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Abstract

A system with two correlated Gaussian white noises is analysed. This system can describe both stochastic localization

and long tails in the stationary distribution. Correlations between the noises can lead to a nonmonotonic behaviour of the

variance as function of the intensity of one of the noises and to a stochastic resonance. A method for improving the

transmission of external periodic signal by tuning parameters of the system discussed in this paper is proposed.

r 2006 Published by Elsevier B.V.
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1. Introduction

Stochastic models with multiplicative, or parametrical, noise find numerous applications in a variety of
branches of science and technology. Unfortunately, models for which analytical results are known are very
scarce and any such a model deserves a thorough discussion. Recently, Denisov and Horsthemke [1] have
discussed a model given by the equation

_x ¼ �axþ jxjaZðtÞ, (1)

where 0pap1, ZðtÞ is a Gaussian noise, possibly coloured, and have found that it can describe anomalous
diffusion and stochastic localization. Denisov and Horsthemke have also discussed several physical systems in
which models of type (1) can be useful; see references provided in their paper. Later Vitrenko [2] has
generalized (1) to include two noise terms:

_x ¼ �ðaþ Z1ðtÞÞxþ jxj
aZ2ðtÞ, (2)

where Z1;2 are certain coloured and correlated Gaussian noises. This system has a very nice feature: for
0oao1, it interpolates between a linear transmitter with multiplicative and additive noises (a ¼ 0) and a
system that closely resembles a linear system with a purely multiplicative noise (a ¼ 1). These two linear
e front matter r 2006 Published by Elsevier B.V.
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systems are very well known in the literature (see e.g. Ref. [3] and references quoted therein). Vitrenko has
formally linearized system (2) by means of a substitution that has been already used in Ref. [1]:

y ¼
x

jxja
, (3)

and solved the resulting equation for the trajectories. Converting back to the original variable proves to be
rather tricky and that author has managed to do so only if the noises Z1;2 are correlated in a very specific (not
to say peculiar) manner. It is now widely recognized that correlations between various noises can lead to many
interesting effects. It is, however, possible that phenomena reported by Vitrenko result principally from the
very specific form of correlations assumed by this author and are not generic to system (2). We find it
interesting to see how the system behaves for the intermediate values of a when the correlation requirements
are less restrictive than those discussed by Vitrenko.

Coloured noises introduce more complexity. However, if a dynamical effect is present in the white noise
case, it also appears, perhaps in a distorted form, in the coloured case [4]. To simplify the discussion, we will
assume that the noises are white. Finally, note that the expression aþ Z1ðtÞ in Eq. (2) can be interpreted as a
biased noise. The noise that multiplies jxja in Eq. (2) is not biased. To ‘‘symmetrize’’ the system, we include a
bias in x2 in our analysis. It is also convenient to have explicit expressions for noise amplitudes, or coupling
constants between the noises and the dynamical variable. We thus recast Eq. (2) in the form

_x ¼ �ðaþ px1ðtÞÞxþ jxj
aðbþ qx2ðtÞÞ, (4)

where a40, 0pap1, x1;2 are mutually correlated Gaussian white noises:

hxiðtÞi ¼ 0; hxiðtÞxiðt
0Þi ¼ dðt� t0Þ; i ¼ 1; 2, (5a)

hx1ðtÞx2ðt
0Þi ¼ cdðt� t0Þ (5b)

and c 2 ½�1; 1�. If not otherwise specified, we interpret the noises in the sense of Ito. For the sake of
terminology, we will call the noise x1ðtÞ ‘‘multiplicative’’ and x2ðtÞ ‘‘additive’’, even though this terminology is
accurate only if a ¼ 0 (for a40 both noises couple parametrically). Note that if a particle hits x ¼ 0, it stays
there forever if a40. Accordingly, any fraction of the initial population that starts at x ¼ 0 remains there and
may be trivially excluded from the subsequent discussion of stationary distributions.

There is, in fact, one more reason for including ba0 in our discussion. Much as substitution (3) linearizes
system (4), another substitution, namely

z ¼
jxja

x
(6)

converts it to a noisy logistic equation

_z ¼ ð1� aÞðaþ px1ðtÞÞz� ð1� aÞðbþ qx2ðtÞÞz
2. (7)

We have discussed this last system in Ref. [5,6] and found that ba0 together with correlations between the
noises can lead to a nonmonotonic behaviour of the variance hz2i � hzi2 as a function of the intensity of the
‘‘additive’’ noise, q, and to a stochastic resonance [7] if the system is additionally stimulated by an external
periodic signal. It would be naive to expect that these phenomena occur in system (4) in exactly the same
manner as they do in (7). A nonlinear change of variables, especially in case of stochastic equations, can
significantly alter the behaviour. We will see, however, that there are striking similarities between systems (7)
and (4).

This paper is organized as follows: we construct the Fokker–Planck equation for system (4) in Section 2 and
in Section 3 we present its stationary solutions. Then in Section 4 we discuss the constructive effects of the
correlations between the noises; in particular, in Section 4.2 we give numerical evidence for the presence of the
stochastic resonance. Conclusions are given in Section 5.
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2. The Fokker–Planck equation

The problem of constructing a Fokker–Planck equation corresponding to a process driven by two
correlated Gaussian white noises has been first discussed in Ref. [8], where the two noises have been
decomposed into two independent processes. The same result has been later rederived in Ref. [9], where the
authors have attempted to avoid an explicit decomposition of the noises but eventually resorted to a disguised
form of the decomposition. The Fokker–Planck equation for correlated white noises has been also discussed in
Refs. [10,11] and in several other papers; see, for example, Ref. [6] for a particularly simple rederivation.

A general Langevin equation

_x ¼ hðxÞ þ g1ðxÞx1ðtÞ þ g2ðxÞx2ðtÞ, (8)

where xðtÞ is a one-dimensional process and x1;2 are as in Eq. (5), leads to the following Fokker–Planck
equation in the Ito interpretation:

qPðx; tÞ

qt
¼ �

q
qx

hðxÞPðx; tÞ þ
1

2

q2

qx2
BðxÞPðx; tÞ, (9a)

where

BðxÞ ¼ ½g1ðxÞ�
2 þ 2c g1ðxÞg2ðxÞ þ ½g2ðxÞ�

2. (9b)

In case of Eq. (4) we obtain

qPðx; tÞ

qt
¼

q
qx
ðax� bjxjaÞPðx; tÞ þ

1

2

q2

qx2
ðp2x2 � 2cpqxjxja þ q2jxj2aÞPðx; tÞ. (10)

In the following we interpret jxja as jxja ¼ ðx2Þ
a=2, where the square of x must be calculated prior to taking the

fractional power. It is also apparent that the probability Pðx; tÞ does not depend on the absolute signs of the
amplitudes p, q, but only on their relative sign. We assume that sgnðpqÞ ¼ þ1. This comes at no loss of
generality as Eq. (10) is invariant under a simultaneous change of signs of pq and c.

Finding stationary distributions corresponding to Eq. (10) is the main goal of this paper. This, in principle,
could be handled by standard methods [12], but it would be very difficult due to the absolute value and the
fractional powers. It is apparent that since the right-hand side of the corresponding stationary equation
vanishes identically if x ¼ 0, the term dðxÞ should always be included in any stationary distribution. We now
use substitution (3). After some algebra we eventually obtain

qPðy; tÞ

qt
¼ ð1� aÞ

q
qy

ay� bþ
a
2y
ðp2y2 � 2cpqyþ q2Þ

� �
Pðy; tÞ

þ
1

2
ð1� aÞ2

q2

qy2
ðp2y2 � 2cpqyþ q2ÞPðy; tÞ. ð11Þ

The last term in the square brackets in Eq. (11) corresponds to the Ito interpretation [13]. This term is missing
if the noises are interpreted according to Stratonovich.

The stationary distribution solves an equation that is fairly easy to integrate:

aþ 1�
1

2
a

� �
p2

� �
y� b� cpqþ

aq2

2y

� �
Pst þ

1

2
ð1� aÞðp2y2 � 2cpqyþ q2Þ

dPst

dy
¼ 0. (12)

3. Stationary distributions

Before proceeding to the general case, let us discuss the case where there is only one noise present.

3.1. No ‘‘multiplicative’’ noise

If there is no ‘‘multiplicative’’ noise, p ¼ 0, and no bias in the ‘‘additive’’ noise, b ¼ 0, our problem
reduces to that discussed in Ref. [1]. In this case, Eq. (11) corresponds to the following Langevin
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equation:

_y ¼ �ð1� aÞ ayþ
aq2

2y

� �
þ ð1� aÞ2qx2ðtÞ, (13)

which, in turn, corresponds to an overdamped motion in a potential

V eff ðyÞ ¼
1

2
ð1� aÞay2 þ

1

2
ð1� aÞaq2 ln jyj. (14)

The effective potential (14) has an infinite noise-created well at y ¼ 0 which traps Brownian particles; this well
is missing if the noises are interpreted according to Stratonovich. Curiously, in another context we have
observed a similar phenomenon, where noise interpreted according to Ito created an insurmountable barrier
restricting particles to one half of the real axis [14]. A similar barrier is observed in the noisy logistic system (7),
cf. Ref. [6]. Loosely speaking, the change of variables (6) converts an infinite barrier into an infinite well.

The stationary equation now takes the form

ayþ
aq2

2y

� �
Pst þ

1

2
ð1� aÞq2 dPst

dy
¼ 0 (15)

and is solved by

PstðyÞ ¼
N

jyja=ð1�aÞ
exp �

ay2

ð1� aÞq2

� �
, (16)

where N is a normalization constant. If we want to transform back to the original variable, we must remember
that PstðyÞ is a probability distribution and, therefore, the Jacobian of substitution (3) must be included in the
transformation. Finally,

PstðxÞ ¼
N

jxj2a
exp �

a x2
� �1�a
ð1� aÞq2

 !
. (17)

Distribution (17) is normalizable for a40 and 0pao1
2
. For a ¼ 0 it reduces to a standard Gaussian

distribution, and for 0oao1
2
it mildly diverges at x ¼ 0. If a increases towards 1

2
, the divergence becomes more

pronounced. At the same time, though, tails of the distribution get heavier which is characteristic for
anomalous diffusion. In other words, if a ¼ 0, the stationary distribution is nonsingular, but the ‘‘less
additive’’ the system becomes as a increases, the more pronounced the singularity is and the tails of the
distribution get flatter.

The presence of a bias, ba0, introduces some asymmetry in the exponential term, but the overall behaviour
remains much the same:

PstðxÞ ¼
N

jxj2a
exp

2bxjxj�a � a x2
� �1�a

ð1� aÞq2

 !
. (18)

If the noises are interpreted according to Stratonovich, we obtain

PStrat
st ðxÞ ¼

N 0

jxja
exp

2bxjxj�a � aðx2Þ
1�a

ð1� aÞq2

� �
(19)

and the distribution is normalizable for 0pao1.

3.2. No ‘‘additive’’ noise

If there is no ‘‘additive’’ noise, q ¼ 0, and no bias, b ¼ 0, dynamics (4) reduces to that of a linear transmitter
with a multiplicative noise and no other external forcing [3]. The only normalizable stationary solution is
PstðxÞ ¼ dðxÞ, corresponding to all particles eventually collapsing to their common resting point. If ba0, there
is no stationary solution as some particles go to the resting point, but some can escape to infinity.
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3.3. The general case

If the noises are not maximally correlated, jcja1, the general solution reads

PstðxÞ ¼
N exp½2ðbp� caqÞ=ð1� aÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

p2q arctanððpxjxj�a � cqÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

qÞ�

jxjm½q2 � 2cpqxjxj�a þ p2ðx2Þ
1�a
�ð1þa=ð1�aÞp2Þ

, (20)

where N is again a normalization constant and m depends on the interpretation of the noises: m ¼ 2a in the Ito,
and m ¼ a in the Stratonovich interpretation, cf. Eqs. (17) and (19) above.

If the noises are interpreted according to Ito, m ¼ 2a, principal properties of distribution (20), despite its
complicated form, are easy to find. Because the inverse tangent function, arctanð�Þ, is limited, the exponential
term is also limited and convergence properties of (20) depend solely on its denominator. One can easily see
that this distribution is normalizable for all 0pao1

2
. The distribution has rather heavy tails. It has a

convergent first moment if a41
2 p2. The second moment is convergent if a stronger condition, a4p2, is

satisfied. Note that these are the same conditions that need to be satisfied for the existence of the moments of
both the linear [3] and the noisy logistic [6] systems.

In general, distribution (20) is not symmetric. Apart from the central singularity, it has an additional peak
whose location depends on the sign of c: if c40, the peak is located to the right of x ¼ 0, and if co0, it is
located to the left. If jcjt1, the height of this peak can be very large. The asymmetry is physically introduced
by the interplay of the ‘‘exponential’’ and ‘‘multiplicative’’ noises; on a formal level, the asymmetry results
from the exponential term and can be removed if

bp� caq ¼ 0. (21)

It is important to understand the origin of this phenomenon. The asymmetric broadening results from the
bias—the force acting in one direction is, on the average, larger than the force acting in the opposite one. In
system (4), the parameter ba0 acts as one source of the bias; it has been introduced for this specific purpose. It
is also known that correlations between two noises can effectively introduce another bias, see e.g. Refs.
[3,8,10]. If condition (21) is met, the two sources of bias nullify each other. To see this, let us represent the two
correlated Gaussian white noises x1;2 as linear combinations of two independent GWNs c1;2:

x1ðtÞ ¼ c1ðtÞ, (22a)

x2ðtÞ ¼ cc1ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

c2ðtÞ. (22b)

With condition (21) satisfied, the Langevin equation (4) now takes the form

_x ¼ �ðaþ pc1ðtÞÞ x�
b

a
jxja

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2
p

qjxjac2ðtÞ. (23)

The system now behaves as if it were driven by two uncorrelated white noises, one of which is unbiased. As a
result, the bias-induced asymmetric broadening of the stationary distribution disappears.

In the Stratonowich interpretation, m ¼ a in Eq. (20), the distribution is normalizable for 0pao1 and the
first and second moments exist if a4 1

2
ap2 and a4 1

2
ð1þ aÞp2, respectively. Curiously, much of our discussion

on the asymmetries introduced by the bias and the correlations remains the same: condition (21) for the
mutual cancellation of the two sources of bias does not depend on the noise interpretation chosen.

3.4. Maximally correlated noises

Distribution (20) does not have a universal limit jcj ! 1. Instead, if c ¼ �1, we need to solve Eq. (12)
directly and then convert back to the original variable. We obtain a candidate solution

PtrialðxÞ�
expð2ðbp� aqÞ=ð1� aÞp2ðq� pxjxj�aÞÞ

jxjmjq� pxjxj�aj2ð1þa=ð1�aÞp2Þ
, (24)

where m is as in Eq. (20) and the � sign is the opposite of the sign of the correlation coefficient, c ¼ �1.
However, the right-hand side of (24) is not normalizable. If q� pxjxj�a ¼ 0, the exponential in (24) hits its
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essential singularity. This singularity is eliminated if a special case of condition (21), namely

bp� aq ¼ 0, (25)

holds. In this case, either p ¼ q ¼ 0 and the system becomes fully deterministic, or the Langevin dynamics (4)
takes a particularly simple form

_x ¼ �ðaþ pc1ðtÞÞ x�
q

p
jxja

� �
¼ �ðaþ pc1ðtÞÞ x�

b

a
jxja

� �
, (26)

cf. Eq. (22) above, and the stationary Fokker–Planck equation (12) in the Ito interpretation factorizes to

py� q

2py
½ð2aþ ð2� aÞp2Þy� apq�PstðyÞ þ ð1� aÞpyðpy� qÞ

dPstðyÞ

dy

� �
¼ 0. (27)

The regular part of this equation, the one in the square brackets, again does not lead to a normalizable
solution, but a singular distribution dðpy� qÞ solves Eq. (27). After transforming back to the original variable,
this singular distribution corresponds to dðx� ðq=pÞ1=ð1�aÞÞ, which in turn corresponds to one of the stationary
points of Eq. (26). As it can be easily verified, this stationary point is stable if the multiplicative noise is
sufficiently weak, a4p2. The other stationary point of Eq. (26), x ¼ 0, is not even deterministically stable. We,
therefore, conclude that if the noises are maximally correlated and condition (25) holds, the stationary
distribution in the Ito interpretaion reads

PstðxÞ ¼ dðx� ðq=pÞ1=ð1�aÞÞ, (28)

provided the noise is sufficiently weak. Otherwise, and in particular in the Stratonovich interpretation, a
stationary distribution does not exist. There is a striking similarity between systems (4) and (7), where a similar
situation occurs [6]: if a condition analogous to (25) is satisfied and the noises are maximally correlated, the
noisy logistic system has a d-like stationary distribution. If the noises are maximally correlated but the
counterpart of condition (25) does not hold, a stationary distribution does not form in the noisy logistic
system, either.
4. Constructive effects of correlations

From now on, we interpret the noises only in the sense of Ito.
As we have seen, a delicate interplay between the correlations and the bias can significantly alter

the shape of the stationary distribution. We may expect that this can lead to various unexpected properties
of system (4).
4.1. Nonmonotonic behaviour of the variance

Recall that depending on the parameters, the stationary distribution of the system discussed in
this paper can be nearly limited to very narrow peaks; with a different set of parameters, these peaks can
be asymmetrically broadened. The second central moment of a probability distribution, hx2i � hxi2,
if convergent, is perhaps one of its simplest and most easily comprehended characteristics. It is
interesting to see how the second moment of distribution (20) behaves as a function of the ‘‘additive’’
noise strength. Because of the complicated analytical structure of this distribution, we have not been
able to evaluate the integrals

R1
�1

x PstðxÞdx,
R1
�1

x2 PstðxÞdx analytically. We have done so numerically
instead. Example results are presented in Fig. 1; parameters chosen correspond to a convergent
second moment. As we can see, a minimum of the variance as a function of the ‘‘additive’’ noise strength
is clearly visible. This minimum is fairly deep if the correlations are large and becomes very shallow as the
correlations decrease. Note that if bo0, the minimum appears for negative values of the correlation coefficient
(not plotted).
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4.2. Stochastic resonance

Now suppose that the system discussed in this paper is additionally stimulated by an external, periodic
signal. The Langevin equation takes the form

_x ¼ �ðaþ px1ðtÞÞxþ jxj
aðbþ qx2ðtÞ þ A cosðOtþ fÞÞ (29)

where the noises are as in (5). Because we do not know exact solutions of a time-dependent Fokker–Planck
equation corresponding to Eq. (29), we have solved Eq. (29) numerically with the Euler–Maryuama algorithm,
consistent with the Ito interpretation, and a timestep equal to 2�12. To generate the correlated noises x1;2, we
have first generated two independent Gaussian white noises c1;2; we have used the Marsaglia algorithm [15]
for that purpose and the famous Mersenne Twister [16] has been used as the underlying uniform generator.
Then the correlated noises are created as linear combinations of the two uncorrelated ones, see Eq. (22) above.
Example trajectories of system (29) and associated power spectra, averaged over 128 realizations of the noise
and on the initial phase of the signal, f, are presented in Fig. 2. The shape of the trajectories and the power
spectra strongly depend on the parameters of the system, and on the correlation coefficient, c, and the strength
of the ‘‘additive’’ noise, q, in particular. In general, the higher the correlations, the more ordered the
trajectories are. It is worth noting that higher harmonics of the driving frequency can be visible in the power
spectra, indicating a nonlinear nature of the coupling between the signal and the dynamical variable.

To quantify these observations, we will use the signal-to-noise ratio (SNR) as a measure of the stochastic
resonance:

SNR ¼ 10 log10
Ssignal

Snoiseðf ¼ O=2pÞ
, (30)

where Ssignal is the height of the peak in the power spectrum at the driving frequency, and Snoiseðf Þ is the
frequency-dependent noise-induced background. Several other measures of the stochastic resonance have been
proposed [17], but we choose the SNR as the simplest, oldest and most commonly used one. Selected results,
averaged on both realizations of the noises and the initial phase, are presented in Fig. 3. For high values of the
correlation coefficient, a clear maximum in the SNR is visible. This shows that there is an optimal level of the
‘‘additive’’ noise that maximizes the ratio of power transmitted through coherent oscillations induced by
the driving signal to that transmitted by the irregular ones, or that there is a stochastic resonance in system
(29). For correlations only slightly larger than zero, the resonance is very small and it disappears for cp0.
Note that this happens if the asymmetry parameter, b, is greater than zero. For bo0 the stochastic resonance
occurs for negative correlations and reaches its largest magnitude at c ¼ �1. In the symmetric case, b ¼ 0,
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there is no stochastic resonance. Again, these features of the stochastic resonance resemble very much those of
the noisy logistic system (7) discussed in Ref. [6].
4.3. Response to a change of deterministic parameters

We have shown in the two previous subsections that the system discussed here can be optimized by choosing
an appropriate level of the ‘‘additive’’ noise. In practice, however, controlling the amplitude of the noise or
correlations between the two sources of the noise can be very difficult. Tuning the deterministic part of the
system may be much easier to achieve, and as our discussion of the asymmetric broadening of the distribution
in Section 3.3 has shown, by changing the bias parameter, b, we can optimize the system even if the noise
amplitudes and the correlation coefficient are not known.

To test for that, we have again numerically simulated the externally stimulated system (29) by the same
means that have been used in Section 4.2 above. This time amplitudes of the two noises have been kept
constant and the bias parameter has been varied. Selected results are presented in Fig. 4. As we can see,
changing the bias does optimize the system. Clear maxima in the SNR are visible. These maxima are most
pronounced if correlations are large, jcjt1, but they are present also for jcj ’ 0, even though the overall shape
of the curves is much flatter. For the uncorrelated case, c ¼ 0, the weak maximum coincides with b ¼ 0 which
is to be expected due to symmetry of the system. To put it in a slightly different way, we can see that the
uncorrelated system transmits an external signal badly. Any correlations between the noises potentially
improve the transmission properties. The system can be optimized to reach its full potential by appropriately
adjusting its deterministic parameters.
5. Conclusions

In this paper we have discussed a nonlinear system with two correlated sources of Gaussian white noises.
A closely related system has been discussed previously by Vitrenko in Ref. [2]. We have been mainly interested
in what happens when the restrictions on correlations between the noises imposed by that author are lifted
and, additionally, when the ‘‘additive’’ noise becomes biased. We have shown that this system can display both
stochastic localization and heavy tails in its stationary distribution which is characteristic for anomalous
diffusion. This agrees with previously published results [1,2]. It is worth noting, though, that authors of that
references obtained their results under the assumption that the noises were coloured, we have shown that the
same happens for white noises as well.
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Next, we have shown that correlations present in the system discussed here can lead to interesting
constructive effects of the noise: to a nonmonotonic behaviour of the variance of the stationary distribution
and to a stochastic resonance. Finally, we have shown that the system can be optimized to an external periodic
signal not only by varying amplitudes of the noises, but also by tuning the deterministic parameters of the
system when the noise amplitudes and the correlation coefficient between the noises remain, in principle,
unknown.

Surprisingly, system (4) discussed here is related to the noisy logistic system (7) that we have discussed
previously [6]. As we have shown, many, but not all, properties of these two systems are strikingly similar.
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J. Casado-Pascual, C. Denk, J. Gómez-Ordóñez, M. Morillo, P. Hänggi, Phys. Rev. E 67 (2003) 036109.

[18] S.I. Denisov, A.N. Vitrenko, W. Horsthemke, P. Hänggi, Phys. Rev. E 73 (2006) 036120.


	An exactly solvable nonlinear model: Constructive effects of correlations between Gaussian noises
	Introduction
	The Fokker-Planck equation
	Stationary distributions
	No ’’multiplicative’’ noise
	No ’’additive’’ noise
	The general case
	Maximally correlated noises

	Constructive effects of correlations
	Nonmonotonic behaviour of the variance
	Stochastic resonance
	Response to a change of deterministic parameters

	Conclusions
	Acknowledgements
	References


