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Let {yn}Nn=0 be a stationary time series. A stochastic model of this series is
given by

yn = β1yn−1 + β2yn−2 + · · ·+ βpyn−p︸ ︷︷ ︸
AR(p)

+α0ηn+ α1ηn−1 + · · ·+ αqηn−q︸ ︷︷ ︸
MA(q)︸ ︷︷ ︸

ARMA(p,q)
(1)

where {ηn} is GWN. Eq. (1) is a causal IIR filter applied to the Gaussian white
noise.

Let B be a time shift operator: Bzn = zn−1. Eq. (1) can be written as1− p∑
k=1

βkB
k

 yn =

 q∑
k=0

αkB
k

 ηn (2)

.
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A “philosophy” of stochastic modelling

{yn} is our data, something that has been given to us and is an ordered sequ-

ence of measurement of some “real life” quantity. We do not know any mecha-

nism, derived form first principles, that has generated this time series. All we

know is the time series. We assume that the time series originates from some

random events, but that there is also a mechanism that shapes the output. It

may introduce regularities into the data, in particular correlations 〈ynym〉. This

mechanism is represented by the coefficients βk, αk. We do not want to find

a “true” nature of the data. We merely want to find a model that reproduces the

data sufficiently well.
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The “random events” in question may include

• thermal noise contaminating a signal

• decisions of individual investors to buy or sell stocks

• decisions of shoppers to purchase goods

• changes in population of an ant colony, reflecting environmental variability

• number of sunspots

• etc

{ηn} can represent almost anything, as long as we can reasonably assume that
this “anything” is modelled by equilibrium fluctuations. Even this assumption
can be relaxed: {ηn} can represent any stationary series of events, although in
this case it no longer is a GWN, which, generally, shall not be covered in these
lectures.
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Example of an ARMA(3,2) stochastic model
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Correlation function

Correlation function is the most important quantity that is used in analysis of
linear models. For convenience, the correlation coefficient is used more frequ-
ently than the (not normalised) correlation function.

Theoretically the correlation function is calculated by averaging over realizations
of the stochastic process that “generated” the series.

ρ(i) =

〈 1

N − i

N∑
j=i+1

yj−iyj

/ 1

N

N∑
j=1

y2j

〉 (3)

In reality we have only a single realization of the time series, and therefore, the
correlation function estimated from the series differs from the theoretical corre-
lation function.
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Correlation function of the above process

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 8 16 24 32

ρ(
j)

j

a single realization

Copyright c© 2009-18 P. F. Góra 5–7



Power spectrum of the above process
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The goal of stochastic modelling

Given a stationary time series, its power spectrum and its correlation function,
calculated from the only realization available, estimate the parameters p, q, βk,

αk of the model (1).

By doing so, gain some insight on the mechanism that has generated the
series. If you are lucky, use this mechanism to predict future behaviour (not

necessarily the actual future values!) of the series.

, (or maybe /)
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Processes AR(p)

If the moving average part in (1) vanishes, q = 0, the model is called an Autore-
gressive Model of order p, AR(p):

yn = β1yn−1 + β2yn−2 + · · ·+ βpyn−p+ α0ηn (4)

We demand that all roots of the polynomial

1− β1u− β2u2 − · · · − βpup = 0 (5)

lie outside the unit circle, as otherwise the model (4) may produce nonstationary
output.
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Autocorrelation function

Multiply both sides of (4) by yn−m and take the average over realizations:

〈yn−myn〉 = β1 〈yn−myn−1〉+ · · ·+ βp
〈
yn−myn−p

〉
+ α0 〈yn−mηn〉 . (6)

Because yn−m is statistically independent from a later noise, the last term in (6)
vanishes. Dividing by the variance, we get

ρm = β1ρm−1 + β2ρm−2 + · · ·+ βpρm−p (7)
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The general solution to a homogeneous difference equation (7) has a form

ρm =
p∑

j=1

Ajλ
m
j , (8)

where λj are reciprocals of the roots of the polynomial (5)∗. Because
∀j : |λj|<1, λj = e−τje2πifj , τj > 0. Because the polynomial (5) has real
coefficients, the constants Aj in (8) can be chosen such that ρm is real.

The autocorrelation function of an autoregressive process is a linear
combination of vanishing exponentials and damped harmonic oscillations:

ρm =
∑

Aje
−mτj +

∑′
Aj′e

−mτj′ sin(2πfj′m+ φj′) . (9)

∗See Lecture 4, Eqns. (27)–(289). Additionally, we assume that all the roots are single.
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Power spectrum of an AR(p) process

The power spectrum can be obtained immediately from the transfer function of
the corresponding IIR filter:

P (f) =
α20∣∣∣∣∣1− p∑

n=1
βne2πinf

∣∣∣∣∣
2 , 0 6 f 6

1

2
, . (10)
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Initialization
If we want to simulate an AR(p) process, we are supposed to know y−1, y−2, . . . , y−p. Actually,
this is not a problem, as any realizations initialized with different conditions, but driven by the
same noise, eventually converge to the same series. For convenience, we usually set y−1 = 0
etc.
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Two realizations of the same AR(p) process, differing in initial conditions, but driven by the same
noise.
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Process AR(1)

yn = β1yn−1 + α0ηn (11)

−1 < β1 < 1. The correlation function (m > 0):

〈ynyn−m〉 = β1 〈yn−1yn−m〉+ α0 〈ηnyn−m〉 (12)

ρm = β1ρm−1 (13)

ρm = β1
m = (sgn(β1))

m em ln |β1| (14)

(Note that ln |β1| < 0.)
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yn = 0.75yn−1 + ηn
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yn = −0.75yn−1 + ηn
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From (10) we can easily get that for AR(1)

P (f) =
α20

1+ β21 − 2β1 cos(2πf)
(15)

the character of the process strongly depends on the sign of β1.
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The Ornstein-Uhlenbeck process
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A “blue” noise
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Note

A process AR(1) is Markovian: yn depends on yn−1 only (plus random noise), and not on any
previous values. If 0 < β1 < 1, the process (11) is also called the Ornstein-Uhlenbeck process.

A general AR(p) process is non-Markovian. However, an AR(p) process can be embedded in
a p-dimensional space

yn
yn−1
yn−2

...
yn−p


︸ ︷︷ ︸

yn

=


β1 β2 β3 . . . βp−1 βp
1 0 0 . . . 0 0
0 1 0 . . . 0 0
... ... ... . . . ... ...
0 0 0 . . . 1 0


︸ ︷︷ ︸

B


yn−1
yn−2
yn−3

...
yn−(p+1)


︸ ︷︷ ︸

yn−1

+α0


ηn
0
0
...
0


︸ ︷︷ ︸

ηn

(16)

Eq. (16) describes a p-variate AR(1) process yn = Byn−1 + α0ηn. This process is Marko-

vian: a non-Markovian autoregressive process AR(p) of a finite order in one dimension becomes

a Markovian process in p dimensions.
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Process AR(2)

yn = β1yn−1 + β2yn−2 + α0ηn (17)

ρi = β1ρi−1 + β2ρi−2 (18)

The solution to (18) is either a sum of two vanishing exponentials, or damped
oscillations.
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yn = 0.75yn−1 − 0.05yn−2 + ηn
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yn = 0.75yn−1 − 0.5yn−2 + ηn

-4

-2

0

2

4

20 40 60 80 100 120

AR(2) "b"
GWN

Copyright c© 2009-18 P. F. Góra 5–27



-1

-0.5

0

0.5

1

0 2 4 6 8 10 12 14

N=27

N=214

Copyright c© 2009-18 P. F. Góra 5–28



Yule-Walker equations

Lets put m = 1 in Eq. (7):

ρ1 = β1ρ1−1 + β2ρ1−2 + . . . βpρ1−p = β1 + β2ρ1 + . . . βpρp−1 , (19)

ρj = ρ−j by stationarity. If we do so for m = 1, . . . , p, we get Yule-Walker
equations:


1 ρ1 ρ2 · · · ρp−1
ρ1 1 ρ1 · · · ρp−2... ... ... ...
ρp−1 ρp−2 ρp−3 · · · 1



β1
β2...
βp

 =


ρ1
ρ2...
ρp

 . (20)
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Theoretically , if we know the correlation function ρm, we can solve (20) for the
parameters of the process, βj. In reality , we do not know the autocorrelation. All
we have is the “experimental” autocorrelation, calculated from the single realiza-
tion available:

rm =

 1

N −m

N∑
i=m+1

yi−myi

/ 1

N

N∑
i=1

y2i

 . (21)

If we substitute rm for ρm in Yule-Walker equations, we can calculate approxi-
mate values of the coefficients βi.

Note that the matrix in (20) is symmetrix an (is supposed to be) positive-definite.
In terms of numerical linear algebra, this matrix is also small and there is no
need for using algorithms tailored for large matrices.
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Partial correlation

There is one serious problem: How do we know the order of the process, or the
dimension of (20)?

We can formally extend the Yule-Walker equation to the next order of correlations
by adding a row and a column:

1 ρ1 ρ2 · · · ρp−1 ρp
ρ1 1 ρ1 · · · ρp−2 ρp−1... ... ... ... ...
ρp ρp−1 ρp−2 · · · ρ1 1




β1
β2...
βp+1

 =


ρ1
ρ2...
ρp+1

 . (22)

Is it possible that β1, . . . , βp calculated either from (20) or from (22) are equal?
Yes, if and only if βp+1 = 0.
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More formally, the autocorrelation of an AR(p) process has an infinite power
series expansion but it depends on p linearly independent functions only. Lets
assume that our process has an order k. Then Yule-Walker equations take the
form 

1 ρ1 ρ2 · · · ρk−1
ρ1 1 ρ1 · · · ρk−2... ... ... ...
ρk−1 ρk−2 ρk−3 · · · 1



ϕk1
ϕk2...
ϕkk

 =


ρ1
ρ2...
ρk

 . (23)

ϕkk is called a partial autocorrelation function.

For an AR(p) process, ϕkk 6= 0 for k 6 p and ϕkk ≡ 0 for k > p. This suggests
a procedure: increase the number of equations in (23) as long as ϕkk 6= 0. If
ϕk′k′ = 0, then p = k′ − 1.
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Example
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Estimated parameters: (A) p = 3: β1 = 0.415, β2 = 0.003, β3 = 0.470
(B) p = 4: β1 = 0.474, β2 = −0.149, β3 = 0.530, β4 = 0.015

”True” parameters: p = 3: β1 = 0.500, β2 = −0.125, β3 = 0.500
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How much do these models really differ?
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Akaike Information Criterion

Sometimes it is not absolutely clear which partial correlation is practically zero
and which is not. Several criteria have been proposed to decide in such cases.

It is obvious that the more parameters, or the higher the range of the AR(p)
process, the better the fit to the actual data. However, models with too many
parameters are “bad”. Therefore, Hirotugu Akaike has proposed a criterion that
pays for a better fit, but penalizes for too many parameters:
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AIC = lnQ+
2p

N
(24)

where p is the number of parameters, N is the sample size, andQ is the residual
error

Q =
N−1∑
n=0

yn − p∑
j=1

β
(p)
j yn−j

2

(25)

where β(p)j ’s are the parameters fitted under the assumption that the process
has the order p.

Note: The residual error is calculated from the least squares because the noise
is GWN.
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Akaike criterion in “ordinary” least squares
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Results of the fits
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Fitted curves of the third and fourth orders are indistinguishable in the plotted
range.

Copyright c© 2009-18 P. F. Góra 5–38



How do we estimate the noise level?

We can do this from the power spectrum, in particular, from the power spectrum
at zero frequency. From (10) we get

P (0) =
α20∣∣∣∣∣1− p∑
n=1

βn

∣∣∣∣∣
2 . (26)

Calculating α20 is now straightforward. Note that the denominator of the above
equation cannot vanish as all roots of Eq. (5) must lie outside the unit circle.
However, a numerically calculated power spectrum carries some error with it.
For low order processes, we can calculate the noise level without calculating the
power spectrum first.
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Noise level in AR(1) process

For an AR(1) process

yn = β1yn−1 + α0ηn (27)

we calculate

〈ηnyn〉 = β1 〈ηnyn−1〉+ α0
〈
η2n
〉

(28)

〈ηnyn−1〉 = 0 because yn−1 cannot depend on future noises.
〈
η2n
〉
= 1.

Further,

〈
y2n
〉
= β1 〈ynyn−1〉+ α0 〈ηnyn〉 = β1 〈ynyn−1〉+ α20 (29)
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Finally

〈ynyn−1〉 = β1
〈
y2n−1

〉
+ α0 〈ηnyn−1〉 (30)

The last term vanishes as before. By means of stationarity,
〈
y2n−1

〉
=
〈
y2n
〉

and
eventually

α20 = (1− β21)
〈
y2n
〉

(31)
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Noise level in AR(2) process

For an AR(2) process we do as above, use the fact that 〈yn−1yn−2〉 = 〈ynyn−1〉
and finally obtain

α20 =

(
1−

1+ β2
1− β2

β21 − β
2
2

)〈
y2n
〉

(32)

The benefit of formulas like (31), (32) is that the noise level can be estimated
directly from the variance of the process.
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What is it all good for?

We try to fit a stochastic model because

1. we want to get insight into the mechanism that has generated the process,

2. we want to do the forecasting.
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How do we forecast?

Having collected the time series {yn}N−1n=0 , and having fitted an AR(p) model (4)

yn = β1yn−1 + β2yn−2 + · · ·+ βpyn−p+ α0ηn

we generate the unknown, future noises, from a random number generator. We
thus obtain a different realization of the process:

ŷN = β1yN−1 + β2yN−2 + · · ·+ βpyN−p+ α0ηN (33a)
ŷN+1 = β1ŷN + β2yN−1 + · · ·+ βpyN−p+1 + α0ηN+1 (33b)
ŷN+2 = β1ŷN+1 + β2ŷN + · · ·+ βpyN−p+2 + α0ηN+2 (33c)

. . .

ŷk>N are the forecasts.
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Example of a forecast
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Note

If you train your model on a known series and want to compare the forecasts
with actual values, you must never fit the parameters using values that will be
forecasted.
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