1. Find the stationary solution of the 1-D diffusion equation in a harmonic potential

$$U(x) = \frac{1}{2}gx^2.$$

- 2. A particle moves on a 1-D, infinite mesh. The disnace between two neighbouring nodes equals a. In the interval τ the particle moves by $n \neq 0, n \in \mathbb{Z}$ nodes (the particle cannot stay on the same node), and the jumps to the left or to the right are equally probale. The probability of jumping by |n|
 - (i) is proportional to $|n|^{-1}$;
 - (ii) is proportional to do n^{-2} ;
 - (iii) is proportional to n^{-4} ;
 - (iv) is proportional to $q^{-|n|}$, where 0 < q < 1.
 - (a) Are all the above processes well defined?
 - (b) Normalize the probabilities if the processes are well defined.
 - (c) Which processes approach diffusion in the limit

$$\begin{cases} a \to 0\\ \tau \to 0\\ \frac{a^2}{\tau} = B = \text{const} \end{cases}$$

Provide solutions to the corresponding diffusion equations.

(d) What would change if in 2iv we let n=0?

PFG