Time Series Analysis:

7. Multivariate processes

P. F. Góra
http://th-www.if.uj.edu.pl/zfs/gora/

All kinds of time series taht have been discussed so far, and some of those that will be discussed in the future, have their multivariate (or vector) counterparts. For example, a process

$$
\begin{equation*}
\mathbf{x}_{n}=\mathbf{A}_{1} \mathbf{x}_{n-1}+\mathbf{A}_{2} \mathbf{x}_{n-2}+\cdots+\mathbf{A}_{p} \mathbf{x}_{n-p}+\mathbf{B}_{0} \boldsymbol{\eta}_{n}+\mathbf{B}_{1} \boldsymbol{\eta}_{n-1}+\cdots+\mathbf{B}_{q} \boldsymbol{\eta}_{n-q} \tag{1}
\end{equation*}
$$

is a vector autoregressive, moving average process $\operatorname{VARMA}(\mathrm{p}, \mathrm{q})$. In (1), $\mathrm{x}_{n} \in$ \mathbb{R}^{m} is a m-dimensional time series, \mathbf{x}_{n-k} are its past values, $\boldsymbol{\eta}_{n}$ in a n dimensional GWN, similar for its past values, and $\mathbf{A}_{1}, \ldots, \mathbf{A}_{p}, \mathbf{B}_{0}, \ldots, \mathbf{B}_{q} \in$ $\mathbb{R}^{m \times m}$ are constant, real matrices. It is also possible to consider series in which the dimensionality of the "innovations" η 's is different from that of the time series; in that case the matrices \mathbf{B}_{j} are not square, but rectangular.

The need to discuss such processes arises when we observe more than one time series and we expect that they mutually influence each other.

Example

Two processes

$$
\begin{align*}
& x_{n}=\alpha_{11} x_{n-1}+\alpha_{12} y_{n-1}+\sigma_{x} \eta_{x, n} \tag{2a}\\
& y_{n}=\alpha_{21} x_{n-1}+\alpha_{22} y_{n-1}+\sigma_{y} \eta_{y, n} \tag{2b}
\end{align*}
$$

together form a $\operatorname{VAR}(1)$ process with uncorrelated (independent) noises.

$\underline{\operatorname{VAR}(1)}$

For simplicity, we shall only deal with processes $\operatorname{VAR}(1)$, or of the type (2), or more generally,

$$
\begin{equation*}
\mathbf{x}_{n}=\mathbf{A} \mathbf{x}_{n-1}+\boldsymbol{\Sigma} \boldsymbol{\eta}_{n} \tag{3}
\end{equation*}
$$

where $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right\}$ meaning that the individual components of the vector noise are uncorrelated.

If the matrix \mathbf{A} in (3) can be diagonalized, i.e. if there exists an invertible matrix S such that

$$
\begin{equation*}
\mathbf{S}^{-1} \mathbf{A S}=\mathbf{A}_{\text {diag }}=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{m}\right\} \tag{4}
\end{equation*}
$$

the vector process (3) can be "diagonalized", or represented as a collection of series that no longer influence each other. Indeed, multiplying (1) by S^{-1} from the left, we get

$$
\begin{equation*}
\mathbf{z}_{n}=\mathbf{S}^{-1} \mathbf{x}_{n}=\mathbf{S}^{-1} \mathbf{A S S}^{-1} \mathbf{x}_{n-1}+\mathbf{S}^{-1} \Sigma \boldsymbol{\eta}_{n}=\mathbf{A}_{\text {diag }} \mathbf{z}_{n-1}+\mathbf{S}^{-1} \Sigma \boldsymbol{\eta}_{n} \tag{5}
\end{equation*}
$$

Notes

1. There still may be some interdependence between different components of z_{n} as the matrix $\mathrm{S}^{-1} \Sigma$ is, in general, not diagonal and the noises acting on various components of \mathbf{z}_{n} get correlated.
2. If the matrix \mathbf{A} in (3) is not symmetrix, the "diagonalized" time series z_{n} may become complex.
3. For processes of higher orders $\operatorname{VAR}(\mathrm{p})$, a "diagonalization" in the spirit of Eq. (5) is possible only if all the matrices $\mathbf{A}_{1}, \ldots, \mathbf{A}_{p}$ commute.

Embedding in a higher dimension

If we have a general $\operatorname{VAR}(\mathrm{p})$ process

$$
\begin{equation*}
\mathbf{x}_{n}=\mathbf{A}_{1} \mathbf{x}_{n-1}+\mathbf{A}_{2} \mathbf{x}_{n-2}+\cdots+\mathbf{A}_{p} \mathbf{x}_{n-p}+\boldsymbol{\Sigma} \boldsymbol{\eta}_{n} \tag{6}
\end{equation*}
$$

we can formally represent it as a $\operatorname{VAR}(1)$ process, but in a space of dimensionality $m \times p$. In block notation,

$$
\left[\begin{array}{l}
\mathbf{x}_{n} \tag{7}\\
\mathbf{x}_{n-1} \\
\vdots \\
\mathbf{x}_{n-p+2} \\
\mathbf{x}_{n-p+1}
\end{array}\right]=\left[\begin{array}{ccccc}
\mathbf{A}_{1} & \mathbf{A}_{2} & \cdots & \mathbf{A}_{p-1} & \mathbf{A}_{p} \\
\mathbb{I} & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \mathbb{I} & 0
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{n-1} \\
\mathbf{x}_{n-2} \\
\vdots \\
\mathbf{x}_{n-p+1} \\
\mathbf{x}_{n-p}
\end{array}\right]+\mathbf{\Sigma}\left[\begin{array}{c}
\boldsymbol{\eta}_{n} \\
0 \\
\vdots \\
0 \\
0
\end{array}\right] .
$$

Stationarity of VAR(1)

From the "diagonalized" form of a $\operatorname{VAR}(1)$ process, we can clearly see that the process is stationary, if and only if all eigenvalues of the matrix A satisfy

$$
\begin{equation*}
\forall i=1, \ldots, m: \quad\left|\lambda_{i}\right|<1 \tag{8}
\end{equation*}
$$

provided these eigenvalues exist. If any of the eigenvalues has a modulus that is greater than 1 , the process is not stationary and explodes.

Note that the similarity transformation (4) and its inverse do not change the eigenvalues.

Cross-correlations

The most important quantity to analyse while dealing with multvariate series is the cross-correlation. Let x_{n}^{j} be the j-th component of the vector \mathbf{x}_{n}. Then

$$
\begin{equation*}
\rho_{j k}(l)=\frac{1}{\sigma_{j} \sigma_{k}}\left\langle\left(x_{n}^{j}-\left\langle x_{n}^{j}\right\rangle\right)\left(x_{n+l}^{k}-\left\langle x_{n}^{k}\right\rangle\right)\right\rangle \tag{9a}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{j}=\sqrt{\left\langle\left(x_{n}^{j}-\left\langle x_{n}^{j}\right\rangle\right)^{2}\right\rangle} \tag{9b}
\end{equation*}
$$

Note that $\rho_{j k}(l) \neq \rho_{k j}(l)$.

Because in practice we have only a single realization of the process at our disposal, we cannot do the statistical averaging. Therefore, instead of (9) we use

$$
\begin{gather*}
\left\langle x_{n}^{j}\right\rangle=\frac{1}{N} \sum_{n=1}^{N} x_{n}^{j} \tag{10a}\\
\sigma_{j}=\sqrt{\frac{1}{N} \sum_{n=1}^{N}\left(x_{n}^{j}-\left\langle x_{n}^{j}\right\rangle\right)^{2}} \tag{10b}\\
r_{j k}(l)=\frac{1}{(N-l) \sigma_{j} \sigma_{k}} \sum_{n=1}^{N-l}\left(x_{n}^{j}-\left\langle x_{n}^{j}\right\rangle\right)\left(x_{n+l}^{k}-\left\langle x_{n}^{k}\right\rangle\right) \tag{10c}
\end{gather*}
$$

where N is the length of the time series.

Example 1

$$
\left[\begin{array}{l}
x_{n}^{1} \tag{11}\\
x_{n}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{2}{3} & \frac{1}{5} \\
\frac{1}{5} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
x_{n-1}^{1} \\
x_{n-1}^{2}
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
\eta_{n}^{1} \\
\eta_{n}^{2}
\end{array}\right]
$$

Example 2

$$
\left[\begin{array}{l}
x_{n}^{1} \tag{12}\\
x_{n}^{2}
\end{array}\right]=\left[\begin{array}{rr}
\frac{2}{3} & \frac{1}{5} \\
\frac{1}{5} & -\frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
x_{n-1}^{1} \\
x_{n-1}^{2}
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
\eta_{n}^{1} \\
\eta_{n}^{2}
\end{array}\right]
$$

Example 3

$$
\left[\begin{array}{c}
x_{n}^{1} \tag{13}\\
x_{n}^{2}
\end{array}\right]=\left[\begin{array}{rr}
\frac{2}{3} & \frac{1}{5} \\
-\frac{1}{5} & \frac{2}{3}
\end{array}\right]\left[\begin{array}{c}
x_{n-1}^{1} \\
x_{n-1}^{2}
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
\eta_{n}^{1} \\
\eta_{n}^{2}
\end{array}\right]
$$

Example 4 - one process drives another

$$
\left[\begin{array}{l}
x_{n}^{1} \tag{14}\\
x_{n}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{3} & \frac{1}{5} \\
0 & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
x_{n-1}^{1} \\
x_{n-1}^{2}
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
\eta_{n}^{1} \\
\eta_{n}^{2}
\end{array}\right]
$$

Example 5 - "non-diagonalizable" process

$$
\left[\begin{array}{l}
x_{n}^{1} \tag{15}\\
x_{n}^{2}
\end{array}\right]=\left[\begin{array}{ll}
\frac{2}{3} & \frac{2}{3} \\
0 & \frac{2}{3}
\end{array}\right]\left[\begin{array}{l}
x_{n-1}^{1} \\
x_{n-1}^{2}
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
\eta_{n}^{1} \\
\eta_{n}^{2}
\end{array}\right]
$$

Example 6 - non-symmetric matrix, negative cross-correlations

$$
\left[\begin{array}{l}
x_{n}^{1} \tag{16}\\
x_{n}^{2}
\end{array}\right]=\left[\begin{array}{rr}
\frac{1}{5} & -\frac{2}{3} \\
-\frac{3}{4} & \frac{1}{5}
\end{array}\right]\left[\begin{array}{l}
x_{n-1}^{1} \\
x_{n-1}^{2}
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
\eta_{n}^{1} \\
\eta_{n}^{2}
\end{array}\right]
$$

Example 7 - a linear trend

$$
\left[\begin{array}{l}
x_{n}^{1} \tag{17}\\
x_{n}^{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{3}{4} & \frac{1}{4} \\
\frac{1}{4} & \frac{3}{4}
\end{array}\right]\left[\begin{array}{l}
x_{n-1}^{1} \\
x_{n-1}^{2}
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
\eta_{n}^{1} \\
\eta_{n}^{2}
\end{array}\right]
$$

The matrix in (17) has eigenvalues $1, \frac{1}{2}$. The unit eigenvalue causes a linear trend. The series of first differences, $x_{n+1}^{1}-x_{n}^{1}, x_{n+1}^{2}-x_{n}^{2}$ are stationary.

Example 8 - another kind of nonstationarity

$$
\left[\begin{array}{l}
x_{n}^{1} \tag{18}\\
x_{n}^{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{n-1}^{1} \\
x_{n-1}^{2}
\end{array}\right]+\frac{1}{4}\left[\begin{array}{l}
\eta_{n}^{1} \\
\eta_{n}^{2}
\end{array}\right]
$$

This matrix has eigenvalues $\lambda_{1,2}=\frac{1}{\sqrt{2}}(1 \pm i),\left|\lambda_{1,2}\right|=1$.

Fitting parameters to VAR(1) model

A general covariance matrix for a $\operatorname{VAR}(p)$ model is defined (see Eq. (9))

$$
\begin{equation*}
\boldsymbol{\Gamma}(l)=\left\langle\mathbf{x}_{n} \mathbf{x}_{n+l}^{T}\right\rangle \tag{19}
\end{equation*}
$$

For a $\operatorname{VAR}(1)$ we get

$$
\begin{gather*}
\Gamma(1)=\left\langle\mathbf{x}_{n} \mathbf{x}_{n+1}^{T}\right\rangle=\left\langle\mathbf{x}_{n}\left(\mathbf{A} \mathbf{x}_{n}+\boldsymbol{\Sigma} \boldsymbol{\eta}_{n}\right)^{T}\right\rangle \\
=\left\langle\mathbf{x}_{n} \mathbf{x}_{n}^{T} \mathbf{A}^{T}\right\rangle+\left\langle\mathbf{x}_{n} \boldsymbol{\eta}_{n}^{T} \boldsymbol{\Sigma}^{T}\right\rangle=\left\langle\mathbf{x}_{n} \mathbf{x}_{n}^{T}\right\rangle \mathbf{A}^{T}+\left\langle\mathbf{x}_{n} \boldsymbol{\eta}_{n}^{T}\right\rangle \boldsymbol{\Sigma}^{T} \tag{20}
\end{gather*}
$$

The last average vanishes as \mathbf{x}_{n} does not depend on $\boldsymbol{\eta}_{n}$. As $\left\langle\mathbf{x}_{n} \mathbf{x}_{n}^{T}\right\rangle=\Gamma(0)$, we get

$$
\begin{equation*}
\Gamma(0) \mathrm{A}^{T}=\Gamma(1) \tag{21}
\end{equation*}
$$

which is a set of linear equations for the elements of \mathbf{A}^{T}. Eq. (21) is the equivalent of Yule-Walker equations for $\operatorname{VAR}(1)$. Estimates of $\Gamma(0), \Gamma(1)$ can be calculated directly from the time series.

Similarly, we can calculate

$$
\begin{gather*}
\left\langle\mathbf{x}_{n+1} \mathbf{x}_{n+1}^{T}\right\rangle=\left\langle\left(\mathbf{A} \mathbf{x}_{n}+\boldsymbol{\Sigma} \boldsymbol{\eta}_{n}\right)\left(\mathbf{A} \mathbf{x}_{n}+\boldsymbol{\Sigma} \boldsymbol{\eta}_{n}\right)^{T}\right\rangle \\
=\mathbf{A}\left\langle\mathbf{x}_{n} \mathbf{x}_{n}^{T}\right\rangle \mathbf{A}^{T}+\boldsymbol{\Sigma}\left\langle\boldsymbol{\eta}_{n} \boldsymbol{\eta}_{n}^{T}\right\rangle \mathbf{\Sigma}^{T} \tag{22}
\end{gather*}
$$

As $\left\langle\boldsymbol{\eta}_{n} \boldsymbol{\eta}_{n}^{T}\right\rangle=\mathbb{I}$, we finally get

$$
\begin{equation*}
\boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T}=\Gamma(0)-\mathbf{A} \boldsymbol{\Gamma}(0) \mathbf{A}^{T} . \tag{23}
\end{equation*}
$$

