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Prediction is very difficult, especially about the
future.

attributed to Niels Bohr



The objective

Time Series Analysis belongs to the broad range of Data Science. Unlike in
other branches of Data Science, the order in which the data have been collected
plays an important role.

Given a time series

{xi}Ni=1 = {x1, x2, . . . , xN}

(usually boring), gain some insight on the mechanism that has been
responsible for generating this series (possibly interesting) and, perhaps,

predict future values of the series (possibly profitable).
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Example 1
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By their fruit you will recognize them

Copyright c© 2009-21 P. F. Góra 1–4



The plan∗

1. Sampling and Discrete Fourier Transform; a Fast Fourier Transform Algorithm
2. Convolution, stationarity, Power Spectrum and window functions; Wiener filter
3. Linear filters, smoothing and denoising
4. Stationary linear stochastic models (AR, MA, ARMA, GARCH)
5. Fitting parameters to stationary linear stochastic models; Youle-Walker equations; Akaike criterion; Linear

prediction
6. Seasonal changes and trends (ARIMA)
7. Hurst phenomenon, fractional processes and Detrended Fluctuations Analysis
8. Fractional models (ARFIMA)
9. Multivariate time series

10. Wavelets and their applications
11. Kalman filters (?)
12. Takens theorem and phase space reconstruction, applications for nonlinear prediction

∗May change dynamically!
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The rules

Written assignments (numerical and theoretical)

• 6 assignments done — ,

• 2-5 assignments done — an exam

• Less than 2 assignments done — /

All assignments will be published on my webpage
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Discrete sampling

We are not dealing with continuous signals, but with signals that have been sam-
pled with a constant timestep:

gn = g(n∆) , n = . . . ,−3,−2,−1,0,1,2,3, . . . (1)

The process of sampling introduces a characteristic frequency (Nyquist frequ-
ency):

fNyq =
1

2∆
. (2)

Note: If you want to resolve a harmonic wave, you need to sample it twice
in a period. If you sample with a timestep ∆, you can resolve frequencies
f ∈ [−fNyq, fNyq].
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A side note: Positive and negative frequencies

If you allow for both positive and negative frequencies, e+2πift, e−2πift =

e+2πi(−f)t, you can combine them to get both sin 2πft and cos 2πft, which
have the same frequency , but differ in phase.
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Shannon-Kotelnikov Sampling Theorem

Question: When sampling is “good”? Or, under what assumptions, discrete sam-
pling yields the same information as a continuous function?

Theorem: If a function g(t) is bandwidth limited , or if it contains only frequencies
from the interval [−fNyq, fNyq], and if we have an infinite series sampled with a
timestep ∆, then

∀t : g(t) = ∆
∞∑

n=−∞
gn

sin
(
2πfNyq(t− n∆)

)
π(t− n∆)

. (3)

A signal is bandwidth limited if its Fourier Transform identically vanishes outside
a certain interval. Noise (stochastic processes) and discontinuous functions are
not bandwidth limited.
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Aliasing

If a signal contains frequencies f 6∈ [−fNyq, fNyq], not only are they lost, but
they also spoil the information from within [−fNyq, fNyq].

Consider two harmonic waves exp(2πif1t), exp(2πif2t), with f1−f2 = k/∆.
Then

exp(2πif1n∆) = exp(2πi(f2 + k/∆)n∆)

= exp(2πif2n∆ + 2πikn) = exp(2πif2n∆) .

Such waves give identical samples when sampled with the timestep ∆.
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Example 2
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tThe frequency 9/2 will be falsely interpreted as 7/2.
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Fourier Transform

G(f) =

∞∫
−∞

g(t)e2πift dt (4)

The function must vanish sufficiently fast for t → ±∞ for the Fourier Transform
to exist.

The inverse transform:

g(t) =

∞∫
−∞

G(f)e−2πift df (5)

You need to remember where to put 2π, there are several conventions.
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Properties of Fourier Transform

Convolution:

(g ? h)(t) =

∞∫
−∞

g(τ)h(t− τ) dτ (6a)

g ? h ↔ G(f)H(f) (6b)

Correlation function:

Corr(g, h) =

∞∫
−∞

g(τ + t)h(t) dτ (7a)

Corr(g, h) ↔ G(f)H∗(f) (7b)
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Wiener-Khinchin Theorem

Autocorrelation function:

Corr(g, g)↔ |G(f)|2 (8)

Parseval identity

∞∫
−∞
|g(t)|2 dt =

∞∫
−∞
|G(f)|2 df = total power (9)
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A finite time series

The sampling theorem demands an infinite series, but in reality we only have
a finite series, of the length N . There are two conventions:

• We assume that the series goes to zero at both its ends (we multiply by an
appropriate window function if it doesn’t) and equals identically zero before
it starts and after it ends.

• We assume that the finite series is, in fact, a period of an infinite periodic
series. (The sine and cosine do have Fourier Transforms in this convention.)
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We adopt the second convention and pretend that our series has the form

. . . , g0, g1, g2, . . . , gN−1︸ ︷︷ ︸
copy −1

, g0, g1, g2, . . . , gN−1︸ ︷︷ ︸
true data

, g0, g1, g2, . . . , gN−1︸ ︷︷ ︸
copy +1

, . . . (10)

Because we have N (assume N is even) input samples, the Discrete Fourier
Transform (DFT) can be evaluated at N points only. We choose to evaluate DFT
for the following frequencies only:

fn =
n

N∆
, n = −

N

2
, . . . ,

N

2
. (11)

Note: under the assumption of periodicity, a finite number of samples from within
the period is sufficient for the Sampling Theorem to hold.
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Discrete Fourier Transform

G(fn) =

∞∫
−∞

g(t) e2πifnt dt

= lim
M→∞

1

2M+1

M∑
s=−M

s(N−1)∆∫
(s−1)(N−1)∆

g(t) e2πifnt dt =

(N−1)∆∫
0

g(t)e2πifntdt

'
N−1∑
k=0

∆ gk e
2πifntk = ∆

N−1∑
k=0

gk e
2πikn/N . (12)
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Numbers

Gn =
1√
N

N−1∑
k=0

gk e
2πikn/N (13)

are called discrete Fourier components of g. The inverse transform reads

gk =
1√
N

N−1∑
n=0

Gn e
−2πikn/N . (14)

Discrete Parseval identity:

N−1∑
k=0

|gk|2 =
N−1∑
n=0

|Gn|2 . (15)
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DFT as a linear transform

Eq. (13) can be written as

Gn =
N−1∑
k=0

Wnk gk , (16a)

Wnk =
1√
N
e2πikn/N . (16b)

Numbers Wnk can be interpreted as elements of a certain matrix. Thus, a com-
pact form of (16) reads

G = Wg , (17)

where G, g ∈ CN , W ∈ CN×N . What is the numerical cost of evaluating DFT?
It appears to be O(N2), or the cost of multiplying a vector by a matrix.
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Properties of W

(
WW†

)
ls

=
N−1∑
k=0

Wlk

(
W†

)
ks

=
N−1∑
k=0

Wlk (Wsk)∗ =
1

N

N−1∑
k=0

e2πi(l−s)k/N

(18)
If l = s, all elements are equal to 1 and the result is 1. If l − s = m 6= 0,

(
WW†

)
ls

=
1

N

N−1∑
k=0

(
e2πim/N

)k
=

1−
(
e2πim/N

)N
N(1− e2πim/N)

=
1− e2mπi

N(1− e2πim/N)
= 0 .

(19)

(
WW†

)
ls

= δls.

The matrix W is Unitary .
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DFT symmetries

Discrete Fourier components:

Gn =
1√
N

N−1∑
n=0

gke
2πink/N (20)

1. Discrete Fourier components are periodic:

Gn+N =
1√
N

N−1∑
n=0

gke
2πi(n+N)k/N

=
1√
N

N−1∑
n=0

gke
2πink/N e2πiNk/N︸ ︷︷ ︸

e2πik=1

= Gn (21)
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2. DFT of a real signal: gk ∈ R⇒ g∗k = gk.

G∗n =
1√
N

N−1∑
n=0

g∗k e
−2πink/N =

1√
N

N−1∑
n=0

gk e
−2πink/Ne2πiNk/N =

=
1√
N

N−1∑
n=0

gke
2πi(N−n)k/N = GN−n (22)

3. DFT of a purely imaginary signal: g∗k = −gk. Calculations similar to those
above show that

G∗n = −GN−n . (23)
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Consequences of DFT symmetries

Let gk = xk + iyk, xk, yk ∈ R. Because DFT is linear, we have

Gn = Xn + iYn (24a)

and because xk, yk are real,
G∗n = XN−n − iYN−n (24b)

We thus have

Gn +G∗N−n = Xn + iYn +Xn − iYn = 2Xn (25a)
Gn −G∗N−n = Xn + iYn −Xn + iYn = 2iYn (25b)

We can use (25) to find DFT’s of real and imaginary parts of a complex signal.
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DFT of two real signals

For reasons that will be explained later, we frequently simultaneously need trans-
forms of two real signals, xk, yk. We form a complex “signal” gk = xk + iyk,
calculate its DFT and then use (25) to identify transforms of xk and yk. The
numerical cost is O(N logN). The cost of calculating transforms of xk and yk
separately would be twice as large.

DFT of a single real signal

If we have N samples of a real signal xk, we form a complex “signal” of half the
original length by gk = xk + ixN/2+k, k = 0,1, . . . , N/2. We calculate DFT
of this complex “signal” and use (25) to find the transform of the original signal.
Again, the numerical cost of calculating DFT of xk in its original form would be
twice as large.
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Summary

DFT is, up to the normalization, a unitary transform of the vector of samples
into the vector of Fourier components.

DFT represents the vector of samples in another basis, namely in a basis
spanned by discretized sines and cosines of frequencies

0, 1/(N∆), 2/(N∆), . . . , 1/(2∆).

Thanks to symmetries of W, the numerical cost of evaluating DFT can be
reduced significantly (FFT).
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Transform of a signal that coincides with an element of the basis
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Transform of a signal that doesn’t coincide with an element of the basis
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Increasing the number of samples without changing the timestep,
improves the resolution
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A Vandermonde matrix

The DFT matrix is a special case of a Vandermonde matrix W = 1√
N

V(N) ∈
CN×N , where

V(N) =


1 1 · · · 1 1
z0 z1 · · · zN−2 zN−1
z2

0 z2
1 · · · z2

N−2 z2
N−1... ... ... ...

zN−1
0 zN−1

1 · · · zN−1
N−2 zN−1

N−1

 (26)

In case of DFT, zk = exp(2πik/N).
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A Fast Fourier Transform (FFT) Algorithm

An example: N = 8

G =
V(8)
√

8
g =

1√
8



1 1 1 1 1 1 1 1

1 1+i√
2

i −1+i√
2
−1 −1−i√

2
−i 1−i√

2
1 i −1 −i 1 i −1 −i
1 −1+i√

2
−i 1+i√

2
−1 1−i√

2
i −1−i√

2
1 −1 1 −1 1 −1 1 −1

1 −1−i√
2

i 1−i√
2
−1 1+i√

2
−i −1+i√

2
1 −i −1 i 1 −i −1 i

1 1−i√
2

−i −1−i√
2
−1 −1+i√

2
i 1+i√

2





g0
g1
g2
g3
g4
g5
g6
g7


(27)

There are some patterns, but it is difficult to see any symmetries.
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Permute the columns of the matrix and rows of the input vector — this does not
change the result:

G =
1√
8



1 1 1 1 1 1 1 1

1 i −1 −i 1+i√
2

−1+i√
2

−1−i√
2

1−i√
2

1 −1 1 −1 i −i i −i
1 −i −1 i −1+i√

2
1+i√

2
1−i√

2
−1−i√

2
1 1 1 1 −1 −1 −1 −1

1 i −1 −i −1−i√
2

1−i√
2

1+i√
2

−1+i√
2

1 −1 1 −1 −i i −i i

1 −i −1 i 1−i√
2

−1−i√
2

−1+i√
2

1+i√
2





g0
g2
g4
g6
g1
g3
g5
g7


(28)

Now we start to see something!
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Rewrite Eq. (28) as (block notation)

G =
1√
8



V(4) Ω(4)V(4)

V(4) −Ω(4)V(4)





g0
g2
g4
g6
g1
g3
g5
g7


(29)
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. . . where

V(4) =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 , (30)

Ω(4) =


1 0 0 0

0 1+i√
2

0 0

0 0 i 0

0 0 0 −1+i√
2

 =



(
1+i√

2

)0

(
1+i√

2

)1

(
1+i√

2

)2

(
1+i√

2

)3


(31)
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Thus

G =
1√
8



V(4)


g0
g2
g4
g6

+ Ω(4)V(4)


g1
g3
g5
g7



V(4)


g0
g2
g4
g6

−Ω(4)V(4)


g1
g3
g5
g7




(32)

Pieces of different colours are evaluated only once. The multiplication by Ω(4)

proceeds in a linear time. We have reduced the total number of operations by
half .
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The key point is: V(4) can be factorised in the same manner, with

an appropriate permutation of the input vector:

V(4)


g0
g2
g4
g6

 =


V(2) Ω(2)V(2)

V(2) −Ω(2)V(2)



g0
g4
g2
g6

 (33)

V(2) =

[
1 1
1 −1

]
, Ω(2) =

[
1

i

]
=

[
i0

i1

]

(similarly for [g1, g3, g5, g7]T )
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Thus

G =
1√
8




V(2)

[
g0

g4

]
+Ω(2)V(2)

[
g2

g6

]

V(2)

[
g0

g4

]
−Ω(2)V(2)

[
g2

g6

]
+Ω(4)


V(2)

[
g1

g5

]
+Ω(2)V(2)

[
g3

g7

]

V(2)

[
g1

g5

]
−Ω(2)V(2)

[
g3

g7

]



V(2)

[
g0

g4

]
+Ω(2)V(2)

[
g2

g6

]

V(2)

[
g0

g4

]
−Ω(2)V(2)

[
g2

g6

]
−Ω(4)


V(2)

[
g1

g5

]
+Ω(2)V(2)

[
g3

g7

]

V(2)

[
g1

g5

]
−Ω(2)V(2)

[
g3

g7

]



(34)

2-d vectors of different colours are evaluated only once. We have reduced the
number of operations four times.
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The final puzzle:

We have performed a permutation of the input vector
[g0, g1, g2, g3, g4, g5, g6, g7]T → [g0, g4, g2, g6, g1, g5, g3, g7]T .
Is this permutation easy to implement?

0
1
2
3
4
5
6
7

=

0002
0012
0102
0112
1002
1012
1102
1112

−→
reverse the order

0002
1002
0102
1102
0012
1012
0112
1112

=

0
4
2
6
1
5
3
7

(35)

The input vector is sorted in the bit reversal order of indices.
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This algorithm easily generalizes to any N = 2s, s ∈ N.

The need to evaluate terms like sin
(
nπ
N

)
, cos

(
nπ
N

)
is also reduced — there is

no need to call library functions sin(·), cos(·). On each stage of factorisations
a root of i is evaluated only once with ready-to-use formulas. Then only the

powers of that root are evaluated.

What is the final numerical cost?
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Each factorisation reduces the number of operations by half.

There are log2N factorisations.

The numerical cost of the FFT algorithm equals

O(N log2N)

For example, for N = 65536 = 216 FFT reduces the numerical cost of
evaluating DFT more than four thousand times.
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Remarks

• Similar algorithms can be constructed for N = 3s, N = 5s and, in general,
any N = qs, where q is prime.

• Good libraries automatically factorise also matrices of the size N =

q
s1
1 q

s2
2 · · · q

sm
m , where q1, q2, . . . , qm are small primes.

• If we analyse a series that we calculate, we can control its length and we
should make it a power of a small prime. If we analyse an “experimental”
series, it is wise either to truncate it or to pad it with zeros to a power of a
small prime.

• There are many FFT packages over the Internet; some of them are free and
good. I recommend The Fastest Fourier Transform in the West,
http://www.fftw.com. Python users may use functions from the NumPy
library.
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• Transforms spanned by sines or cosines only are also in use (one-sided
transforms). There are “fast” algorithms for one-sided transforms, too.

• A 2-d DFT can also be used: If g ∈ CN×N with N = 2s, then

G = WgW† (36)

There are “fast” algorithms for that. Their numerical cost is O(N2 log2N).
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