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All kinds of time series taht have been discussed so far, and some of those that
will be discussed in the future, have their multivariate (or vector) counterparts.
For example, a process

Xn = A1Xp_1+A2Xp 2+ -+ ApXp—p+Bon, +Bin, 1+ +Bgny, 4
(1)

is a vector autoregressive, moving average process VARMA(p,q). In (1), x» €
R™ is a m-dimensional time series, x,,_; are its past values, 7n,, in a n-
dimensional GWN, similar for its past values, and A1,...,A,,Bg,...,Bg €
R™XM are constant, real matrices. It is also possible to consider series in which
the dimensionality of the “innovations” n’s is different from that of the time series;
in that case the matrices B, are not square, but rectangular.
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The need to discuss such processes arises when we observe more than one
time series and we expect that they mutually influence each other.

Example

Two processes

a11Tp—1 + @12Yp—1 + OxNzyn (2a)
a21Tp—1 + a22Yp_1 + OyNy.n (2b)

In

Yn

together form a VAR(1) process with uncorrelated (independent) noises.
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VAR(1)

For simplicity, we shall only deal with processes VAR(1), or of the type (2), or
more generally,

xn = Ax, 1+ =n, 3)

where ¥ = diag{o1, 09, ..., om} meaning that the individual components of the
vector noise are uncorrelated.

Copyright © 2018 P. F. Géra 7—4



If the matrix A in (3) can be diagonalized, i.e. if there exists an invertible matrix
S such that

S—1AS = Adiag = diag{)\l, Ceey )\m} (4)

the vector process can be “diagonalized”, or represented as a collection of
series that no longer influence each other. Indeed, multiplying by S—1 from
the left, we get

zn =S 'xp = STTASSTx, 1 + S8, = AgiagZn-1+ S0, (5)
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Notes

1. There still may be some interdependence between different components of
z, as the matrix S™1X is, in general, not diagonal and the noises acting on
various components of z;,, get correlated.

2. If the matrix A in (3)) is not symmetrix, the “diagonalized” time series z,, may
become complex.

3. For processes of higher orders VAR(p), a “diagonalization” in the spirit of
Eq. (9) is possible only if all the matrices A4, ..., A, commute.
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Embedding in a higher dimension

If we have a general VAR(p) process

Xn = A1Xp_1+ AdXp 2+ -+ Apxpn—p + X, (6)

we can formally represent it as a VAR(1) process, but in a space of dimensiona-
lity m x p. In block notation,

i” AL Ay - A, A, | T %’”
: — . . ., . H E _|_ 2 : (7)
“n—pt2 0 0 .-~ I 0 || retl 0

| Xp—p+1 | - © | Xn—p | ] 0

Copyright © 2018 P. F. Géra 7—7



Stationarity of VAR(1)

From the “diagonalized” form of a VAR(1) process, we can clearly see that the
process is stationary, if and only if all eigenvalues of the matrix A satisfy

Vi=1,...,m: |\ <1, (8)

provided these eigenvalues exist. If any of the eigenvalues has a modulus that
Is greater than 1, the process is not stationary and explodes.

Note that the similarity transformation (4) and its inverse do not change the eige-
nvalues.
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Cross-correlations

The most important quantity to analyse while dealing with multvariate series is
the cross-correlation. Let 3, be the j-th component of the vector x,,. Then

pik(l) = L <(=’L‘% - <5’7¥z>) (507]34-1 - <%’§>)> (9a)

00

where

oy = (- (oh))°). (9b)

Note that p;;, (1) 7= py;(1).
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Because in practice we have only a single realization of the process at our di-
sposal, we cannot do the statistical averaging. Therefore, instead of (9) we use

N LS
(2),) = = n; o (10a)
1 X
5= \v (2], — (21))’ (10b)
1 N— .
"D = N Do 2 (wh = (#h)) (#n1 = (=n)) (100
where N is the length of the time series.
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Example 1

SN S

O~ WIN

WIN O1f=
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Example 2

SN 3

Ol WIN
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Example 3

1
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Example 4 — one process drives another

O WIN
WIN O1f=

(14)
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Example 5 — “non-diagonalizable” process

O WIN
WIN WIN
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Example 6 — non-symmetric matrix, negative cross-correlations

SN 3=
|
Dw O
Ol WIN
8

(16)
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Example 7 — a linear trend

P= DW

1
BT (17)
1 n

SN 3=
|
AW p=
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The matrix in (17) has eigenvalues 1,%. The unit eigenvalue causes a linear

trend. The series of first differences, =, | — xj, 22 ; — =7, are stationary.

1 1 1 1 1 1 1 1
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Example 8 — another kind of nonstationarity

§

This matrix has eigenvalues A1 > =

1

n
2
n

]:

1

V2

|

1 1
-1 1

|

%(1 + i),

x4 1 [ n
2 +—| -
n 1 4 In

= 1.

]

(18)
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Fitting parameters to VAR(1) model

A general covariance matrix for a VAR(p) model is defined (see Eq. (9))

T(1) = (xnxp1y) - (19)
For a VAR(1) we get
(1) = (xnXp41) = (xn(Axn + En,)T)
= (ot AT) 4+ (xinfST) = (e AT + () ST (20
The last average vanishes as x, does not depend on n,,. As <xnx > = I'(0),
we get
T'(0)AT =1(1) (21)
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which is a set of linear equations for the elements of AL. Eq. (21) is the equ-
ivalent of Yule-Walker equations for VAR(1). Estimates of I'(0), I'(1) can be
calculated directly from the time series.

Similarly, we can calculate

< n—I—lX’rL—|—1> <<AXTL + Enn) (Axn + Enn)T>
= A <an > Al 4+ ¥ <77,n77n> »! (22)

As (n,mL) =1, we finally get

»>»' =1(0) - AT(0)AT. (23)

Copyright © 2018 P. F. Géra 7-27



