Statistical Physics 3

1. Energy of a system of N weakly interacting harmonic oscillators has the form

$$
E_{M}=\frac{1}{2} N \hbar \omega+M \hbar \omega
$$

where M is a natural number. How many possibilities are there to get a state of energy E_{M} ? Find the relation between the energy and the temperature of the system and its heat capacity.
2. A system consists of n particles. The particles can take only two energies, $\pm \varepsilon$. The microstates are unobservable, only the total energy of the system is. Let $n_{ \pm}$be the number of particles with energies $\pm \varepsilon$, respectively. The macrostate of the system is fully described by two parameters only: $m=n_{+}-n_{-}$and $n=n_{+}+n_{-}$, and the energy of the system is $E=m \varepsilon$. Find the entropy of the system (we can assume that m, n are large enough) and the thermodynamic temperature, defined as

$$
\frac{1}{T}=\frac{\partial S}{\partial E}
$$

3. In a murder investigation, a corpse was found by a detective at exactly 8 P.M. Being alert, the detective also measured the body temperature and found it to be $21^{\circ} \mathrm{C}$. Two hours later, the detective measured the body temperature again and found it to be $15.5^{\circ} \mathrm{C}$. If the ambient temperature is $10^{\circ} \mathrm{C}$, and assuming that the body temperature of the person before death was $36.6^{\circ} \mathrm{C}$, at what time did the murder occur?
