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Constructive role of noise in signal transmissions by biomembrane proteins
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We discuss new examples of the constructive role of environmental fluctuations in biophysical processes,
namely quantitative enhancement and qualitative sharpening of the outgoing signal in the intercellular signal
transduction, e.g., in the synaptic links. An experimental check in a chemical flow reactor is suggested.
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[. INTRODUCTION cussed below may be of relevance for signal transduction in
living organisms.

Although the idea of constructive role of noise and fluc-  This paper is organized as follows. A biological motiva-
tuationsseems paradoxical at first sight, the impact of intrin-tion for considering the type of models discussed in the
sic noise(spontaneous fluctuationsn various processes is Present paper, as well as their connection with experimental
gaining more and more attention. |ndeed7 for real systemgata, is brlefly presented in Sec. Il. The constructive role of
noise is never strictly zero, and in mesoscopic systems, iROiSe in transmitting signals is discussed for a realistic model
particular in biological ones, noise may play a dominant roleof & membrane-protein system in the same section, and then
in the kinetics because more or fewer random fluctuations ofor a simplified “skeletal” model in Sec. lIl. This simplified
physical and chemical parameters are inherent to the envinodel, however, offers the possibility of a more thorough
ronment of biologically important proteins, especially thoseanalysis. A brief discussion is presented in Sec. IV. A sketch
embedded within membranes of living cells. In fact, the sug0f a proposed experimental verification of the theory pre-
gestion that “the noise may be a source of order rather thafiented here is offered in Appendix B, and mathematical de-
disorder” and that “a biological organism makes use oftails are presented in two other Appendixes.
energy-driven fluctuations for the purpose of signal and free-
energy transduction” was put forward about ten years ago by
Astumianet al. [1]. This suggestion was later discussed in
more detail by the present authid@]. Serious discussion of Random fluctuations and periodic oscillations of physical
the constructive role of noise in biophysical and biochemicalnd chemical parameters are inherent to the environment of
processes began a few years §§pand at present it seems many proteins, particularly those embedded within the mem-
to be a well-established idé4]. branes of living cells. One parameter particularly relevant for

The best known phenomena in this respect are the famousembrane enzymes is the membrane potentjalhich is
stochastic resonandé] and molecular motorgBrownian  typically between 50 and 250 mi2]. The effects of a static
ratchet$ [6], although there are other manifestations, suchexternal field on enzyme kinetics and thermodynamics are
as, e.g., noise-induced phase transitipf noise-induced well known. Oscillating, both regular and random, external
resonanceq 8], fluctuating barrier kineticd9,10], noise- fields (ac field$ can cause an enzyme to drive a reaction
enhanced stability11] and synchronizatiof12], propaga- away from equilibrium[1]: The main requirement is that
tion of signals in nonlinear noisy environmenft$3,14), some enzyme conformational transitions be influenced by the
noise-sustained oscillations in subexcitable media with dield and that the fluctuations in the field be driven by a
threshold[15], etc. free-energy dissipating process. As a result, enzymes should

In this paper, we report another phenomenon in whichbe capable of transducing free energy from external fluctua-
noise helps in transmitting signals. We are going to showtions in their environment. Macroscopic fluctuations of the
that, when the incoming signétiriving field) is coupled to membrane potential of 50 mV have been observed experi-
the transmitting process in a multiplicative way, the additionmentally[1], and even larger stochastic oscillations may well
of multiplicative noise improves the outgoing sigrians-  occur in the vicinity of ion channels and membranes. Fur-
mitter’s responseboth quantitatively and qualitatively. It is thermore, large-amplitude oscillations of the membrane po-
noteworthy that in most cases of the constructive role otential are relatively simple to attain experimentally due to
noises in signal transmission discussed so far, the incominthe fact that an externally applied field is amplified across
signal is additive in the transmitter’s kinetics. On the otherclosed-cell membranes. These facts present a biological mo-
hand, parametric couplings of the external sigfdiiving tivation for including large fluctuations in any realistic model
field) to the “transmitter” (kinetic procespexist typically in  of a protein molecule embedded in a cell membrane.
biological systems, in particular in processes governed by Consider such a moleculan enzyme Eembedded in the
enzymes embedded in cell membranes that are coupled to tegnapse linking the neurons. The protein can be in several
membrane electric potenti@l,2]. Therefore, the effect dis- distinct internal states. The simplésvo-stat¢ model of the

enzyme—governed process, describing the effect of a varying
electric field on the action and efficiency of the membrane
*Email address: fulinski@if.uj.edu.pl; http:/zfs.if.uj.edu.pl enzymeq1,2,16,11, can be written schematically as

IIl. A MEMBRANE-PROTEIN SYSTEM

1063-651X/2001/64)/01190%11)/$20.00 64 011905-1 ©2001 The American Physical Society



A. FULINSKI AND P. F. GCRA PHYSICAL REVIEW E 64 011905

1 3 for the transport phenomena, it should describe the system
E+S,2[E*S]=E+S,, (2.)  composed of the membrane potential, the protein, and the
2 4 neurotransmitter at least qualitatively equally well, as the
) biological mechanisms responsible for the two phenomena
P=—(k;S;+ky+ks+k,S)P+ky+Kg, (2.2 are similaf21]. The electric signala spike in the membrane
potentia) causes the membrane protein complé&xSEo re-

whereP(t) is the probability of the enzyme being in the state€@se the neurotransmitter, $to the synapse space. The
E [1—P(t) is the probability of the enzyme being in the latter is caught by proteins on the other_ side of the synapse,
state B S], S, are concentrations of substances &ndk; are releasing the electric spik® in the dendrités) of other neu-

the effective[18] rate coefficients for processes symbolizedoN(s) forming the synapse. In the scher@?2), the state

by arrows in the schemé.2). A crucial property of the L[E"S]is binding(synthesizingand state E releases the neu-
model is the dependence of these coefficients on the menfotransmitters. Thus the outgoing signal will be proportional
brane electric potential(t) = yo(t) + &(t), composed of an 0 the probabilityP(t) of the protein being in the state E.
external field(incoming signal (t) and intrinsic fluctua- There are no data on the kinetic parameters, (D;) for

tions &(t) [2] (the static part is included in the coefficients Synaptic proteins. Therefore, to keep our modeling as realis-
;) tic (though simplified as possible, we shall use the values of

these parameters determined for another membrane enzyme,
viz., Na"-K*-ATPase[2], expecting them to be not very
kj=ajexp{—Dji(t)}. (2.3 different from these involved in the signal transmission, the
more so that this ATPase is one of the key enzymes respon-
This model, proposed about ten years 446] and later  sible for neural conduction. These parameters Sye;
extended to include intrinsic fluctuatiohg], describes the =270 s!, a,=4.0 s!, a3=0.11 s, S,a,=5.4 s?,
kinetics of an enzyme cycle under the influence of an alterb,=—-D,=1.74, andD,=—D3;=2.62. With these values,
nating(ac electrical fields. Its main features dig¢the mem-  the characteristic timérelaxation timer,) of the kinetics
brane electric potentials(t) plays the role of a potential (2.2) is of the order of magnitude of ms.
barrier (Arrhenius activation energy(ii) #(t) is composed The fluctuations&(t) are approximated by the dichoto-
of an external driving fieldiinput signa] and of intrinsic  mous noise,
fluctuations, therefore both the signal and the noise enter the

kinetic equation in a multiplicativénonlineay way, and(iii ) b e{A,—A}, £(1)=A% (2.9
the membrane potential fluctuations are composed of re- )
sidual(endogenousnoise(mostly thermal and noise created (6(1))=0, (&D&(t+7)=A%exp—A7). (2.5

by the induced activity of nearby ionic channels.

The compatibility of this model with reality has been
checked by one of the present authf2§ by comparing its
predictions with experimental data on the average current
Na' ions pumped by Na— K™ — ATPase induced by an ex-
ternal(sinusoidal or randoinac field in human erythrocytes
[19]. It should be noted that the two-state model without 1
fluctuations of the membrane potential is unable to reproduce  kj=a;jexp(—D; ) cosijA—Kg(t)sinrDjA>,
these data. A more involved, four-state model has also been

Note that since there is an exponential dependence of the rate
coefficients (2.3) on the noise, modeling the latter by a
O?aussian white noise would be clearly unphysical. Due to
the property(2.4), the rate coefficients and the kinetic equa-
tion can be written as

proposed[20], but this model without fluctuations cannot (2.6
reproduce the experimental data either. Sy —

We expect that the modé2.2) and(2.3) can also be used P() [fl(t)+fZ(t)g(t)]P(t)Jrf3(t)+f4(t)§(t)'(2 7
for a description of the intercellular signal transmission, e.g., '
in the synapses linking neurons: Since the model works welvith

|
f1(t) = a1S1exp(— Dqia(t))costD A + a,S,exp(— D 4 ho(t))costD 4A + f5(1), (2.8a
1 . .
fo(t)=— K[alsleXF(_ D1¢e(1))SintD 1A + ay Sexpl— D4 ife(1))SINFD 4A T+ f4(1), (2.8b
f3(t) = azeXF(_ Dzlﬂe(t))cosmzA + C!3eXFX_ Dg(ﬂe(t))COSngA, (28(:)
1
fa(t)=— K[azexp(— D, ie(t))sintD A + azexp(— Dgihe(t))sinfD zA . (2.80
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The solution of Eq(2.7), averaged over the noise, can be () —
found using a theorem by Shapiro and Login@2]—see X()=—[a+f(t)+ 7 (DIX() +B+7,(1), (3.1
Appendix A for details. Further analysis depends on theyherea>0; B are constantsy; »(t) are the noises,
shape of the input signdéxternal driving #,(t). '

A typical situation in the interneuronal signal transmis- <77i,j(t)>=0,<77i(t)ﬂj(t')>:Di25ij5(t—t'), i,j=1,2;
sion is the arrival of a single short spike in the action poten- (3.2
tial (input signa). We shall represent it by the rectangular
pulse (t) =be(t) with and f(t) is an external field(the incoming signal being

transmitted. In the following, we will také(t) to be either
1 if te[tt], the rectangular pulse or the continuous sinusoidal signal; in
(2.9  the latter case the system’s resporig® outgoing signal
will be averaged over the initial phase of the incoming sig-
nal.

In this case, the numerical calculations are rather simple.aThe reason for studying such a simple system as the flow
The influence of the noisenembrane potential fluctuations (31) is twofold. First, it is clear that if constructive effects of
on the shape and intensity of the respo(metgoing signal  nojse appear in such a simple system, they will also appear
i.e., of (P(t)), is shown in Fig. 1 for a relatively long dura- jn more complicated ones, without phase-averaging, in non-
tion (50 m9 of the pulse. It is easily seen that the presence Ofinear cases, and for nonequilibriufoolored, coupled, non-
noiseimprovesboth the intensity and the shape of the out-parkovian, et noises. Second, such a system can model
going signal. The increase of intensity depends on the pulsgarious chemical reactions and thus can be easily realized
duration. Figure 2 shows the relative gain as the function Ofexperimentally in a flow reactor with variable influxésee

impulse widthés: for short pulsegabout a few mg the gain Appendix B and, e.g[23]), thus allowing for an experimen-
is considerable, about 30%. Figure 1 shows also that, fofa| check of the theory presented here.

broader pulses, there is an improvement in the shape of the A formal solution to Eq(3.1) reads

output signal: the noisy response attains its maximal value

faster than the noiseless one. Both of these counterintuitive t

effects—quantitative enhancement and qualitative sharpen- X(t)=exp{— fo[a+f(t’)+ Wl(t')]dt’}xo
ing of the outgoing signal—are unexpected new examples of

()=

0 otherwise.

the constructive role of the environmental fluctuations in the t t , , ,
biophysical processes. +f ex —f,[a+f(t )+ 7(t")]dt
.. . . 0 t
A similar conclusion can be reached also for the continu-
ous input signal in the form of a sinusoidal wave. The for- X[B+ 7,(t")]dt’. (3.3

mulas in this case become rather involved and the results for
the kinetics(2.7) will be reported elsewhere. Note also that It is easy to see that the response of the syt to the
knowing the response of this system to a strictly periodicadditive random driving is also random and therefore van-
signal is probably of lesser importance as one seldom erishes in the mean. Thus the term containipgin Eqg. (3.3
counters such excitations in a realistic biological context. gives no contribution to the average X{t), but its effects

do not vanish in the correlatiofX(t) X(t+ 7)),

Ill. SKELETAL SYSTEM

t
_ o[- (12Dt N+
The phenomenon described above can also be demoniX(1)=¢ Pl ex;{a— Jof(t )dt
strated in the simplest possible situatidine “skeletal” sys-

. : . i . ;
tem) composed of a linear transmitter perturbed by indepen +BJ e[a(l’Z)Dﬁ(”')exp{ _f f(t”)dt”}dt’,
0 t!

Xo

dent Gaussian white noises:

A} (3.9
<P(t)>
0.3 Ah/h,
\
_0\::,
0 1 50 ms 0.2
] \ 0.1
L - 6
ot ot A ——
40 80 [ms]
FIG. 1. Shape of outgoing signal in the abseflcsver curve,
A?=0) and presencéupper curve A?=2.0) of the noise. Time FIG. 2. Relative gairh(A2)—h(0)/h(0) (h is the maximal
> 7, . Note that the noise increases the backgro(datted lines. height of the outgoing signal, cf. Fig) &s a function of the dura-
A=4 mst tion 8=t;—t; of the incoming signal.
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where the well-known fact has been used that for a Gaussiaand we put the constant backgrouBe:0 as in this case its

white noise presence is not necessary for the system to be able to re-
spond. The response of the system, averaged over the noise
6 1 realizations, is now
<ex;{iaj ni(t’)dt’D=exr{§a2Di2(t2—t1)} t
' (3.5 (X(t))=<exp{—J [a+chos{Qt’+¢)+nl(t’)]dt’DXo
0
Note that fora<_ D2, the system is formally dive_rgent._ _ :e[a(lIZ)Di]teX;{ _ 2bsinEthos<EQt+ e
Further details depend on the shape of the incoming sig- 2 2
nal f(t).
= e[~ (W2 tey i hl sing — sin( At + ) VX, (3.9)
A. The rectangular pulse where Eq(3.5) has been used; averaging ovgrproduces a

The incoming signal has the fort@.9). A constant exter- Z€ro mean value. Note t_hatIIfi>a, the system is formally
nal forcingB+ 0 is now necessary to keep the transmitter indivergent. More interesting results can be obtained from the
an active state. Calculations with the sigf) are elemen- ~ correlations of Eq(3.3) with Eq. (3.7) and B=0. In this
tary and give case, the correlations approach a stationary state:

X(t)X TN =t oo XZT .
et Bame . ea (O

— Dgef[af(l/Z)Di)TJ'wdtre72(a7D§)t’I o
0

B
<X(t)> = e*ﬁtefb(tfti)xo_kﬁ(e*ﬁ(tfti)_ e—ﬁt)

%Q(T—H’) . (3.9

x{4b§n

B
+m(1—ef(ﬁ+b)(t7ti)), (3.6D  Here the((- - -)) stands for averaging over realizations of the
noisesyy, 7, first, and then averaging over the initial phase,
¢, of the incoming signally is a modified Bessel function;

(X(t)y=e"Ple bti—tdx, see Appendix C for details. Although any further quantitative
analysis of Eq(3.9) needs to be done numerically, one thing
+E(1+e_ﬁ(t_ti)_e_ﬁ(t_tf)_e_Bt) is clear: ((X?(7)))s does not vanish for anp5>0 even
B though the averag€3.8) decays as time goes to infinity;

rather than that, it displays damped oscillations for appropri-
(e Alt=t) — = Alt-t)g=b(t—t)y ate values of the parameters.
This result is seemingly paradoxical. Indeed, the additive
(3.60 noise 7, does not show umn the averagebut any indi-
vidual trajectory(realization feels its presence even for very
large timeg and fluctuates. These fluctuations are capable of

i —a_1p2 ) ) - . . . . . .
with f=a—3Dj for t<t;, G;<t<ty, andt;<t, respec- g, piniting correlations echoing signatures of the input signal.
tively. Typical responses are shown in Fig. 3. Itis clear that  1ha form of Eq.(3.9 might suggest that the basic fre-

forlt large Ignough, the system, prior to t:_e arrival of theg ency has somehow shrunk frato 1Q. In fact, this is
pulse, would rest in its stationary st/ (this is an aver- o ihe case as the modified Bessel functighas only even

aged effect: any specific realization would oscillate randomly,\ars of its argument in its Tavlor expansion. and
around this valug then it would start to grow, and eventu- P g Y P ’ e

ally it would start to decay back to the stationary state aftef€PeNds actually on sif7. The original frequency of the
the pulse has ended. Note that the magnitude of the respon@BVing signal is thus restored. _ o
increases with the noise levbf. However, the skeletal sys- The correlations are related through the Wiener-Khinchin
tem (3.1) is a poor transmitter, much worse than the proteinthec_’rem to the power spectrum of the proce_q_sk_). The
system of Sec. Il; in particular, the shape of the incomingSt‘"]m_onary_pOWQr spectrum averaged over the initial phase of
pulse is reproduced badly. This improves slightly for pulsedn€ incoming signal is

of longer durationcf. Fig. 3b)].

My

St)= [ “coson(OF(mar. (310
B. Oscillatory external driving

In this case, the incoming signal has the form of a sinudt is a directly measurable quantity, allowing for an experi-
soidal wave: mental check of the theory presented here. In the transient

(short-time regime, or without thep averaging, the system
f(t)=bQcog Qt+ ¢), (3.7 is nonstationary and the correlation functiod(t) X(t+ 7))
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(a)

<X()>

FIG. 3. Response of the skeletal syst€sl)
to the pulse input signal averaged over the noise
realizations(a) Dashed line, the incoming signal;
solid lines, top to bottom the responses V\mﬁ
=0.0, 0.1, 0.5, 1.0, and 1.5, respectively. The
signal duration ist;—t;=2.0. Other parameters
area=B=1.0,b=1.1. (b) Same aga) but with
signal duratiort;—t;=12.0.

<X(t)>

. 9 |2 Il 1 1 1 1 1
4 t[ms]

as well as the corresponding power spectrum depend on time
t; nevertheless, the nonstationary power spectrum is still a
directly measurable quantitisee, e.g.[24]).

In the transient regime, the multiplicative noise sharpens /2
the outgoing signal in the absence of the additive noise; this Sp(@.D; )/Xo
effect is clearly visible even after the averaging over the

initial phase,¢ (Fig. 4). The stationary outgoing periodic ‘A

signal is also sharpened in the presence of the additive noise ‘wl“‘

(Fig. 5, but the effect is weaker than in the transient regime. /\\ s

Still, in the stationary case an increase in the noise p@er gi\y} “

for 0 to 0.4 results in an increag@eakly exponentialof the D2 Mﬁ%\\/\

signal peak heighth of about 35%, and in a decrease 11 JJA/,AM\A §
(roughly lineaj of its width A at h of about 18%. The TN

height of the central peak, representing the output noise of =
the transmitter itself, increases much faster, and the width of

it decreases slightly slower than those of the signal peaks. 0

Note also that the correlations depend strongly on the ampli- 8.0 0.0 © 80

tude of the driving signal. For small amplitudes, there are FIG. 4. The effect of sharpening of the transient outgoing signal
essentially no correlations, just a Debyean peakderO. by multiplicative noise in the absence of additive noise-b=1,
For larger values of the amplitude, correlations echoing th&=2.5, Qt= . Overbar means the average over initial phase
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A h/D3
) ; a0 |

11x100

Vd
40 N _ -~ (a) 0
-
-
P

-

0.2 04 Dj

"l ] H 1 1 -

L (b)

S
anoan3BR8&HES

FIG. 5. The effect of sharpening of the stationary outgoing pe-
riodic signal by multiplicative noise in the presence of additive ~ FIG. 6. Time-dependent correlatiof® and the corresponding
noise.(a) Heighth (in units Ong), (b) width A at%h of the main  time-dependent power spectrufin) of the skeletal system in the
peaks of the stationary frequency spectram.1, b=2, Q=12.N absence of the multiplicative noisB7=0, not averaged over the
denotes the central pedtutput noisg S denotes the outgoing sig- initial phase,¢. Other parameters a@=1, b=1.3, Q=12, D}
nal at frequency2, and | and Il are its first and second harmonics. =1, #=0. Time,t, starts at zero and covers two periods of the

input signal.
periodicity of the input signal start to show up. For even
larger amplitudes, second and even third harmonics of the
input signal appear. 50 r

Let us compare these results with those for the non- ;-
¢-averaged case. First, in the absence of the multiplicative, ss
noise but with the additive noise present, correlations appearg 2o

but they are very weakFig. 6). When the multiplicative —£2
noise level increases, the correlations become lafggr 7). Vis

For large times, the correlations grow even larger and the 1o
system exhibits stationary oscillations as a function of time 5
(Fig. 8. A similar effect occurs also when the multiplicative ~ ° =
noise is absent but the stationary oscillations are smtr
plotted than those with the multiplicative noise present. Fig-
ures 6—8 share a common scale for the convenience of th
reader. It is clear that without initial phase averaging, the ,
multiplicative noise acts constructively on the correlations as 4
their amplitude gets larger with increasing levels of noise. 35
The correlations are sustained by the additive noise; withoui %
it the system would quickly go to a flat zero value. 3,25
The multiplicative noise effectively reduces the damping = 2
constanta, or lengthens the effective relaxation time, and |
thus destabilizes the proceXt) and “sensitizes” it to the 5
incoming signal. On the other hand, the action of the additive
noise (the sustaining of the output sighas similar to the
effect of the addition of a constant external fiddto the
right-hand side of Eq(3.1). However, the effect of the latter
would remain visible also in the behavior of the process it-
self: (X(t))#0 fort—0 in the presence of the external field. FIG. 7. Same as in Fig. 6, but witA3=0.5.

L (b)
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an experimental check of our results on both systems: skel-
etal, Eq.(3.1); and full, Eq.(2.7).
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APPENDIX A: AVERAGE RESPONSE OF THE
MEMBRANE-PROTEIN SYSTEM

Given the kinetic equation

dP(t)
. T:_[fl(t)+fz(t)g(t)]P(t)+f3(t)+f4(t)§(t),
45 o o (A1)
40 + . Co (b)
35 | . o
o f . i where the noisé(t) is defined through Eq$2.4) and(2.5),
B ALY we will now find an expression for the average output

(P(t)). Obviously,

d
g {P)==F(O(PV) = F((EMDP(1) + f5(1).
(A2)

0.6
0.4 t-1000[ms]

FIG. 8. Same as in Fig. 7, but timé, starts att=1000 and  Using the Shapiro-Loginov theoref@2], we find that
covers two periods of the input signal. For fixed values an (a)
andf in (b), the system exhibits stationary oscillationstin
d dP(t)
IV. DISCUSSION G HEMP)=—A(&P))+ < &(t) T> (A3)

We have shown that multiplicative noise can enhance,
both qualitatively and quantitatively, the output of a realistic _ ) .
model of an enzyme-protein system and of a simplified, buf"d We substitute EJA1) in the above expression to get
still realistic (cf., Appendix B, “skeletal” system: When the
driving field (the incoming signalis coupled to the transmit- q
ting process in a multiplicative way, the addition of a multi- — ¢ #(t)p(t)) = — A(£(t)P(1))+ — f1()(£(1)P(1))
plicative noise improves the outgoing signal. In many cases, dt
the constructive role of noise manifests itself only when the
fluctuations are of a nonequilibrium natu7]. In this re-

—F(E(EMP(1)) + (£ (1))

spect, it is worth stressing that the effects reported here are =—A%f,(1){(P(1))—[A+ T () EM)P(1))
induced also by the Gaussian white noises, which represent 5
standard equilibrium thermal fluctuations, and do not vanish A 4(1), (A4)

after averaging over the initial phase of the input signal.
These effects are related to the stochastic resonidire 5 5
this relation will be further clarified elsewhere. where the fact tha¢é(t))=0 and&“(t)=A< has been used.

Note that while our model equations of motic@7) and ~ With abbreviationsu(t) = (P(t)) and v (t)=(&(t)P(t))/A
(3.1 are formally linear with time-dependent coefficients, aWe obtain the following linear equation:
multiplicative coupling between the noise and the system
means a “hidden” nonlinearity: The noise is supposed to

represent many unobserved degrees of freedom coupled to i u _ f1(t) Afy(t) Jlu n fa(t) (A5)

the transmitting process in a nonlinear manner. dt|v Afy(t) A+f(D)]|v Af 1)
Linear transmitters of periodic or single-pulse, signals can

be realized experimentally in simple chemical reactions in a

flow reactor with variable influxel23]. This would allow for A formal solution to Eq.(A5) reads
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u(t) — A—A(L,0) Uo ! —A(tt) fa(t) } /
oty "€ Vo +joe Af () |0t (A8)
where
N _{ Fa(t,t)) AF,(t,t") } A7
(t)= AF,(t,t') A(t—t)+F(t,t")] (A7)

ty ty
Fl(tlatz):ft f,(t")dt’, Fz(tl,tz):jt fo(t")dt’,
2 2

PHYSICAL REVIEW E 64 011905

and[ug,vo]" represent the initial conditions. Eigenvalues of
A(t,t") are

1 1
Nz=Fa(t,t)+ EA(t—t’)IE\/AZ(t—t’)2+4A2F§(t,t’).
(A8)
Note that both these eigenvalues are properly defined for all

possible values ot, t’. Diagonalization ofA(t,t’), and
therefore finding its exponential, is now straightforward,

1 A(t—t") 2AF,(t,t")
EC(t,t')‘l‘ Zf_TS(t,t') —}_t—t,S(t,t')
exq_A(t't/)):e—[Fl(t,t')+(1/2)A(t—t’)] (L) (t.t) (A9)
2AF,(t,t") 1 A(t—t")
- ——S(t,t") =C(t,t")— ———S(t,t")
Ft,t") 2 2F(t,t)
where
Fltt)=JAZ(t—t")2+4A%F3(1,t),
1 1
C(t,t')=cosl{§}"(t,t’)}, S(t,t’)=sm|‘{§}"(t,t')}.
Finally, collecting all terms, we get
1 At 2AF,(t,0)
= — a [F1(t,0)+(L2)AL]] | Z o T e
(P(t))=u(t)=e [F1 (ZC(t,O)+2]__(t,O)S(t,O))uo 0 S(t,0)v,
t , L A(t—t’ 2A%F,(t,t’
Jrfe—[FNvt )+ (WAA-] (—C(t,t')+ ¥5(t,t’))f3(t’)—;():5(t,t')f4(t') dt’.
0 2 2F(tt) F(t,t")
(A10)

APPENDIX B: CHEMICAL REACTIONS MODELED BY
THE SKELETAL SYSTEM

Consider a reaction written schematically as

) X ki XY
in - Xz=Y— out, (B1)
no k)

wherey,(t) andy,(t) are the influx to and the outflux from
the flow reactof23], respectively. The kinetics is given by

X= iy (1) —ky X+ KoY = (D)X, (B2)
Y=k X—kY—hp(1)Y. (B3)

It follows immediately that
X+ Y= () — () (X+Y), (B4)

and consequently

Y(t)=e V210X, +Yo) + f;e*“’ﬂ”’)tpl(t’)dt'—X(t),
(B5)

where

t
Wit ty) = ft ()t

and Xg,Yq represent the initial concentrations of the sub-
strates. Plugging EqB5) back into Eq.(B2), we see that

X=—f,(t)X+f,(t), (B6)

wheref,(t),f,(t) are built from the fluxes/, , and the rate
constantsk; ,. Note that Eq.(B6) has a formal structure
identical to that of Eq(3.2).
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Concentrations of substrates in a flow reactor can easilgomly or in an oscillatory manner, by changing the electrode
be varied, both periodically and randomly. The reactionpotential or the intensity of light, thus facilitating the vari-
(B1) can in reality mean conversion of to Y on a solid ability of the functionsf, x(t), which in turn should render
catalyst, on an electrode, or induced by light. In the latteran experimental check of the theory presented in this paper
two cases, the reaction ratkg, can further be varied, ran- relatively easy.

APPENDIX C: CORRELATIONS IN THE SKELETAL SYSTEM

The correlation function of a system whose formal solution is given by(E&) reads

t t+7 t t+7
+<fdt1f dtzexr{—J dt'[a+f(t") + m(t”)]—f dt"[a+f(t")+ Wl(t,,)]}nz(tl)WZ(tz)»
0 0 ty to

(CD

t t+7
(X(OX(t+ T))=<exl{—fodt1[a+f(t1)+ nl(tl)]_fo dtp[a+f(ty) + 74(t2)]

Since the noiseg, 7, are independent and uncorrelated, the mixed terms, which contain a singleoduce a zero average.

Furthermore, becausey,(t1) 7,(t,))=D38(t;—t,),
t t+r1
<exp[—2f nl(t’)dt’—f nl(t’)dt’DXS
0 t

+ D%J’Otdtlf;+7dt25(tl—t2)< ex;{ - J:dt"[a+ f(t")+ (") ]— ftt+7dt”[a+ f(t")+ nl(t")]D _

t+

Ta+f(t)]dt

t
(X()X(t+ T)>=exr{ —ZJO[a+ f(t")]dt’ — J
t

(C2
Because of thed term in Eq.(C2), the double integral with,<t, t,>t equals zero. Thus
t t+r1
<X(t)X(t+T)>:e2(aDi)te[a(l’z)DﬁTexp{—ZJ f(t’)dt’—f f(t’)dt’}xg
0 t
t t t+7
+D§f dt’<ex;{—f dt"Ta+f(t")+ nl(t”)]—f dt"Ta+f(t")+ nl(t”)]D
0 t’ t'
t t+71
:e2<aDiﬁela(l'Z)Dilfex{—zf f(t’)dt'—f f(t’)dt’}xg
0 t
t+71 t t
+D§eZ(aDi)te[a(l’z)Dﬁ’exp{— f f(t)dt’ f dt’eﬂan)t’exp[—z f fand'|.  (C3
t 0 t

In the derivation of Eq(C3), in addition to Eq(3.5), we have used the fact that an average of a product of functions defined
on disjoint time intervals factorizes. For instance,
t+7
)esd - [ neree]
t

t t+7 t+71
<ex;{—f0n(t )dt —fo n(t")dt >=<exp{—2fo n(t")dt

Finally,

(X(OX(t+ 7)) = e~ la-(12)D7] Texp{ - jt

t

+Tf(t’)dt’}

t t , t
X ez(aDi)tex;{—Zf f(t')dt’ X§+D§e*2(a*Di)‘f dt’ (@Dt exp{—Zj f(t”)dt”H. (CH
0 0 t

We can see that the first term in curly brackets goes to zete-as, but the other does not, as the contribution to the
integral from the upper limit of integration cancels the exponent in time. We may thus conclude that the additive noise
prevents the correlations from decaying as time goes to infinity.
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In the case of a cosinusoidal inpi&.7), the correlation functiofiC4) can be further averaged over the initial phase of the
input signal,¢:

1 27
((X(OX(t+ T)»:ZL (X(OX(t+17))de

X2 2w
= e lam (2Pl 2D f exp{— a(t+ 7,0)co§ B(t+7,0)+ ¢1}d
0

2

D t , (27
+ﬁe*[a*l’?)'ﬁ]T*2<a*Df>‘f dt’e2@ PP f expl— a(t+ 7t )cod B+ ')+ ¢l}de, (CH
0 0

where
1 1
a(tl,t2)=4bSIn§Q(t1—t2), B(tl!tZ)ZEQ(tl+t2) (CG)

Since the integration ovep runs over the entire period of the integrands, values of these integrals cannot depgnahoin
we can safely seB=0. An integral representation of the modified Bessel functign

[’

/2 2m
=3 22

m=0 (m!)2 ,

can then be immediately recognizg2b]. After collecting the terms, we get
t
UXOX(t+ 7)) = X2e~ 13~ (2Pl 7=2@-DDY (4 (t+ 7,0))+ Dge‘[a—“’”f’f“fodt'e—z(a—Dfﬁ lo(a(7+1',0)). (C7)

If D"{>a, the system is formally divergent. Denote the integral in &) by J(7,t). Note that

) , ®© , I 4b
o<f dt’e 2@ DDV o(af T+t’,0))—J(T,t):J dte 2600 ) (a(r it 0)= 22 gza0di (cg
0 t 2(a—Dj7)
and we conclude that the correlation functi@@i7) approaches exponentially a stationary state,
o , 1
<(x<t)x<t+T)>>_>HwD§e*[a*(l’2>Df1ff dt’e2(@-0ot IO[4bsir{§Q(T+t’) ] (C9)
0
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