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Filtering in the Fourier domain

The Wiener filter illustrates the general principle of filtering in the Fourier domain:
Multiply the transform by a transfer function.

— q 1
inverse FFT gn ( )

where H( fy) is the transfer function discretized over f,.

Note that multiplying the transform of the signal by the transfer function is equivalent to taking
a convolution in the real (signal) domain.
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Terminology

e H(f) = 0for|f| > fo — a low-pass filter.
e H(f) = 0for|f| < fo— a high-pass filter.
e H(f) # Ofor f1 < |f| < fo — aband-pass filter.

e H(f) = 0for f1 < |f| < fo — a band-stop filter; if fo — f1 is small, also
known as a notch filter.
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Example

1 IfI< fe
08 . 7—[ =
& {o 71> 1.
2exp (—(f/f)*
H(f) = -0 1
- 1+ exp (=(f/fe)*)
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A reason for the strange result of the “blue” filtering

1rey
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When filtering in the Fourier domain, we usually do not smooth out the filters.
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There is one serious problem with filtering in the
Fourier domain:

You need to know the whole series, collect all data,
prior to filtering.
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Linear filters

Filtering in Fourier domainis very easy: multiply the DFT of the input by a transfer
function, which is quivalnet to taking a convolution of the input and the response

function of a filter.

Even though we now shall try to construct filters in the signal domain, it is conve-
nient to analyse them in Fourier domain. Every possible linear filter is represen-
ted by

Y(f) =H(HX). (2)

H(f) is the transfer function.
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A general linear filter in the signal domain has the form

Z QT+ Z BrYn—k (3)

k= =1

xn, 1S a (discretized) input signal, vy, is the output signal.

If s > O, future values of the input are needed to construct the output. Such filter
IS non-causal. It cannot be realized on-line (or in real time).
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Eqg. (3):

Z ATy T Z BrkYn—k

k=—s =1

e If p = 0O, the filter is a Finite Impulse Response filter (FIR), or a moving
average filter. The output of such a filter dies out in a finite time after the
input has died out.

o If p > 0, the filter is Infinite Impulse Response filter (IIR), or an autoregres-
sive filter. Its output can go on infinitely long after the input has died out (in
fact, this is a parasitic behaviour).
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a FIR filter:

x(t) o 1) J/(t),
an lIR filter:
-
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Causal FIR filters

q
Yn =— Z ALy —f - (4)
k=0

If the input is stationary, the output also is. q is called the order of the filter.
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To find the transfer function, we Fourier transform Eq. (4).

1 &Y orimngN 1 & orimn/N o
Y, = Z g2mimn /Ny, - p2mimn Z LT, 1
VN =0 VN =0 k=0
q 1 N-1 _ q 1 N—-1—k ' ,
— Z o, 627mmn/an_k — Z . Z 627mm(n —|—k’)/an/.
k=0 N n=0 k=0 VN n'—=—k

(9)
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By the assumption of periodicity of the input, z_; = x_;. On the other hand,
exp(2mim(N—1)/N)=exp(2wim) exp(2wim(—1)/N)=exp(2nim(—1)/N).
Thus

q . 1 N1, q .
Y, = Z OéI€(9271'fo/77,l<:/N — Z p2mimn /an/ — Z akGQﬂ'zmkz/N X . (6)
k:O o 'n,/:O | 1{:0 B
Xm Hm

m/N =m/(NA) A = fm A, where fy, is the m-th discrete Fourier frequency.
Therefore. ..
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Transfer function of a causal FIR filter
has the form

H(fm) = Y. o (27ifnB) = o (2Tifm ), (7)
k=0

where a(z) is the following polynomial of order ¢

q
a(z) = > a2 (8)
k=0

(coefficients of the filter become coefficients of the polynomial (8)).

Usually, for the sake of simplicity, we assume that A = 1, or that the sam-
pling time is the time unit. Remember: With this notation, frequencies become
dimensionless and the Nyquist interval equals [—1/2,1/2].

Copyright ©) 2009-21 P. F. Géra 4-15



Transfer function of a general FIR filter

The above can be easily generalized to arbitrary (non-causal) FIR filters. The
transfer function becomes

Hm) = 3 o (2mifnB)" = o (2Tifm ), (9)
k=-—s

where «(-) is now an appropriate rational function.
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A simple low-pass filter

Consider a filter

1 1

Tp—1 1T 5Tn T [ Tpt1- (10)

In = in Ty

1
4

Its transfer function reads

1 : 1 1 - 1 1
He(f) = Z€2mf + 5 + Ze_sz = > + 5C0527rf — cos? wf. (11)

This transfer function is large for small frequencies and approaches zero at the
ends of the Nyquist interval.
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A simple high-pass filter

Similarly, the transfer function of the filter

Yn — —7Tn-1 + ~En T S Tn41 - (12)

reads

Hs(f) = —iesz + % — %e_me = % - %cos 2rf =sin’zf.  (13)

This transfer function is large near the ends of the Nyquist interval and nearly
zero for small frequencies.
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10) is a (poor) low-pass filter.
12) is a (poor) high-pass filter.
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The “usual” moving average

The (unweighted) moving average

1
241

Yn (@p i+ Tpgpr + o Fagy) s (14)

with the transfer function

Hualf) =

>+ 1 (l4+2cos2nf +2cosdnf+---4+2cos2inf) (15)

IS a poor low-pass filter.
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Transfer functions of unweighted moving averages
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An example of the usual moving average
(the noise of the order of the signal)

Moving Averages
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Differentiating filters

First derivative:

dg| 1(g9(@)—gl@z—A) ge+AD)—g(x))_ 1 1
@x‘z( o + = ) 9@+ B) — 5 g(z— D) (163
1 1

Yn = oA Tn41 — A Tn—1 (16b)
H(f) = —Sln(27rfA) (16¢)
Second derivative:
! 1 1
Yn — 4A2xn—|—l — 2A2xn + 4A2xn—1 (173.)
1
H(f) = N sin(rfA) (17b)
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A signal

The derivative
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Phase of the transfer function

In Fourier domain,

Y(f) =H(HX). (18)

H(f) = R(f)e?(f), R(f) > 0. The modulus of the transfer function ampli-
fies/reduces contributions from the corresponding frequencies. What does the

phase, ¢(f), do?
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The filter (10) is non-causal, but it is easy to find its causal version: we need to
introduce a time delay:

1 1
Lp—2 + ~Tn—1 + — L (19)

1
yn:Z

with the transfer function

H(F) = 2™ cos® f. (20)

This transfer function differs from that of (10) only by a phase factor. The phase
factor in (20) is responsible for the time delay!
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Suppose that the phase of the transfer function depends linearly on frequencies,
o(f) = afA. Calculate the inverse transform:

Uk(t) ~ DS H(fn) X (fa)e™2MIEE = 37 R(fu)e' I EX (f)e ™2 IhS

=" R(fn) X (fn)e 2mifnlkma)x (21)

which corresponds to a time shift of a units (“channels”). Therefore, filters of
a linear phase introduce a uniform time shift. Filters that do not have a linear
phase introduce phase differences between various Fourier components.
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A phase shift can

make a difference!

15

0.5

-0.5

sin(2mx) + 0.5sin(31x + 0.251)

MMM

sin(2mx) + 0.5sin(31x)
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FIR filters design

If we have a FIR filter

q
Yn — Z ALy

(22)
k=0
we know that its transfer function has the form
q _ 1
H(fm) = Y oy (2™mA)7 (23)
k=0
Note that (23) equals, up to a constant, to the DFT of the filter.
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An inverse problem

In practice, we need to deal with an inverse problem®: Given an
“ideal” transfer function H(f), find the order, ¢, and coefficients o
of the filter (22) such that its transfer function is as close as possible

to the “ideal” one.

*This is a technical term!
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An intuitive approach

e Take the ideal transfer function H(f).

e Calculate the inverse transform]
1/2

h(t) = / H(F)e—2mift gp (24)

—1/2

e Discretize h(t) in as many points, as the desired order of the filter is.

This approach usually does not work, we need to take additional steps, like trun-
cating the filter, and this leads to distortions of the transfer function.

"Remember that if A = 1, fiyyqg = 1/2.
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Example: A low-pass filter

The ideal transfer function reads

<
O |fl>fo-
The transfer function in the time domain equals
12 . o - sin 27 fot
h) = [ H(pe2lap = [ 72 ap = . (28)
Tt
—1/2 —Jfo

The amplitude of h(t) falls off very slowly, there is no natural cut-off. A sharp
edge contains all Fourier components. We either introduce an arbitrary cut-off,
or do something else, mostly multiplying the ideal transfer function by a window
function.
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Coefficients of a low-pass FIR filter, square window
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Coefficients of a low-pass FIR filter, Hannig window
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Low-pass FIR filters discretized on a different number of points
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Remarks

e Decent FIR filters require large orders.

e Window functions reduce the ripple (rapid oscillations near the edge of the
band), but extend the roll-off.
e Filter design is an art. Design involves decisions on
— the ripple,
— the roll-off,
— (non)linearity of the phase,
— requirements on memory and computational complexity.
Usually you can’t optimize for all of the above simultaneously ®.

e There is vast literature on filter design.

Copyright ©) 2009-21 P. F. Géra 4-36



Linear IIR filters

.. take the form

Z ATy T+ Z BrYn—k » (27)

k= =1

where p > 1, x, is a (discretized) input signal, vy, is the output signal. For
convenience we discuss causal filters (s = 0) only; in fact, allowing for non-
causality does not change much.
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A problem

An /IR filter has a feedback loop. As a matter of principle, an |IR filter can
produce a non-zero output infinitely long after the input has ceased. Can we
avoid that?

How can we be sure that a stationary input signal produces a stationary output?
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Linear difference equations

A homogeneous linear difference equation:

zn = B12p—1 + Bozpn—o+ -+ 5pzn—p (28)

An inhomogeneous linear difference equation:

zn = B12pn-1 1+ Bozpn—2+ -+ Bpzn—p + ¢ (29)

Theorem: The general solution to an inhomogeneous difference equation equ-
als a sum of the general solution to the corresponding homogeneous linear dif-
ference equation and any particular solution to the inhomogeneous equation.

Stability of IR filters is determined by the homogeneous equations.
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Embedding in higher dimensions

Let zn = [2n, 2n—1,-- -+ 2n_p+1]] € RP. Then the homogeneous equation (28
can be written as

61 B2 B3 - Bpo1 Bp |
1 0 O --- 0 0
zZn=1,10 1 0O --- 0 O | Zp_1 (30)
0 0 0 -- 1 0
Solutions to (30) are stable if moduli of all eigenvalues are smaller that 1.
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The characteristic determinant:
[ B1—X B2 Bz - Bp_1 Bp
1 - 0 - 0 0
Wy = det 0 1 X .- 0 0

0 o O .- I

= —AW,_1+ (=1)PT18, = N2W, o+ (-1)PT18,_ 12+ (-1)PT1g, = ...
= ()P (AP 4 BT 4 BN 2 4 B (31)
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Stability condition of an IIR filter

An /IR filter (27) is stable if and only if roots of the equation
N — BN — BoAPT2 — . — B, =0 (32)

lie inside the unit circle.
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A confusion in terminology

Sometimes the above condition is formulated for the reciprocals of \’s:

An /IR filter

The conditions

2/) is stable if and only if roots of the equation

1—61u—52u2—---—ﬁpup20 (33)

32

33

lie outside the unit circle.

are equivalent, but they should not be confused.
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Example

Consider a filter

Yn = B1Yn—1 + Tn . (34)

lts characteristic polynomial in the form (33) reads

B(z) =1-p1z. (39)

It can be seen that if |81]| > 1, yn “explodes”, and therefore we need to have
|31] < 1, which means that the only root of (35), 1/31, lies outside the unit

interval (and of course, outside the unit circle).
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[IR filter transfer function

Write (27) in the form

Yn — B1Yn—1 — -+ — BpYn—p = @oTn + @¥1Tp—1 + - + gTn—q, (36)

and Fourier transfer it. After some algebra,

H(fm) = —=2 . . (37)

Note: The form of the denominator in suggests that the stability condition is “natural”.
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lIR filters design

The trouble with IR filters design is that one needs to avoid poles that lead to
instability. Usually, it is not easy to verify whether a pole lies inside or outside
the unit circle. The following bilinear transform is frequently used:

1 —14 —1
Z.w or w=i> : (38)
1+ 2w z+1

z =

Calculate
22 = 1—iw 14+iw _ 14w —iw+|w® _ 14w+ 2Imw
14w 1—dw 1—iw+tiw+|w?2 14+|w?2-2Imw
We can see that Imw > 0 corresponds to |z|2 > 1. It is much easier to identify
points on the upper or lower half-plane than outside or inside the unit circle.

(39)
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lIR filter design procedure

e An “ideal” transfer function H( f) is given.

e Find a rational function that approximates H(f) sufficiently well. Let H(f)
be this function. It must be real and nonnegative.

e Find poles of H(f). Half of them lie in the upper half-plane, half in the lower
half-plane. Take a product of terms with poles from the upper half-plane
only, substitute f = i(z — 1)/(z 4+ 1), simplify and identify the coefficients.
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Example: Butterworth filter of order N

As before, we are trying to design a low-pass filter. The step function is approxi-
mated by

H() = ooy (40)

1+ ()
where fq is the cut-off frequency. A filter based on (40) is called Butterworth filter
of order N. Its poles lie on a circle with a radius fg, symmetrically with respect

to the real axis.

2N
(f%) =1 & f=foexp(To Tin), k=0, 2N-1. (1)
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Poles of a Butterworth filter of order N = 16

Im zT

‘'good’ ploes

e — "
Re z
* ¥

'bad’ ploes
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N = 1 is the simplest case.

1 ) —1
1+ (£)" &l m

lower upper

We thus take
—ifo _  —itfo _  —Jo—Jfor _ —Jo — Jfoz
f—ifo iZZp—ifo z-1-fozr—fo —(1+fo)+ (- fo)z
1;|f-0f0 _I_ 1‘{‘Ofoz (43)
o 1—-fo
1- T+ /o~

ag = a1 = fo/(1+ fo), B1
filter.

(1 — fo)/(1 + fo) are the coefficients of the
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Left: Transfer function of Butterworth filter of order 1. Middle: Transfer function of Butterworth
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T T T T T
| | | | |
04 02 0 02 04
f

IH(®)I

1

0.8

0.6

0.4

0.2

T
I
0.4

4n

3n

Copyright ©) 2009-21 P. F. Géra

4-51



Most popular filters

1. Butterworth filters

e See above (40).

e The first 2N — 1 derivatives of H(f) vanish at f = 0 — the filter is
maximally flat.

e Poles lie on a circle.

e Used in audio processing.
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2. Chebyshevfilters
e A steeper rolloff, but ripples appear.

e There are two kinds of Chebyshev filters, with ripples in thepassband

1
H(f) = : (44)
L+ [Tw (f/ fp)]?
and with ripples in the stopband:
1
H(f) = 5. (45)
1 _I_ [TN(fs/fp)]
Tn(fs/ 1)

T in the above stands for a Chebyshev polynomial of order N, f, is
the upper bound of the passband, fs > f, is the lower bound of the
stopband.

ITschebyshef, Tchebycheff, Czebyszew
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e Because of ripples, they are not used in audio processing, but it is most
excellent if the passband contains a single “interesting” frequency (for
example, if higher harmonics are to be eliminated).

3. Elliptic filters
1

1+ [Ry (f/ )]
where Ry is a rational function, with roots of the numerator within
[—1/2,1/2], and roots of the denominator outside, with Ry (1/z) =
1/Ry(z). Poles of such a filter lie on an ellipsis.

(46)

H(f) =

4. Bessel filters, with a constant delay in the passband.
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e Because a rational approximation is much better than a polynomial approxi-
mation, IR filters require significantly lower orders than FIR filters of similar
performance.

e All above filters have analog realizations, i.e. electric circuits that can filter
analog signals.

e Design of analog and digital filters is very important in electronics, telecom-
munication etc. Design of good filters involves both science and art ©
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