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All kinds of time series taht have been discussed so far, and some of those that
will be discussed in the future, have their multivariate (or vector) counterparts.
For example, a process

xn = A1xn−1+A2xn−2+ · · ·+Apxn−p+B0ηn+B1ηn−1+ · · ·+Bqηn−q
(1)

is a vector autoregressive, moving average process VARMA(p,q). In (1), xn ∈
Rm is a m-dimensional time series, xn−k are its past values, ηn in a n-
dimensional GWN, similar for its past values, and A1, . . . ,Ap,B0, . . . ,Bq ∈
Rm×m are constant, real matrices. It is also possible to consider series in which
the dimensionality of the “innovations” η’s is different from that of the time series;
in that case the matrices Bj are not square, but rectangular.
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The need to discuss such processes arises when we observe more than one
time series and we expect that they mutually influence each other.

Example

Two processes

xn = α11xn−1 + α12yn−1 + σxηx,n (2a)

yn = α21xn−1 + α22yn−1 + σyηy,n (2b)

together form a VAR(1) process with uncorrelated (independent) noises.
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VAR(1)

For simplicity, we shall only deal with processes VAR(1), or of the type (2), or
more generally,

xn = Axn−1 + Σηn (3)

where Σ = diag{σ1, σ2, . . . , σm}meaning that the individual components of the
vector noise are uncorrelated.
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If the matrix A in (3) can be diagonalized, i.e. if there exists an invertible matrix
S such that

S−1AS = Adiag = diag{λ1, . . . , λm} (4)

the vector process (3) can be “diagonalized”, or represented as a collection of
series that no longer influence each other. Indeed, multiplying (1) by S−1 from
the left, we get

zn = S−1xn = S−1ASS−1xn−1 + S−1Σηn = Adiagzn−1 + S−1Σηn (5)
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Notes

1. There still may be some interdependence between different components of
zn as the matrix S−1Σ is, in general, not diagonal and the noises acting on
various components of zn get correlated.

2. If the matrix A in (3) is not symmetrix, the “diagonalized” time series zn may
become complex .

3. For processes of higher orders VAR(p), a “diagonalization” in the spirit of
Eq. (5) is possible only if all the matrices A1, . . . ,Ap commute.
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Embedding in a higher dimension

If we have a general VAR(p) process

xn = A1xn−1 + A2xn−2 + · · ·+ Apxn−p+ Σηn (6)

we can formally represent it as a VAR(1) process, but in a space of dimensiona-
lity m× p. In block notation,

xn
xn−1...
xn−p+2
xn−p+1

 =


A1 A2 · · · Ap−1 Ap

I 0 · · · 0 0
... ... . . . ... ...
0 0 · · · I 0




xn−1
xn−2...
xn−p+1
xn−p

+ Σ


ηn
0
...
0
0

 . (7)
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Stationarity of VAR(1)

From the “diagonalized” form of a VAR(1) process, we can clearly see that the
process is stationary, if and only if all eigenvalues of the matrix A satisfy

∀i = 1, . . . ,m : |λi| < 1 , (8)

provided these eigenvalues exist. If any of the eigenvalues has a modulus that
is greater than 1, the process is not stationary and explodes.

Note that the similarity transformation (4) and its inverse do not change the eige-
nvalues.
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Cross-correlations

The most important quantity to analyse while dealing with multvariate series is
the cross-correlation. Let xjn be the j-th component of the vector xn. Then

ρjk(l) =
1

σjσk

〈(
xjn −

〈
xjn
〉) (

xkn+l −
〈
xkn
〉)〉

(9a)

where

σj =

√〈(
xjn −

〈
xjn
〉)2〉

. (9b)

Note that ρjk(l) 6= ρkj(l).
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Because in practice we have only a single realization of the process at our di-
sposal, we cannot do the statistical averaging. Therefore, instead of (9) we use

〈
xjn
〉
=

1

N

N∑
n=1

xjn (10a)

σj =

√√√√√ 1

N

N∑
n=1

(
xjn −

〈
xjn
〉)2

(10b)

rjk(l) =
1

(N − l)σjσk

N−l∑
n=1

(
xjn −

〈
xjn
〉) (

xkn+l −
〈
xkn
〉)

(10c)

where N is the length of the time series.
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Example 1

 x1n
x2n

 =

 2
3

1
5

1
5

2
3

  x1n−1
x2n−1

+
1

4

 η1n
η2n

 (11)
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Example 2
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Example 3
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Example 4 — one process drives another
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Example 5 — “non-diagonalizable” process
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Example 6 — non-symmetric matrix, negative cross-correlations
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Example 7 — a linear trend
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The matrix in (17) has eigenvalues 1, 12. The unit eigenvalue causes a linear
trend. The series of first differences, x1n+1 − x

1
n, x

2
n+1 − x

2
n are stationary.
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Example 8 — another kind of nonstationarity
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This matrix has eigenvalues λ1,2 = 1√
2
(1± i),

∣∣∣λ1,2∣∣∣ = 1.
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Fitting parameters to VAR(1) model

A general covariance matrix for a VAR(p) model is defined (see Eq. (9))

Γ(l) =
〈
xnxTn+l

〉
. (19)

For a VAR(1) we get

Γ(1) =
〈
xnxTn+1

〉
=
〈
xn(Axn+ Σηn)

T
〉

=
〈
xnxTnAT

〉
+
〈
xnη

T
nΣT

〉
=
〈
xnxTn

〉
AT +

〈
xnη

T
n

〉
ΣT . (20)

The last average vanishes as xn does not depend on ηn. As
〈
xnxTn

〉
= Γ(0),

we get

Γ(0)AT = Γ(1) (21)
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which is a set of linear equations for the elements of AT . Eq. (21) is the equ-
ivalent of Yule-Walker equations for VAR(1). Estimates of Γ(0), Γ(1) can be
calculated directly from the time series.

Similarly, we can calculate〈
xn+1xTn+1

〉
=
〈
(Axn+ Σηn) (Axn+ Σηn)

T
〉

= A
〈
xnxTn

〉
AT + Σ

〈
ηnη

T
n

〉
ΣT (22)

As
〈
ηnη

T
n

〉
= I, we finally get

ΣΣT = Γ(0)−AΓ(0)AT . (23)
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