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All kinds of time series taht have been discussed so far, and some of those that
will be discussed in the future, have their multivariate (or vector) counterparts.
For example, a process

xn = A1xn−1+A2xn−2+ · · ·+Apxn−p+B0ηn+B1ηn−1+ · · ·+Bqηn−q
(1)

is a vector autoregressive, moving average process VARMA(p,q). In (1), xn ∈
Rm is a m-dimensional time series, xn−k are its past values, ηn in a n-
dimensional GWN, similar for its past values, and A1, . . . ,Ap,B0, . . . ,Bq ∈
Rm×m are constant, real matrices. It is also possible to consider series in which
the dimensionality of the “innovations” η’s is different from that of the time series;
in that case the matrices Bj are not square, but rectangular.

Copyright c© 2018-21 P. F. Góra 7–2



The need to discuss such processes arises when we observe more than one
time series and we expect that they mutually influence each other.

Example

Two processes

xn = α11xn−1 + α12yn−1 + σxηx,n (2a)

yn = α21xn−1 + α22yn−1 + σyηy,n (2b)

together form a VAR(1) process with uncorrelated (independent) noises.
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VAR(1)

For simplicity, we shall only deal with processes VAR(1), or of the type (2), or
more generally,

xn = Axn−1 + Σηn (3)

where Σ = diag{σ1, σ2, . . . , σm}meaning that the individual components of the
vector noise are uncorrelated.
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If the matrix A in (3) can be diagonalized, i.e. if there exists an invertible matrix
S such that

S−1AS = Adiag = diag{λ1, . . . , λm} (4)

the vector process (3) can be “diagonalized”, or represented as a collection of
series that no longer influence each other. Indeed, multiplying (1) by S−1 from
the left, we get

zn = S−1xn = S−1ASS−1xn−1 + S−1Σηn = Adiagzn−1 + S−1Σηn (5)
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Notes

1. There still may be some interdependence between different components of
zn as the matrix S−1Σ is, in general, not diagonal and the noises acting on
various components of zn get correlated.

2. If the matrix A in (3) is not symmetrix, the “diagonalized” time series zn may
become complex .

3. For processes of higher orders VAR(p), a “diagonalization” in the spirit of
Eq. (5) is possible only if all the matrices A1, . . . ,Ap commute.
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Embedding in a higher dimension

If we have a general VAR(p) process

xn = A1xn−1 + A2xn−2 + · · ·+ Apxn−p+ Σηn (6)

we can formally represent it as a VAR(1) process, but in a space of dimensiona-
lity m× p. In block notation,

xn
xn−1...
xn−p+2
xn−p+1

 =


A1 A2 · · · Ap−1 Ap

I 0 · · · 0 0
... ... . . . ... ...
0 0 · · · I 0




xn−1
xn−2...
xn−p+1
xn−p

+ Σ


ηn
0
...
0
0

 . (7)
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Stationarity of VAR(1)

From the “diagonalized” form of a VAR(1) process, we can clearly see that the
process is stationary, if and only if all eigenvalues of the matrix A satisfy

∀i = 1, . . . ,m : |λi| < 1 , (8)

provided these eigenvalues exist. If any of the eigenvalues has a modulus that
is greater than 1, the process is not stationary and explodes.

Note that the similarity transformation (4) and its inverse do not change the eige-
nvalues.
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Cross-correlations

The most important quantity to analyse while dealing with multvariate series is
the cross-correlation. Let xjn be the j-th component of the vector xn. Then

ρjk(l) =
1

σjσk

〈(
xjn −

〈
xjn
〉) (

xkn+l −
〈
xkn
〉)〉

(9a)

where

σj =

√〈(
xjn −

〈
xjn
〉)2〉

. (9b)

Note that in general, %jk(l) 6= %kj(l).
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Because in practice we have only a single realization of the process at our di-
sposal, we cannot do the statistical averaging. Therefore, instead of (9) we use

〈
xjn
〉
=

1

N

N∑
n=1

xjn (10a)

σj =

√√√√√ 1

N

N∑
n=1

(
xjn −

〈
xjn
〉)2

(10b)

rjk(l) =
1

(N − l)σjσk

N−l∑
n=1

(
xjn −

〈
xjn
〉) (

xkn+l −
〈
xkn
〉)

(10c)

where N is the length of the time series.
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Formal expressions for correlations of VAR(1)

Multiplying Eq. (3) from the right by ηTn and taking the statistical average, we get

〈
xnη

T
n

〉
= A

〈
xn−1η

T
n

〉
+ Σ

〈
ηnη

T
n

〉
(11)

The first average on the right-hand side of Eq. (11) vanishes as the process is
causal and cannot depend on future noises. The other average gives the unit
matrix, I. Therefore, 〈

xnη
T
n

〉
= Σ (12)

Now let

Γ(l) =
〈
xnxTn−l

〉
=
〈
xnxTn+l

〉
(13)
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where the last equality holds by virtue of stationarity.

Γ(0) =
〈
xnxTn

〉
= A

〈
xn−1xTn

〉
+ Σ

〈
ηnxTn

〉
= A Γ(1)T + ΣΣT (14)
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On the other hand,

Γ(1) =
〈
xnxTn−1

〉
= A

〈
xn−1xTn−1

〉
+ Σ

〈
ηnxTn−1

〉
= AΓ(0) (15)

Γ(2) = AΓ(1) (16)

Γ(3) = AΓ(2) (17)

· · ·

where we have used stationarity and causality.

Therefore,

Γ(l) = AlΓ(0) (18)
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Finally, to calculate Γ(0), we can combine (14) and (15). First, we transpose (15)

Γ(1)T = Γ(0)AT (19)

as Γ(0) is symmetric.

Then

Γ(0) = A Γ(1)T + ΣΣT

= AΓ(0)AT + ΣΣT (20)

which can be solved for elements of Γ(0). For stationary VAR(1) processes the
solution exists.

We can see from Eq. (20) that if A is not diagonal, Γ(l > 0) is not diagonal,
either.
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Example 1

 x1n
x2n

 =

 2
3

1
5

1
5

2
3

  x1n−1
x2n−1

+
1

4

 η1n
η2n

 (21)

 0  32  64  96  128
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Example 2

 x1n
x2n

 =

 2
3

1
5

1
5 −

2
3

  x1n−1
x2n−1

+
1

4

 η1n
η2n

 (22)

 0  32  64  96  128
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Example 3

 x1n
x2n
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  x1n−1
x2n−1

+
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 (23)

 0  32  64  96  128

Copyright c© 2018-21 P. F. Góra 7–19



-1

-0.5

 0

 0.5

 1

 0  4  8  12  16  20  24  28  32

r11

-1

-0.5

 0

 0.5

 1

 0  4  8  12  16  20  24  28  32

r21

-1

-0.5

 0

 0.5

 1

 0  4  8  12  16  20  24  28  32

r12

-1

-0.5

 0

 0.5

 1

 0  4  8  12  16  20  24  28  32

r22

Copyright c© 2018-21 P. F. Góra 7–20



Example 4 — one process drives another

 x1n
x2n
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 (24)

 0  32  64  96  128
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Example 5 — “non-diagonalizable” process

 x1n
x2n

 =

 2
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 (25)
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Example 6 — non-symmetric matrix, negative cross-correlations

 x1n
x2n
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 (26)
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Example 7 — a linear trend

 x1n
x2n

 =

 3
4

1
4

1
4

3
4

  x1n−1
x2n−1

+
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4

 η1n
η2n

 (27)

 0  500  1000  1500  2000  2500  3000  3500  4000
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The matrix in (27) has eigenvalues 1, 12. The unit eigenvalue causes a linear
trend. The series of first differences, x1n+1 − x

1
n, x

2
n+1 − x

2
n are stationary.

 0  500  1000  1500  2000  2500  3000  3500  4000
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Example 8 — another kind of nonstationarity

 x1n
x2n

 =
1√
2

[
1 1
−1 1

]  x1n−1
x2n−1

+
1

4

 η1n
η2n

 (28)

This matrix has eigenvalues λ1,2 = 1√
2
(1± i),

∣∣∣λ1,2∣∣∣ = 1.
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Noise induced correlations

If the noises are correlated, components of a multivariate process can be corre-
lated even though there is no direct interactions between them — see note below
Eq. (20). Consider process (3) but with a diagonal A = diag{α1, . . . , αm} and
a not diagonal Σ. In Eqns. (18),(18) Al are diagonal, but as ΣΣT is not diago-
nal, Γ(l) has off-diagonal terms corresponding to cross-correlations.
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Example 9

The simples case of noise-induce correlations occurs when the noises acting on
all components of a multivariate process are identical. Consider

x1n = α1 x
1
n−1 + σηn (29a)

x2n = α2 x
2
n−1 + σηn (29b)

with α1 = 0.9, α2 = 0.5, σ = 1.
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Example 10

x1n = α1 x
1
n−1 + σηn (30a)

x2n = α2 x
2
n−1 − σηn (30b)

with α1 = 0.9, α2 = 0.5, σ = 1.
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Fitting parameters to a VAR(1) model

The following procedure works for stationary VAR(1) processes only. If com-
ponents of a multivariate process display apparent nonstaionarity, like trends or
seasonalities, we should detrend them first by taking series of first differences,
or of differences between terms offset by some k > 1 in case seasonalities, and
fit parameters to the stationary series that results.

We replace exact values of Γ(l) by their “experimental” approximations, calcu-
lated form the multivariate series at hand. Then we use Eq. (15) to calculate
elements of A:

Γ(1) = AΓ(0) (31)
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This is a set of linear equations for elements of A. It is quite easy to solve,
but the approximations obtained can possibly carry some error. Therefore, we
sometimes extend our set of equations to

Γ(1) = AΓ(0) (32a)

Γ(2) = AΓ(1) (32b)

Γ(3) = AΓ(2) (32c)

· · ·
Γ(p) = AΓ(p− 1) (32d)

The set of linear equations (32) for elements of the matrix A is overdetermined
and we cannot solve it exactly. We can, however, find its best approximate (in
the sense of least squares) solution by using SVD or by a direct minimisation.
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Finally, having calculated A, we can use Eq. (14) to calculate elements od ΣΣT .
One could think of using Eq. (12) to calculate elements of Σ. Unfortunatelly, we
usually do not know the noise.
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