uncorrelated series.
The upper curve: an anticorrelated series that tends to flip its state at each step (a blue
noise).
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The Aswan High Dam

photo: NASA
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The Aswan Dam history

around 1000s The Arabs first attempt to regulate the flooding of the Nile
1889-1902 The British construct the first dam in Aswan
1907-1912 The dam is raised
1929-1933 The dam is raised for the second time

1946 The dam nearly overflows
Decision is taken to build a new dam

1954 Design of a new dam begins
1960 Construction of The Aswan High Dam begins
1964 The reservoir starts to fill
1970 Construction ends
1976 The reservoir reaches its capacity
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The Nile minima

In 1951, a British engineer, Harold Hurst, studied historic records on Nile
minima:
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Moving averages do not flatten the series!
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Wet years cluster, dry years cluster — Joseph effect

The series seems to be self-similar — it behaves similarly on (nearly) all
scales
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Another example — tree rings

Copyright c© 2009-21 P. F. Góra 9–9



Correlations in the Nile minima
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Long-range correlations, decreasing according to a power law
(the exponent ∼ −0.35)
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“Ordinary” correlations

The autocorrelation function of a stationary ARMA(p,q) process decreases
rapidly as it is bounded from above

|ρk| 6 C Rk , C > 0 , 0 < R < 1 . (1)

In contrast to that, long-memory processes have autocorrelations that are
not necessarily very large but persist for very long times.
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Long Range Dependencies

A stochastic process {ξn} is said to have Long Range Dependencies (or a
long range memory) if its autocorrelation function ρk =

〈
ξnξn+k

〉
has the

asymptotic form

ρk ∼ k2d−1L(k) as k →∞ (2)

where −1
2 < d < 1

2 and L(k) is slowly varying at infinity:

∀z > 0: lim
t→∞

L(zt)

L(t)
= 1 (3)

Example: Constant functions and logarithms are slowly varying at infinity.
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Examples of Long Range Dependencies

• Internet traffic — can impact heavily on queuing

• Telecommunications

• Hydrological phenomena

• Financial data (at least before the crisis ,)

• Sunspots

• Climate; sequences of dry/wet years

• Movements of foraging animals

• fMRI signals, etc

Remember: GWN and “mild” forms of Gaussian coloured noises implicitly
assumed some forms of thermal equilibrium.

Why should we expect GWN in non-equilibrium systems?
No reason. Not the case.

Copyright c© 2009-21 P. F. Góra 9–13



Fractional Gaussian noise (fGn)

{ξn} — a Gaussian process, usually zero-mean, whose autocorrelation
function satisfies

ρk =
〈
ξnξn+k

〉
=
σ2

2

(
|k − 1|2H − 2|k|2H + |k + 1|2H

)
(4a)

and H ∈ [0,1]. For large k and H 6= 1
2:

ρk ' σ2H(2H − 1)k−(2−2H) (4b)

H is also called the Hurst exponent. H = d+ 1
2, cf. (2).
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Examples of fGn’s
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Properties of fGn

• fGn is stationary

• fGn is self-similar

• For H ∈
[

1
2,1

]
, fGn displays Long Range Dependence

• For H = 1
2, fGn reduces to GWN

• For H ∈
[
0, 1

2

]
, fGn has negative correlations
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Power spectrum of fGn

Since fGn is stationary, Wiener-Khinchin theorem holds and we can calcu-
late the power spectrum by Fourier transforming (4a). We get

P (f) = Cσ2
∣∣∣e2πif − 1

∣∣∣2 ∞∑
k=−∞

1

|f + k|2H+1
(5a)

for |f | 6 1
2. If H 6= 1

2,

P (f) ∼ Cσ2|f |1−2H for f → 0 (5b)

fGn displays power-law behaviour for low frequencies (or long waves).
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Estimating the Hurst exponent

We can see from (5b) that if a straight line with a slope α (α < 0) (in a
log-log scale) is fitted to the power spectrum, then

H =
1− α

2
(6)
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Fractional Brownian Motion (fBm)

Let {ξk} be a fGn. Then

Xn =
n∑

k=1

ξk (7)

is called a Fractional Brownian Motion. Observe that

Xn = Xn−1 + ξn (8)

The autocorrelation function

〈XnXm〉 =
σ2

2

(
|n|2H + |m|2H − |n−m|2H

)
(9)

The variance then satisfies 〈
X2
n

〉
= σ2|n|2H (10)
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Properties of fBm

• fBm is non-stationary

• For H ∈
[

1
2,1

]
, fBm is a superdiffusion

• For H = 1
2, fBm is a normal diffusion

• For H ∈
[
0, 1

2

]
, fBm is a subdiffusion

• Super- and subdiffusion go under a joint term, anomalous diffusion

� But not all anomalous diffusions are fBm’s!
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Detrended Fluctuation Analysis (DFA)

Given a (possibly) fractional series {xn}, do the following:

1. Calculate the average 〈xn〉

2. Convert the series into a “random walk”, i.e., calculate the cumulative
sums:

Xn =
n∑

k=1

(xk − 〈xn〉) (11)

3. Divide the series into segments of length L and fit a straight line within
each segment. Let the line be Xn = a · n+ b.
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Cumulative Nile minima series divided into segments of length 32.
A straight line, representing a local trend, is fitted within each segment.
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4. Within each segment, calculate

F (L) =

√√√√√1

L

i0+L−1∑
i=i0

(Xi − a · i− b)2 (12)

5. Calculate the average F̄ (L) over all segments of the same length.

6. If F̄ (L) ∼ Lα, the series is fractional. For fGn, α is the Hurst exponent,
H.
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Results of DFA applied to the Nile minima. The fit gives H ' 0.93.
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Another approach - ARFIMA

Remember the time shift operator (cf. Lecture 5, Eq. 2): Bzn = zn−1.
With this operator, an ARMA(p,q) process can be written as

φ(B)xn = σ θ(B)ηn , (13)

where {ηn} is GWN, φ, θ are polynomials or orders [, q, respectively,
whose roots lie outside the unit circle. Similarly, an ARIMA(p,d,q) can be
written as

φ(B)(1−B)dxn = σ θ(B)ηn , (14)

where, additionally, d ∈ N.

A presence of long-range correlations in a time series suggests a need for
differentiating to achieve stationarity, but taking a first difference may be
too extreme. This motivates the notion of fractional differencing.
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Fractionally integrated processes

Therefore, we consider processes of the form (14), but with −1
2 < d < 1

2:

φ(B)(1−B)dxn = σ θ(B)ηn , −
1

2
< d <

1

2
(15)

Such processes are called ARFIMA(p,d,q).

For d > −1, the operator (1−B)d can be defined by the binomial expan-
sion:

(1−B)d =
∞∑
j=0

πjB
j (16a)

where

π0 = 1 , πj =
Γ(j − d)

Γ(j + 1)Γ(−d)
=

∏
0<k6j

k − 1− d
k

(16b)
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Fractionally integrated white noise

An ARFIMA(0,d,0) is a fractionally integrated white noise

(1−B)dwn = σ ηn (17a)

or

wn = σ (1−B)−dηn = σ
∞∑
j=0

ψjηn−j (17b)

where

ψ0 = 1 , ψj =
∏

0<k6j

k − 1 + d

k
∼

1

Γ(d)
jd−1 as j →∞ . (17c)
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Coefficients ψj, cf. Eq. (17c), for various values of d. There is no “natural”
cutoff, one needs to be taken arbitrarily.
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A cutoff

Formally, the summations in (16) and (17) extend to infinity. In practice, we
need to introduce a cutoff to make the sums finite so that can be handled in
a finite time. There are no definite results on how large this cutoff must be,
but some research suggest that a cutoff of the order ∼100 in most cases
is large enough. Therefore, instead of (16) we take

(1−B)d =
100∑
j=0

πjB
j (18)

and similarly for (17).

Copyright c© 2009-21 P. F. Góra 9–29



Variance and autocorrelation of the fractionally integrated noise

The variance of this process is

〈
w2
n

〉
= σ2 Γ(1− 2d)

[Γ(1− d)]2
. (19)

and the autocorrelation function

ρl(w) =
Γ(l + d)Γ(1− d)

Γ(l − d+ 1)Γ(d)
=

∏
0<k6l

k − 1 + d

k − d
. (20)
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A popular interpretation

ARFIMA(p,d,q) can be interpreted as as ARMA(p,q) driven by a fractionally
integrated white noise:

φ(B)(1−B)dxn = σ θ(B)ηn (21a)

therefore

φ(B)xn = σ θ(B)wn (21b)

where

(1−B)dwn = ηn (21c)
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The power spectrum

From the above representation we can see that the power spectrum of a
general ARFIMA(p,d,q) process is

P (f) = 2σ2
∣∣∣1− e−2πif

∣∣∣−2d

∣∣∣θ(e−2πif)
∣∣∣2∣∣∣φ(e−2πif)
∣∣∣2 (22)

where 0 6 f 6 1
2. Note that P (f) ∼ f−2d for f → 0 which is a characte-

ristic feature of the spectrum of long memory processes.
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ARFIMA(1,d,0)

In theory, ARFIMA(p,d,q) processes of arbitrary orders can be used. In
practice, however, processes with small p,q are deemed to be most useful.

Consider ARFIMA(1,d,0):

(1− βB)(1−B)dxn = σ ηn (23a)
xn = (1− βB)−1wn (23b)

where wn is (17) and −1 < β < 1. This process has the autocorrelation function

ρl =
ρl(w)

1− β
F (d+ l,1; 1− d+ l;β) + F (d− l,1; 1− d− l;β)− 1

F (1 + d,1; 1− d;β)
(24)

where F (a, b; c;x) is the hypergeometric function.
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ARFIMA(0,d,1)

(1−B)dxn = σ (1− αB)ηn , −1 < α < 1 . (25)

The autocorrelation function is

ρl = ρl(w)
al2 − (1− d)2

l2 − (1− d)2
, (26a)

a = (1− α)2
[
1 + α2 −

2αd

1− d

]−1
. (26b)
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