1. Find the stationary solution of the 1-D diffusion equation in a harmonic potential

$$
U(x)=\frac{1}{2} g x^{2} .
$$

2. A particle moves on a 1-D, infinite mesh. The disnace between two neighbouring nodes equals a. In the interval τ the particle moves by $n \neq 0, n \in \mathbb{Z}$ nodes (the particle cannot stay on the same node), and the jumps to the left or to the right are equally probale. The probability of jumping by $|n|$
(i) is proportional to $|n|^{-1}$;
(ii) is proportional to do n^{-2};
(iii) is proportional to n^{-4};
(iv) is proportional to $q^{-|n|}$, where $0<q<1$.
(a) Are all the above processes well defined?
(b) Normalize the probabilities if the processes are well defined.
(c) Which processes approach diffusion in the limit

$$
\left\{\begin{array}{l}
a \rightarrow 0 \\
\tau \rightarrow 0 \\
\frac{a^{2}}{\tau}=B=\mathrm{const}
\end{array}\right.
$$

Provide solutions to the corresponding diffusion equations.
(d) What would change if in 2 iv we let $n=0$?

