1. (a) Find the normalization, the expectation value and the variance of the Marchenko-Pastur distribution

$$
\begin{equation*}
P(x)=\alpha \sqrt{\frac{4-x}{x}}, \quad x \in[0,4] \tag{1}
\end{equation*}
$$

(b) Find the distribution of a random variable $y=x^{2}$, where x is distributed with (1).
2. A particle jumps from the site 1 to the site 2 , or back. The probability of jumping from 1 to 2 , or from 2 to 1 , in a very short time Δt equals $\lambda \Delta t$. In time $t=0$ the particle sits in 1 .
(a) Find the probability that the particle sits in 1 at time $t \geqslant 0$.
(b) Find the conditional probability that the particle sits in 1 at time $t \geqslant 0$ and have never jumped from 1 to 2.
3. A particle can move with unit lenght jumps. A jump is taken every 1 sec , with equal probability of jumping to the left or to the right (the particle cannot stay where it is).
(a) Verify that this process forms a Markov chain. Find its transfer matrix in a single jump.
(b) Find the transfer matrix $P_{k j}(n)$ in n jumps.
(c) Find the mean square displacement of the particle in n jumps.
$P_{k j}(n)$ is the probability of finding the particle in the site j after n seconds, provided it was in the site k at time zero.
4. The particle from Problem 3 moves with jumps of the length l and a jump is taken every τ seconds.
(a) Find the probability distribution $P(x, t)$ that the particle is in the location x at time t, provided it has started from $x=0$ at $t=0$.
(b) Use the Stirling formula to verify that if $\tau, l \rightarrow 0$ in such a manner $\frac{l^{2}}{\tau}=2 D=$ const, then

$$
\begin{equation*}
P(x, t)=\frac{1}{\sqrt{4 \pi D t}} \exp \left(-\frac{x^{2}}{4 D t}\right) \tag{2}
\end{equation*}
$$

(c) Verify that the time-dependent probability distribution (2) satisfies the diffusion equation:

$$
\begin{equation*}
\frac{\partial P}{\partial t}=D \frac{\partial^{2} P}{\partial x^{2}} \tag{3}
\end{equation*}
$$

5. A particle can be in one of the three states A, B, C. The probability of jumping in a single discrete step (form brevity, in the following I will omit this clause) from A to B equals $2 / 3$. The probability of jumping from A to C equals $1 / 3$. The probabilities of jumping from B to A or to C, or staying in B, are equal. The probability of jumping from C to A equals $2 / 3$, and the probability of jumping from C to B equals $1 / 3$. The particle is in the state A at $n=0$.
(a) Find the transfer matrix for this process.
(b) What are the probabilities of being in A, B, C after 2 steps? After m steps? After $m \gg 1$ steps?
(c) Do the probabilities after $m \gg 1$ depend on the initial state?
(d) Do these probabilities satisfy the detailed balance conditions?
