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Moving averages MA(q)

If a process is modelled by

yn = α0ηn+ α1ηn−1 + · · ·+ αqηn−q (1)

it is called a Moving Average of order q, or MA(q). {ηn} is a GWN. In the context
of MA processes, the η’s are often called innovations.

The power spectrum of a MA(q) process is given by

P (f) =

∣∣∣∣∣∣
q∑

n=0

αne
2πinf

∣∣∣∣∣∣
2

(2)
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The correlation function of an MA(q) process can be calculated from

〈ynyn−i〉 =
q∑

j=0

αj
〈
ηn−jyn−i

〉
(3)

These correlations terminate for i > q. To see this, lets consider an. . .
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Example: MA(2)

yn = α0ηn+ α1ηn−1 + α2ηn−2 (4a)

therefore
yn−1 = α0ηn−1 + α1ηn−2 + α2ηn−3 (4b)

yn−2 = α0ηn−2 + α1ηn−3 + α2ηn−4 (4c)

yn−3 = α0ηn−3 + α1ηn−4 + α2ηn−5 (4d)
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We have〈
y2n
〉

=
〈(
α0ηn+ α1ηn−1 + α2ηn−2

)2〉
= α20

〈
η2n
〉
+ α21

〈
η2n−1

〉
+ α20

〈
η2n−2

〉
+ 2α0α1 〈ηnηn−1〉+2α0α2 〈ηnηn−2〉+2α1α2 〈ηn−1ηn−1〉
=

(
α20 + α21 + α22

) 〈
η2n
〉

(5a)

〈ynyn−1〉 = α20 〈ηnηn−1〉+ α0α1 〈ηnηn−2〉+ α0α2 〈ηnηn−3〉
+ α0α1

〈
η2n−1

〉
+ α21 〈ηn−1ηn−2〉+ α1α3 〈ηn−1ηn−3〉

+ α0α2 〈ηn−1ηn−2〉+ α1α2
〈
η2n−1

〉
+ α22 〈ηn−2ηn−3〉

= (α0α1 + α1α2)
〈
η2n
〉

(5b)

〈ynyn−2〉 = α0α2
〈
η2n
〉

(5c)
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To generalize the above example, in a general MA(q) proces, the correlation
coefficients have the form

ρi =


α0αi+α1αi+1+···+αq−iαq

α20+α
2
1+···+α2q

i = 1,2, . . . , q

0 i > q
(6)

Partial correlations exponentially decrease for i→∞.
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For the purpose of fitting parameters of the model, Eq. (6), with ρi replaced
by “experimental” correlations ri, is used much as Yule-Walker equations for
autoregressive processes. The trouble is, Eqns. (6), i = 1,2, . . . , q, are a set
of nonlinear equations for the parameters α1, α2, . . . , αq (α0 depends on the
former and on the variance of the process).

We can use AIC to determine the order of the process.
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yn = 0.25ηn+0.5ηn−1 +0.25ηn−2
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yn = −0.25ηn+0.5ηn−1 +−0.25ηn−2
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Unlike in predicting an AR(p), we cannot rely here on past value of the process.
But we do not know the future noises. Therefore, given the process (1), we
should write

yn+1 = α0ηn+1 + α1ηn+ α2ηn−1 + · · ·+ αqηn−q+1 (7a)

but as we do not know ηn+1, it is only safe to replace it in (7a) by its expectation
value, i.e. zero:

yn+1 = α1ηn+ α2ηn−1 + · · ·+ αqηn−q+1 (7b)
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Similarly,

yn+2 = α2ηn+ · · ·+ αqηn−q+2 (8a)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
yn+q = αqηn (8b)

yn+q+1 = 0 (8c)

Only up to q future terms of a MA(q) can be (somehow) predicted.
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Can we do any better? We can always calculate the variance of the process (if
we know the coefficients, it is equal σ2 = α22 + α21 + · · ·+ α2q ), and if we treat
the value of the process as a “diffusing particle” and all future innovations as
a noise responsible for the diffusion, we can provide an envelope for the future

values of the process: In diffusion,
〈〈

(xn+n0 − 〈x〉
)2〉
' σ2n, where n0 is the

last known index of the process. The process “diffuses” around its mean, which
is usually zero.
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General ARMA(p,q) processes

An ARMA(p,q) process is stationary if its autoregressive part is. The power
spectrum is given by

P (f) =

∣∣∣∣∣∣∣∣∣∣

q∑
n=0

αne2πinf

1−
p∑

n=1
βne2πinf

∣∣∣∣∣∣∣∣∣∣

2

, 0 6 f 6
1

2
. (9)
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yn = 0.75yn−1 +0.25ηn+0.5ηn−1 +0.25ηn−2
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Criteria for identifying the order of the process

Process Autocorrelation Partial correlations
AR(p) decreases towards zero terminate
MA(q) terminates decrease towards zero

ARMA(p,q) decreases towards zero decrease towards zero

In practice, identifying the model and estimating the parameters, can be tricky.

Some authors suggest that, when everything else fails, “symmetric” processes
ARMA(p,q=p) should be used.
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Assuming that a correct order(s) of the process ARMA(p,q) have been identified,
parameters of the autoregressive part can be calculated by solving Yule-Walker
equations for this part of the correlation function where the moving average has
died out: 

rq rq−1 . . . rq−p+1
rq+1 rq . . . rq−p+2
. . . . . . . . . . . .

rq+p−1 rq+p−2 . . . rq



β1
β2...
βp

 =


rq+1
rq+2...
rq+p

 (10)

Then parameters of the MA part are calculated by solving Eq. (6) for i =

1,2, . . . , q.
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Stationarity revisited

All models discussed so far are stationary . In mathematical terms this is equiva-
lent to demanding that all roots of the polynomial

1− β1u− β2u2 − · · · − βpup (11)

lie outside the unit circle. If any of the roots of (11) lie inside the unit circle, the
time series diverges.

A question remains: What happens if a root lies on the unit circle?
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Linear trends

Consider a process

yn = yn−1 + αηn (12)

This process is nonstationary, the characteristic equation has the form λ−1 = 0,
but the series of first differences is stationary:

z
(1)
n ≡ yn − yn−1 = αηn (13)

Note: If ηn in (12) is a Gaussian White Noise, then yn, defined by this particular
equation, is called Brownian Motion. This is the position of a particle performing
a random walk in one dimension.
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In general, if the characteristic polynomial of a stochastic model has the form
(1 − λ)Bp(λ), where Bp is a polynomial of degree p that has all roots outside
the unit circle, and the first differences form an ARMA(p,q) process, we call this
model ARIMA(p,1,q). The nonstationary series is modelled as sums of terms of
a stationary one. Now, because summation is an approximation to integration,
we call such process “integrated”, and this gives rise to the “I” in the acronym.

ARIMA(p,1,q) displays a (local) linear trend.
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Example

A times series generated by

yn =
1

6
yn−1 +

2

3
yn−2 +

1

6
yn−3 + α0ηn (14)

has a linear trend since its stability polynomial is 1− 1
6λ−

2
3λ

2 − 1
6λ

3 =

− 1
6(λ− 1)(λ+2)(λ+3).

Nb, even though (14) has a linear trend, this is not a Brownian Motion.
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Example
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A nonstationary time series and a stationary series of first differences
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Quadratic trends

By the same token, in the characteristic polynomials has the form (λ−1)2Bp(λ),
we call it ARIMA(p,2,q), where a stable ARMA(p,q) corresponds to the Bp(λ)
part. Such process displays a (local) quadratic trend. The series of second
differences is stationary.

Example:

yn+1 = 2yn − yn−1 + α0ηn (15a)

z
(1)
n ≡ yn+1 − yn = z

(1)
n−1 + α0ηn (15b)

z
(2)
n ≡ z(1)n − z(1)n−1 = α0ηn (15c)
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Example
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A nonstationary series of first differences of the series from the previous slide,
and a stationary series of second differences
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A “practical” modus procedendi

If we have reasons to believe that a time series that is not

stationary may possibly display a linear trend, we examine the

series of first differences. If this series is not stationary, either,

examine its first differences, or second differences of the original

series.

In realistic applications series with higher order trends are very

rare.
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Unrealistic example: A series with a third order trend
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Lessons of the financial crisis of 2008 (and many times before):

1. A trend is your friend — forecasting a series with a trend is usually quite
easy: You predict the stationary part in the usual manner, and then you add
the trend.

2. Remember: every trend is local — you cannot extra-
polate a trend indefinitely.
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Model fitting

• Make a series of first, second differences of a non-stationary series.

• Fit an ARMA(p,q) model to a stationary series of differences.

• The original series is now ARIMA(p,d,q), where d is the order of differences
that we need to take to find a stationary series.

• If the stationary ARMA(p,q) has a stability polynomial Bp(λ), the correspon-
ding ARIMA(p,d,q) has (1 − λ)dBp(λ), from which we identify parameters
of the autoregressive part. The MA part is the same in both ARIMA and
ARMA.
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Example
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Correlation function ρk and partial correlations ϕkk for the series of first
differences. We may safely assume that ϕ33 ' 0. The underlying model is an

AR(2).
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Using Yule-Walker equations, we find β1 = −0.849523, β2 = −0.165224.
The stability polynomial is 1 − β1λ − β2λ2. The stability polynomial of the in-
tegrated (nonstationary) series is (1 − λ)(1 − β1λ − β2λ2). Noise intensity is
estimated from the variance of the series of first differences. Finally we get

yn = 0.150477 yn−1 +0.684299 yn−2 +0.165224 yn−3 +0.189055 ηn
(16)

Not bad , given the fact that the process that has been used to generate the
example has the form (cf. (14))

yn =
1

6
yn−1 +

2

3
yn−2 +

1

6
yn−3 +

1

4
ηn (17)
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If the noise is large, model identification may worsen
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Correlation function ρk and partial correlations ϕkk for the series of first
differences. We need to use AIC to identify the model.
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For n = 6 we get β1 = −0.832051, β2 = −0.181079, β3 = 0.0407839,
β4 = 0.0650440, β5 = 0.0504210, β6 = 0.0310754. In other words, the
original process is modelled as an ARIMA(6,1,0):

yn = 0.167949 yn−1 +0.650972 yn−2 +0.221863 yn−3
+ 0.024260 yn−4 − 0.014620 yn−5 − 0.081496 yn−6
− 0.031075 yn−7 +0.700224 ηn (18)

For comparison, setting p = 2 gives β1 = −0.831124, β2 = −0.189943 an
finally an ARIMA(2,1,0):

yn = 0.168876 yn−1 +0.641181 yn−2 +0.189943 yn−3 +0.700224 ηn
(19)

which is a slightly worse approximation of the “true” parameters, which are iden-
tical as before with α0 = 0.75.
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Brownian walk
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A Brownian walker position

The process IMA(1,0) is of special importance: it gives the position of a 1-d Brownian walker:

yn = yn−1 + σηn (20)

where ηn is GWN. Similarly, processes IMA(1,q > 0) describe random walks with “coloured”
noises.
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Seasonality

If a series that is otherwise random nevertheless displays some periodicity, we
call this feature seasonality. The name comes from the observation that in eco-
nomy, sales often follow a pattern that (nearly) repeats itself after a year.
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A series with seasonal features

yn = 0.75yn−1 +0.9yn−12 − 0.675yn−13 +0.5ηn
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Roots of unity

Suppose that a time series satisfies

yn = yn−k (21)

Such series is evidently periodic, with a period k. If

yn = yn−k + α0ηn (22)

we have some-kind-of-periodicity-contaminated-by-noise, plus nonstationarity.
In general, if the stability polynomial of a time series takes the form

(1− βλk)Bp(λ) (23)

where Bp(λ) corresponds to a stationary ARMA(p,q) and 0 < β 6 1, we expect
k-periodicity superimposed on a (local) linear trend and contaminated by noise.
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If we identify the period, k, we can construct a series of differences

zn = yn+k − yn (24)
and fit an ARMA to it. Example:
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The inset shows that local maxima appear every 6 data points. AIC suggests using order p = 3
for the AR part. The fit is zn = 0.9409zn−1 − 0.0684zn−2 +0.0542zn−3 +0.1810ηn.
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