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Volatility

In analysing financial time series, it is frequently more important not to predict fu-
ture values of an asset, but to predict the future variability of the asset. Investors
realize and accept that future values of an asset are random variables. However,
if these random variables come from a narrow distribution, the associated risk is
small. Contrariwise, if the random variables come from a wide distribution, the
associated risk is large. This is particularly true with assets like options, future
contracts and other derivatives.

The point is, the width of the distribution can change over time.
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Frequently, such series are modelled as

εn =
√
hn ηn (1)

{ηn} is GWN. hn > 0 is called volatility . The presence of an index, hn, indicates
that volatility changes in time
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A typical time series in finances

-15

-10

-5

 0

 5

 10

 15

 0  200  400  600  800  1000  1200  1400

da
ily

 r
et

ur
ns

days

S&P 500, June 1, 1990 to December 29, 1995

Regions of high and low volatility can easily be seen. High volatilities and low
volatilities tend to cluster.
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A classic example

From the seminal paper by Robert Engle,
Journal of Economic Perspectives 15, 157-168 (2001).
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Features of real life financial time series

• Time-varying variance

• Regions with large
variances have a tendency
to cluster

• Non-zero kurtosis

• Heavy (fat) tails

In finances, we call the variance volatility .

Predicting volatility is essential in assessing future financial risks.

Copyright c© 2012-18 P. F. Góra 9–6



Heteroscedasticity

In statistics, if there are subpopulations within a collection of random variables
that have different variabilities than the others, especially if those subpopulations
can be associated with a quantity that sets some sort of “order” or “sequence”,
we say that these random variables are heteroskedastic (or heteroscedastic).
The “variability” can be quantified as the variance or any other measure of sta-
tistical dispersion.
If the variability is constant within the collection of random variables, we say that
these variables are homoscedastic.

• Classic example 1: Babies are born with similar body weights: the variance
of body weights in newborn babies is small. However, the variance of body
weights in children just a few years old is considerably larger. Thus, the
population of young children, from newborns to pre-school or introductory
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school ages is heteroscedasticit with respect to body weight. The age of
children acts as an “ordering quantity” here.

• Classic example 2: A classic example of heteroscedasticity is that of in-
come versus expenditure on meals. As one’s income increases, the variabil-
ity of food consumption will increase. A poorer person will spend a rather
constant amount by always eating inexpensive food; a wealthier person may
occasionally buy inexpensive food and at other times eat expensive meals.
Those with higher incomes display a greater variability of food consump-
tion. The income level, or some other measure of personal wealth, is the
“ordering quantity”.

In Time Series Analysis we usually talk about a conditional volatility and a con-
ditional heteroscedasticity, as we do not know their absolute, “ideal” values.
Rather than that, we only know them with respect to the actual initial data.
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The ARCH model

AutoRegressive Conditional Heteroscedasticity (Robert Engle, 1982). The
ARCH(q) model is of the form (1) with

hn = α0 +
q∑

i=1

αi ε
2
n−i , (2)

where α0 > 0, αi > 0, i = 1,2, . . . , q−1, αq > 0. q is the order of ARCH(q)
and therefore αq must be strongly grater than zero.

The question why such models describe financial time series correctly is beyond
the scope of this lecture.
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An example
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ARCH(4) with α0 = 0.5, α1 = 0.25, α2 = 0.0625, α3 = 0.0, α4 = 0.125.
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Fitting parameters to an ARCH model

1. Find the best fitting AR(q) model of the original time series. Thus

yn = a0 +
q∑

i=1

ai yn−i + εn .

2. We now have the order, q, and errors, εn. Using least squares, fit parameters α̂i

ε2n = α̂0 +
q∑

i=1

α̂i ε
2
n−i .

3. Using an χ2 statistics, verify whether any of the α̂i’s, i = 1, . . . , q, is significantly greater
than zero (these are parameters of the ARCH model), the null hyphothesis being that there
are no ARCH contributions.

Note: “Significantly greater than zero” does not mean that the value is large, but that the differ-
ence form zero is statistically significant.
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The GARCH model

Generalized AutoRegressive Conditional Heteroscedasticity (Tim Bollerslev,
1986). The GARCH(p,q) model is again of the form (1) with

hn = α0 +
q∑

i=1

αi y
2
n−i+

p∑
i=1

βi hn−i , αi , βi > 0 . (3)

If
q∑

i=1

αi+
p∑

i=1

βi = 1 , (4)

there can appear persistent trends in the volatility. We call such a model
IGARCH.
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An example
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IGARCH(1,1) with α0 = 0.5, α1 = 0.25, β1 = 0.75
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FIGARCH

Often the IGARCH model seems to be too restrictive as it implies infinite persis-
tence of a volatility shock. On the other hand, long-range correlations in volatility
are frequently present. In such situation a fractionally integrated GARCH model
comes in handy.

A GARCH(p,q) model has the ARMA(m,p) representation

[1− α(Z)− β(Z)] ε2n = α0 + [1− β(Z)] νn , (5a)

where m = max(p, q), Z is the time-shift operator, α(Z), β(Z) are the usual
polynomials with roots outside the unit circle and

νn = ε2n − hn (5b)
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is called a volatility shock.

In this notation, an IGARCH is represented as

[1− α(Z)− β(Z)] (1− Z)ε2n = α0 + [1− β(Z)] νn . (6)

If we replace the first difference operator 1− Z by its fractional counterpart, we
get the FIGARCH(p,d,q):

[1− α(Z)− β(Z)] (1− Z)dε2n = α0 + [1− β(Z)] νn (7)

with 0 < d < 1. Note: we calculate hn from (7) and then use Eq. (1) which then
becomes a nonlinear equation for εn.

More information of FIGARCH can be found for example in Maryam Tayefi and
T. V. Ramanathan, An Overview of FIGARCH and Related Time Series Models,
Austrian Journal of Statistics, 41, 175–196 (2012).
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EGARCH

All of the models: ARCH, GARCH, IGARCH, FIGARCH are symmetric: As they
on ε2n, they react the same to negative and positive innovations of the same mag-
nitude. However, it is known that vaolatilities after a negative innovation increase
more than after a positive innovation of the same magnitude. To accomodate
for this type of behaviour, the EGARCH, or exponential GARCH model has been
introduced. In this model the lnhn instead of pure hn is used. In its simples form
an EGARCH(1,1) is:

lnhn = α0 + g1(ηn−1) + β1 lnhn−1 (8a)

where

g1(ηn−1) = α1ηn−1 + γ1
(
|ηn−1| − 〈|ηn−1|〉

)
. (8b)
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〈|ηn−1|〉 is the weighted innovation or the average of |ηj| up to ηn−1.
α0, α1, β1, γ1 are constants (no restrictions on the sign of these constants
because the logarithm of hn is calculated from the model). The model re-
sponds differently to “good news” and “bad news”. A positive shock results in
(α1 + γ1)ηn−1 and a negative in (α1 − γ1)ηn−1.

The model can be easily extended to contain more past values of εn−j, lnhn−j.

More complicated models like FIEGARCH∗ or models with seasonalities can be
built.

∗Hojatallah Goudarzi, Modeling Long Memory in The Indian Stock Market using Fractionally
Integrated Egarch Model, International Journal of Trade, Economics and Finance, 1, 2010-
023X (2010).
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Example

 0  128  256  384  512  640  768  896  1024

Two EGARCH(1,1), Eq. (8), processes.
Upper curve: α0 = 0.25, α1 = 0.25, β1 = 0.85, γ1 = +0.95.
Lower curve: α0 = 0.25, α1 = 0.25, β1 = 0.85, γ1 = −0.95.

The underlying GWN noises are identical in both cases. The curves have been shifted
vertically for better visibility.
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