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Convolution

s(t), r(t) — continuous signals such that ∀t < 0: s(t) = r(t) = 0. Their
convolution:

z(t) = (s ? r)(t) =

t∫
0

s(t′)r(t− t′) dt′ (1)

The Fourier transforms fulfil Z(f) = S(f)R(f).
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The discrete convolution

Likewise, we can define the dicsrete convolution. Let {sn}N1−1
n=0 , {rn}N2−1

n=0 be
periodic discrete signals. Their discrete convolution is:

zj = (s ? r)j =
M/2∑

k=−M/2+1

sj−krk . (2)

where M = max(N1, N2) and the shorter signal is padded with zeros. (In
many situations, one of the “signals” is much shorter than the other.) Fourier
transforms fulfil Zk = SkRk.
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Example

If we have a set of linear equations with constant coefficients with an external
forcing

dx

dt
= Ax + s(t) (3)

the solution contains a convolution of the internal dynamics of the system and
the forcing:

x(t) = exp (At)x(0) +

t∫
0

exp
(
A(t− t′)

)
s(t′) dt′ (4)

(can be generalized to linear equations with time-varying coefficients).
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More examples

If an incoming wave passes through a finite-size slit whose spatial profile is de-
scribed by a function, the outgoing wave is a convolution of the incoming wave
and the spatial profile of the slit.

If a beam of light passes through a lens whose optical density is described by
a function, the outgoing beam is a convolution of the incoming beam and the
optical density profile.

In signal processing, if a signal passes through a linear device, the output signal
is a convolution of the input signal and the response function of the device.

We call a linear device a filter .
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The response function?

For physical reasons, there are no devices that can respond instantly to an inco-
ming signal: any physical device requires a finite time to “warm up” and start to
respond to a signal. An instantenous response would require an infinite power.
Likewise, any physical device requires a finite time to stop creating output after
the input has ceased.

The profile along which a filter starts and then stops responding to a signal is
called the response function of the filter.
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The response function of a filter

Copyright c© 2009-18 P. F. Góra 2–7



Input Output
011111 0000 00000 0
001111 1000 00000 0.125
000111 1100 00000 0.625
000011 1110 00000 1.625
000001 1111 00000 1.75
000000 1111 10000 1.75
000000 0111 11000 1.625
000000 0011 11100 1.125
000000 0001 11110 0.125
000000 0000 11111 0
0.125A+ 0.5B + C + 0.125D
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A rectangular signal convoluted with the response function

in

out

t
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A convolution of a signal and a response function

0 0

original
convolution

response

An unwelcome consequence of the assumed periodicity:
the ends are spoiled!
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A convolution of a signal and a response function

0 0

original
convolution

response

The ends are repaired by padding with zeros
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The procedure

1. Pad the input signal with enough zeros to cover the longer tail of the re-
sponse function (remember that the padded signal should have a “magic”
length).

2. Calculate the FFT of both the signal and the response in one go.

3. Multiply the transforms termwise, in a linear time O(N).

4. Calculate the inverse FFT.

The total cost ∼ O(2N logN)
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An unexpected (?) application of the convolution

Given two polynomials A(z), B(z) of degrees not larger than n

A(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0 , (5a)
B(z) = bnz

n + bn−1z
n−1 + · · ·+ b1z + b0 . (5b)

Find the coefficients of their product C(z) = A(z)B(z).

c2n = anbn (6a)
c2n−1 = anbn−1 + an−1bn (6b)
c2n−2 = anbn−2 + an−1bn−1 + an−2bn (6c)
. . .

c0 = a0b0 (6d)

The sum of indices in each term on rhs equals to the index on lhs.
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We have

cl =
2n∑
k=0

ãkb̃l−k , l = 0,1, . . . ,2n , (7a)

where

ãs, b̃s =

as, bs s = 0,1, . . . , n

0 s = n+ 1, n+ 2, . . . ,2n
(7b)

and periodicity (sic!) of the “signals” is used to calculate the coefficients with ne-
gative indices: b̃−j = b̃2n−j+1 = 0 for j = 1,2, . . . , n. The coefficients of the
product are given by the convolution of the coefficients of the input polynomials.
The numerical cost of calculating the coefficients of the product isO(4n log 2n),
not O(n2), as it would appear.
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Calculating products of large integers

x =
n∑

j=0

aj2
j , (8a)

y =
n∑

j=0

bj2
j , (8b)

where aj, bj = {0,1}. The rhs are polynomials of the form (5), evaluated in
z = 2. The product xy is also a polynomial, and its coefficients are given by the
appropriate convolution. For a large n, calculating the product via FFT becomes
efficient! In addition, calculating the FFT of a “signal” consisting of {0,1} is
particularly simple.
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The autocorrelation function

Suppose we have a random series {xn}N−1
n=0 .

Question: Having measured a certain value xj, what information do we have on
xj+k?
Answer: For a stationary series, calculate the autocorrelation function

Ck =
〈
xj xj+k

〉
(9a)

or the correlation coefficient

ρk =

〈
xj xj+k

〉
〈
x2
j

〉 . (9b)

The braces 〈· · · 〉 stand for averaging over realizations of the random process.
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Beware!

Usually, only a single realization of a time series is available!

Instead of (9a), calculate

Ck =
1

N − k

N−k−1∑
j=0

xj xj+k (10)

(similarly for ρk). (10) gives only an estimate of the “true” autocorrelation func-
tion.
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Stationarity

A series is stationary if it does not change qualitatively over the time.

Definition: Divide a series into an arbitrary number of section (of arbitrary leng-
ths). If statistical distributions of values in every section are identical, the series
is stationary.

Another definition: A series is stationary if its autocorrelation function (9a) de-
pends only on offsets k (in principle, it could depend on both k and j).

A majority of series are not stationary: for example, periodic series, series with
trends or seasonal changes, series where noise parameters vary over the time,
or random series superimposed on deterministic (not constant) signals are not
stationary.
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Remarks

• Ck = C−k.

• ρk = ±1 — a deterministic relation.

• |ρk| < 1 — only statistical information.

– Example: ρk = 0.875: xj+k = 0.875xj + 0.125yk,
〈
xj yk

〉
= 0.
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The Wiener-Khinchin Theorem

Theorem: The Fourier transform of the autocorrelation of a stationary series is
its power spectrum.

P (f) = |G(f)|2 . (11)

Why not non-stationary? Examples: music, speech, series with trends etc. We
shall return to the problem of non-stationary series later during this course.
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Comment

If we have a finite time series then, under our assumption of periodicity (even
if it is blatantly false), nothing prevents us from calculating its Fourier Transform
and then from taking its square modulus. It wouldn’t give us much information,
though. The point of Wiener-Khinchin Theorem is that by calculating the power
spectrum, we gen information on the autocorrelation of the series.

For example, when we see a peak at a certain frequency f , we expect some
form of periodicity, with the period 1/f , in the autocorrelation.

Therefore, we do not use the autocorrelation to calculate the power spectrum,
but we use the power spectrum to get insight on the autocorrelation.
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The power spectrum

Given a stationary time series {xn}N−1
n=0 , calculate the autocorrelation (10) and

Fourier transform it to get the power spectrum. Bad idea.

Continuous signals: P (f) — the density of power in the interval (f + df).

Discrete signals: P (fn) — an estimate of the power in the interval
(fn − 1/(2N∆), fn + 1/(2N∆)).
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The discrete power spectrum is only an approximation to the “true” power
spectrum

f

channel n-1 channel n+1

channel n

true spectrum
discrete spectrum
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Periodogram

The most popular estimate of the power spectrum is called the periodogram.
Because the power spectrum does not contain any information on the phase, we
no longer distinguish the positive and negative frequencies for the purpose of
calculating the periodogram.

P (0) = |G(0)|2 , (12a)

P (fn) =
[
|G(fn)|2 + |G(f−n)|2

]
, n = 1,2,

N

2
− 1 (12b)

P (fN/2) = |G(fN/2)|2 . (12c)

Caveat emptor! When calculating the periodogram, it is particularly important to take the proper

care on what components are stored where, what the normalisation is etc. The point of the

formula (12) is to bin together terms with the same “absolute” frequencies, but different pieces of

software may store them differently. And they do.
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A noisy signal
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The power spectrum of the above signal
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The power spectrum averaged over 64 realizations of the noise
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fWhen averaging over the realizations, first calculate the periodogram for each realization, and
then take the average for each frequency.
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A side note: Signal-to-Noise Ratio

Signal-to-Noise ratio measures the “goodness” of the signal, or how easily it can
be distinguished from the noise. The general framework: calculate the ratio of
the peak to the (local) background in the periodogram. Usually

SNR = 10 log10

(
peak power

background power

)
[dB] (13)

In the last example, SNR ' 30 dB.
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Leakage

We expect the periodogram to project all the power from the interval
(fn− 1/(2N∆), fn + 1/(2N∆)). However, as f 6= fn have non-zero projec-
tions onto fm 6=n, the power spectrum leaks to other channels. The leakage to
a channel offset by s is given by “the golden formula”:

P (k → s) =
1

N2

[
sin(πs)

sin(πs/N)

]2

. (14)
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Window function

To prevent the leakage, sometimes the series is multiplied by a function that kills
its ends but is close to unity in the middle; this is supposed to smooth the series.
Then the DFT of the modified series is calculated:

Dn =
1√
N

N−1∑
k=0

gkwke
2πink/N . (15)

{wk} is the window function.

Note that this is equivalent to taking a convolution of the signal and the window
function in the Fourier domain!
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The modified periodogram reads

P (0) =
1

W
|D0|2 , (16a)

P (fn) =
1

W

[
|Dn|2 + |D−n|2

]
, (16b)

P
(
fNyq

)
=

1

W
|DN/2|

2 , (16c)

W =
N−1∑
k=0

w2
k . (16d)
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Most popular window functions

Barlett window:

wk = 1−
∣∣∣∣∣k −N/2

N/2

∣∣∣∣∣ . (17)

Hann window:

wk =
1

2

[
1− cos

(
2πk

N

)]
. (18)

Welch window:

wk = 1−
(
k −N/2

N/2

)2

. (19)
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Windowing function
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The averaged spectrum, square window
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The averaged spectrum, Barlett window
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The averaged spectrum, Hann window
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The averaged spectrum, Welch window
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Power spectrum of nonstationary signals

To calculate the time-dependent power spectrum of nonstationary signals, divide
the signal into overlapping segments; ideally, each segment should be approxi-
mately stationary. Then calculate the powers spectrum for each segment.
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Left — a nonstationary signal. Right — its time dependent spectrum.
The power spectrum changes over the time — the autocorrelation depends not

only on the offset, but also on the point around which it is evaluated.
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Another example of nonstationary data
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Time dependent spectrum
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