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The wavelet spectrum

Periodogram — how much power is transported by each Fourier frequency, or at
each period.

Scalogram — how much power is transformed at each scale.

Let {Wi} be the wavelet coefficients of a time series and τs be the length of the
smallest wavelet in the basis.

v(τj) =
1

2j−1

2j−1∑
i=2j−1

W2
i j = 1,2, . . . , s. (1)

v(τj) — the average power transferred at scale τj.
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A signal. . .
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. . . and its scalogram (wavelet spectrum) calculated with DAUB(4)
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Scalogram and three-point wavelets

Two point wavelets Three point wavelets
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A signal and its scalogram
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Note that the scalogram is nearly linear. This suggests that the signal is
self-similar.
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Another signal and its scalogram
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Signal (and image) compression

Lossy compression — Genghis Khan rule reversed: survival of the strongest

Copyright c© 2009-12 P. F. Góra 11–8



Wavelet denoising

Better than Wiener filter: can be used with nonstationary signal (with constant
noise parameters).

Assume that the signal {xi}N−1i=0 has the form

xi = f(i) + σ ηi (2)

where f(i) is a “deterministic” component and ηi is a GWN, uncorrelated with
the signal. Like in the Wiener filter, we kill (zero) the noise-dominated compo-
nents. Because the noise is Gaussian, we can estimate the threshold as

δ =
√
2 log2N σ (3)
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Compression rules

Let {Wi} be the wavelet coefficients. We use one of the three rules:

Hard rule:

W̃i =

Wi |Wi| > δ

0 |Wi| < δ
(4)

The after thresholding wavelet coefficients can exhibit jumps, which is not we-
lcome.
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Soft rule:

W̃i =

sgn(Wi) (|Wi| − δ) |Wi| > δ

0 |Wi| < δ
(5)

This leads to an unwelcome reduction in large wavelet coefficients.
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Mid rule:

W̃i =


Wi |Wi| > 2δ

2 sgn(Wi) (|Wi| − δ) δ 6 |Wi| < 2δ

0 |Wi| < δ

(6)

Large coefficients are not affected, the small are killed, the intermediate are
reduced. More complicated formulas, with smooth changes, can also be used.

Note that each method leaves the same number of non-zero coefficients W̃i.
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Compression rules illustrated
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How do we assess the noise level?

Usually the noise level, σ, is unknown. How to assess it based on the noisy
signal alone?

1. White noise is “fast”, so we assume that it brings contributions in the smallest
scale mostly.

2. Therefore, we assess

σ =
1

0.6745
median{

∣∣∣WN/2

∣∣∣ , ∣∣∣WN/2+1

∣∣∣ , ∣∣∣WN/2+2

∣∣∣ , . . . , ∣∣WN−1
∣∣} (7)
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3. When compressing, we never change the W0 and W1 components (the ones
with largest support), as they contain the long-wave information on the signal, in
particular, the average.

Similarly, if we do a partial wavelet transform only, we never change the untrans-
formed (slowly varying) part. Compress the fast varying part only and add to the
uncompressed slowly varying part.
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A noisy signal
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Comparison of the fitted polynomials
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Boundary effects are clearly visible!
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A noisy “nonpolynomial” signal
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Comparison of the fitted polynomials
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A nonpolynomial (for example, rational) fit would be better!
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Digital image analysis

Digitalization (and quantization): raster graphics

• Representation in a certain orthonormal basis

• The trigonometric basis — Fast Fourier Transform

• Numerical cost O(N logN)

• Trigonometric functions are “global”!

• The JPEG (Joint Photographers Expert Group) Standard — the image is
divided into 8× 8 pixel blocks, 2d Fast Cosine Transform in each block
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The JPEG basis functions
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2d wavelet transform

Let W be a wavelet transform matrix for one stage.

WAWT −→
sort
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Wavelet compression — the wavelet transform (up to a certain order), “survival of the
strongest”, quantization, the inverse wavelet transform
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Edge detection with wavelets

Copyright c© 2009-12 P. F. Góra 11–35



Copyright c© 2009-12 P. F. Góra 11–36



Speckles removal
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