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Abstract

A linear transmitter with correlated Gaussian white additive and multiplicative noises and a

periodic signal coupled either additively or multiplicatively is considered. The correlations

have a weak destructive effect in case of the additive signal and a strong constructive effect in

case of the multiplicative one. Analytical results for the linear transmitter with the additive

signal agree with those obtained previously by a different approach. We also show how to

analytically calculate certain expectation values involving exponentials of Gaussian processes.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The fact that noise can play a constructive role in many physical systems is now
widely recognized. The best-known examples of such phenomena are the stochastic
resonance (SR) [1] and Brownian ratchets [2]. SR is a phenomenon in which the
response of a dynamical system is optimized by the presence of a specific level of
noise and has been detected in so many seemingly different systems that it has been
claimed to be ‘‘an inherent property of rate-modulated series of events’’ [3].
However, it has been recently suggested that the functioning of important natural
see front matter r 2005 Elsevier B.V. All rights reserved.
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devices, e.g., communication and information processing in neural systems or
subthreshold signal detection in biological receptors, rely on phase synchronization
rather than SR [4]. The SR is usually measured by the signal-to-noise ratio (SNR) for
the output signal but new measures are being proposed and discussed [4–6].

One of the issues that is now debated and that is an origin of many unexpected
physical phenomena, is the role of correlations between various noises present in the
system. This point has been particularly stressed in research on Duffing oscillator
with additive and multiplicative noises [7,8], where correlations are responsible for
huge changes in the activation rate, on Brownian ratchets [9], where correlations
between the additive and multiplicative noises can lead to current reversal, and on a
nonlinear rotator [10], where full correlations between two noises amount to
nullifying one of them, leaving one of the states effectively noise-free and allowing
for the passage of incoming signals of vanishing intensity. Other contexts in which
correlations between various noise terms appear to be important include a quantum
dimer under the influence of colored noises [11], a coupled neuron network [12],
synchronization of chaotic oscillators [13], detecting the gravitational background
[14], and medical imaging [15]. The effect of correlations between a Gaussian white
noise and a Gaussian colored noise has been discussed in Ref. [16].

It is sometimes very difficult to find analytical results for nonlinear models and it is
for that reason that models which admit rigorous solutions are very interesting. One
of such models is that of an overdamped linear transmitter, which in full form reads

_a ¼ ðf 1ðtÞ þ f 2ðtÞx1ðtÞÞa þ f 3ðtÞ þ f 4ðtÞx2ðtÞ , (1)

where x1;2ðtÞ are the noise terms. It should be mentioned that while (1) formally leads
to a linear equation of motion with time-dependent coefficients, a multiplicative
coupling between the noise and the system means a ‘‘hidden’’ nonlinearity: the noise
is supposed to represent many unobserved degrees of freedom coupled to the
transmitting process in a nonlinear manner. Although chemical reaction with a
fluctuating barrier provided the original motivation for this model, with a being the
concentration of a reagent, the presence of the additive noise, representing the
thermal bath acting on the system, and an additive deterministic signal possibly lead
to realizations that admit negative values of aðtÞ: It, therefore, can no longer be
regarded as the concentration of a chemical species. Nevertheless, systems of this
type can still describe processes of a paramount physical interest like the electric
potential across a molecular membrane [17] or provide a ‘‘skeletal’’ model of various
enzymatic reactions [18]. This model, in less general forms, has also been discussed in
Ref. [19]. With one exception (see below), possible implications of the presence of
correlations between the two noise terms in (1) have not been addressed so far.
Including such correlations is an obvious extension to the existing research on
models belonging to the general class (1) and is the subject of the present paper.

There is one important exception to the general statement made in the preceding
paragraph. Berdichevsky and Gitterman in Ref. [20] considered the linear
transmitter with correlated noises and an additively coupled signal. In order to
calculate the correlation function of the process aðtÞ they obtained a whole hierarchy
hai; hxai; hx2ai etc., where x is a noise term, and needed a procedure to close the
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hierarchy. They resorted to considering asymmetric, dichotomous, exponentially
correlated noises and obtained results for Gaussian white noises only as a limiting
case. In this paper we show how to treat the Gaussian case directly; we think this
approach is important and interesting, even though the behavior predicted in
Ref. [20] is certainly more ‘‘rich’’ than that for a pure Gaussian white noise. We also
slightly differ with the authors of that reference in our analysis of final results. In
addition, we extend our previous discussion of a model with a multiplicative signal
[18] to the case of correlated noises. We find that correlations play an important role
in this system.

This paper is organized as follows: in Section 2 we introduce the model and discuss
a couple of its formal features. We give analytical results for the expectation value,
the correlation function, and the power spectrum of the system with an additive
noise in Section 3, and analytical and numerical results for the system with a signal
coupled to the system multiplicatively (parametrically) in Section 4. A short
discussion in Section 5 follows. Mathematical details are presented in the appendix;
although delegated to an appendix, these details represent an important part of
this paper.
2. The model

Consider a system described by the following equation:

_a ¼ �ðka þ kx1ðtÞ þ f ðtÞÞa þ lx2ðtÞ þ gðtÞ . (2)

x1ðtÞ; x2ðtÞ represent the multiplicative and additive noises, respectively, acting on the
system. f ðtÞ and gðtÞ are deterministic external stimulations; in the present paper we
assume that either one of them vanishes identically. The constants k and l allow for
an independent manipulation of the noises’ strengths. The model (2) belongs to the
general class of (1) but is simplified to keep only its most important features. The
multiplicative noise represents fluctuations of a barrier and the additive noise is a
thermal bath acting on the system.

The noises acting on the system need not to be independent. On the contrary, it is
very likely that both the thermal bath and the process affecting the barrier height are
correlated, as the molecular mechanisms responsible for these noises are not
independent. It is the objective of the present paper to examine the effect of this
correlation on the dynamics of the system. To keep the model as simple as possible,
we assume that the noises x1ðtÞ; x2ðtÞ form a two-dimensional Gaussian process,
point-correlated in time:

x1ðtÞ

x2ðtÞ

" #
½x1ðt

0Þ x2ðt
0Þ


* +
¼ dðt � t0Þ

1 c

c 1

� �
, (3)

where c 2 ½�1; 1
 is the correlation coefficient. We now perform the Cholesky
decomposition [21] of the matrix in (3) and use it to construct the noises from two
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independent processes:

x1ðtÞ

x2ðtÞ

" #
¼

1 0

c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p

" #
xðtÞ

ZðtÞ

" #
. (4)

Here xðtÞ; ZðtÞ are two uncorrelated Gaussian white noises (GWN): hxðtÞi ¼ 0;
hZðtÞi ¼ 0; hxðtÞxðt0Þi ¼ hZðtÞZðt0Þi ¼ dðt � t0Þ; hxðtÞZðt0Þi ¼ 0; and all higher correla-
tions factorize. A more general mechanism of describing correlations between the
noises has been introduced in Ref. [7], but we will show that the dynamics of
the system does not significantly depend on the detailed mechanism of introducing
the correlations.

We further assume that the external stimulations have a simple periodic form. The
evolution equation (2) thus becomes

_a ¼ � ðka þ kxðtÞ þ Am cosðOt þ fÞÞa þ lc xðtÞ

þ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
ZðtÞ þ Aa cosðOt þ fÞ , ð5Þ

where f is an initial phase of the signal. According to what we have said above, only
one of the amplitudes Am; Aa does not vanish.

Eq. (5) can be formally solved. This solution can be used to calculate its
expectation value and the autocorrelation function. Before we do that, we must first
solve a couple of problems that will appear during these calculations.

First, these calculations involve certain expectation values that, to our best

knowledge, have not been calculated so far: one has the form hxðtÞe�
R T

t
pðt0Þxðt0Þ dt0

i and

the other hxðt1Þxðt2Þe
�
R T

t
qðt0Þxðt0Þ dt0

i; where pð
Þ; qð
Þ are certain deterministic functions
and xð
Þ is a GWN. We show how to calculate them in the appendix.

Second, the correlation functions should be averaged over the initial phase of the
signals, as otherwise they will not be stationary [17,22,23]. Therefore, we will use
correlation functions of the form

0aðt1Þaðt2ÞT ¼
1

2p

Z 2p

0

haðt1Þaðt2Þidf . (6)

The braces h
 
 
i on the right-hand side of Eq. (6) stand for the average over
realizations of the noises.

Finally, calculating the power spectra of the processes described by Eq. (5) is
our ultimate goal. Let aðtÞ be a solution to Eq. (5). We expect that it becomes
stationary for t ! 1: The simplest estimate of the power spectrum is the
square modulus of the Fourier transform of the process. If we were to calculate
the power spectrum numerically, we would calculate a particular realization of aðtÞ;
reject several (perhaps many) initial values until the series becomes stationary,
calculate the power spectrum of the remaining series and finally average over the
realization of the noises and the initial phase of the signal. We now follow this
programme using the analytical, not a numerical, solution. Thus, for the power
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spectrum we obtain

PðoÞ ¼ lim
T!1

1

2T
lim

T0!1

Z T0þT

T0�T

aðtÞeiot dt





 



2
* +* +

¼ lim
T!1

1

2T
lim

T0!1

Z T0þT

T0�T

dt1

Z T0þT

T0�T

dt20aðt1Þaðt2ÞTeioðt1�t2Þ

¼ lim
T!1

1

2T
lim

T0!1

Z T

�T

dt1

Z T

�T

dt20aðT0 þ t1ÞaðT0 þ t2ÞT cos oðt1 � t2Þ .

ð7Þ

Note that in finite times approximants of the right-hand side of Eq. (7) we must
always have T0bTb0 and the limit T0 ! 1 must be taken first. After a simple
change of variables, we obtain

PðoÞ ¼ lim
T!1

1

2T

Z 2T

0

dt cos ot

� lim
T0!1

Z tþ2T

t�2T

dt a T0 þ
1

2
t �

1

2
t

� �
a T0 þ

1

2
t þ

1

2
t

� �
 �
 �
. ð8Þ

If the process aðtÞ becomes stationary in the asymptotic regime, its autocorrelation
function depends only on the difference of its arguments:

lim
t!1

a t �
1

2
t

� �
a t þ

1

2
t

� �
 �
 �
¼ CðtÞ . (9)

We thus have

PðoÞ ¼ 2

Z 1

0

cos otCðtÞdt . (10)

If the process aðtÞ is stationary, we immediately have

CðtÞ ¼ lim
t!1

0aðt � tÞaðtÞT ¼ lim
t!1

0aðtÞaðt þ tÞT (11)

and we can see that Eq. (10) is in the standard Wiener–Khinchin form.
3. An additive signal

We now turn to discussing specific forms of the general system (5). We start
with a system with an additive periodic signal, described by the following
equation:

_a ¼ �ðka þ kxðtÞÞa þ lc xðtÞ þ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
ZðtÞ þ A cosðOt þ fÞ . (12)
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Eq. (12) has a formal solution

aðtÞ ¼ e�kat exp �k
Z t

0

xðt0Þdt0
� �

a0

þ l
Z t

0

e�kaðt�t0Þ exp �k
Z t

t0
xðt00Þdt00

� �
ðc xðt0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
Zðt0ÞÞdt0

þ A

Z t

0

e�kaðt�t0Þ exp �k
Z t

t0
xðt00Þdt00

� �
cosðOt0 þ fÞdt0 , ð13Þ

where a0 is the initial value of the process. For simplicity, we assume in what follows
that a0 � 0:

For the expectation value of the process we obtain

aðtÞ
� �

¼
A cosðOt þ fþ efÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðka �

1
2 k

2Þ
2
þ O2

q �
lkc

2ðka �
1
2 k

2Þ

þ e�ðka�ð1=2Þk2Þt lkc

2ðka �
1
2
k2Þ

�
A cosðfþ efÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðka �

1
2
k2Þ2 þ O2

q
0B@

1CA , ð14Þ

where tan ef ¼ �O=ðka �
1
2
k2Þ:

As we can see, only the part of the additive noise that is correlated with the
multiplicative noise contributes to the expectation value (14). There is a maximal
admissible level of the multiplicative noise, kmax ¼

ffiffiffiffiffiffiffi
2ka

p
; beyond which the process

diverges. In the asymptotic regime, t ! 1; the system displays stationary
oscillations. The amplitude of these oscillations grows monotonically as the
multiplicative noise increases from zero to the maximal level. This is a manifestation
of a constructive role of the noise and it is essentially the same as in the case without
the additive noise [17]. There is one important difference, though: without the
correlated additive noise, haðtÞi oscillates around zero, and with this noise present, it
oscillates around a value that depends on the correlation level and strengths of both
the multiplicative and additive noises. If we now calculate the amplitude of the
oscillations relative to this flat background,

oscillations amplitude

background
¼

A

lkjcj
2ðka �

1
2
k2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðka �
1
2
k2Þ2 þ O2

q , (15)

we can see that the relative amplitude formally diverges for lkc ! 0 (there is no
threshold and the system can transfer the periodic signal even in the absence of the
noise) and monotonically decreases to zero as the level of the multiplicative noise
increases towards its maximal value. In other words, if the strength of the
multiplicative noise is too large, the periodic stimulation gets drowned in the flat
background. In this respect correlations between the multiplicative and additive
noises act destructively on the system.
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If we take an average not only over realizations of the noises but also over the
phase of the incoming signal, all oscillations vanish:

0aðtÞT�!
t!1

a1 ¼ �
lkc

2ðka �
1
2
k2Þ

. (16)

We now turn to calculating the correlations for the process aðtÞ: The full expressions
are rather long, and therefore we present the results in the asymptotic (t ! 1)
regime only and after averaging on both the realizations of the noises and the initial
phase:

a t �
1

2
t

� �
a t þ

1

2
t

� �
 �
 �
�!
t!1

lkc

2ðka �
1
2
k2Þ

 !2

þ
A2 cos Ot

2ððka �
1
2
k2Þ2 þ O2Þ

þ
A2k2

4ðka � k2Þððka �
1
2
k2Þ2 þ O2Þ

þ
l2

2ðka � k2Þ

 

þ
ðlkcÞ2ðka �

1
4
k2Þ

2ðka � k2Þðka �
1
2
k2Þ2

!
e�ðka�ð1=2Þk2Þt . ð17Þ

We can see that the correlation function (17) exists only if the multiplicative noise
level satisfies ko

ffiffiffiffiffi
ka

p
¼ kmax=

ffiffiffi
2

p
: For the multiplicative noise levels in the range

kmax=
ffiffiffi
2

p
pkokmax; the first moment of the process aðtÞ converges, but the second

does not.
The first term in (17) corresponds to the constant shift introduced by this part of

the additive noise that is correlated to the multiplicative one; it is equal to a2
1: The

second describes the oscillations in the correlation function introduced by the
external periodic forcing in (5). The remaining terms describe the diffusive
background: first of them is present even in the absence of the additive noise. The
second contains contributions from both the correlated and uncorrelated parts of
the additive noise, and only the correlated part contributes to the remaining one.
Note that the sign of this term is always positive: the presence of correlations raises
the diffusive background. The correlations act destructively on the system with a
additive signal.

The correlation function (17), leads to, via Eq. (10), to the following power
spectrum:

PðoÞ ¼ P0 dðoÞ þ Psignal dðo� OÞ þ dðoþ OÞð Þ þ PbackðoÞ , (18)

where

P0 ¼
lkc

2ðka �
1
2
k2Þ

 !2

(19a)

is the power density introduced at zero frequency by the constant shift,

Psignal ¼
A2

ðka �
1
2
k2Þ2 þ O2

(19b)
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is the power density associated with the oscillatory term, and

PbackðoÞ

¼
A2k2ðka �

1
2
k2Þ2 þ l2½ðka �

1
2
k2Þ2 þ c2k2ðka �

1
4
k2Þ
½ðka �

1
2
k2Þ2 þ O2


4ðka � k2Þðka �
1
2
k2Þ½ðka �

1
2
k2Þ2 þ O2
½ðka �

1
2
k2Þ2 þ o2


ð19cÞ

is the power density associated with the diffusive background. We can now calculate
the SNR as the ratio between the power densities transferred by the signal and by the
diffusive background at the frequency of the signal:

SNRðk2;Z; cÞ

¼
Psignal

Pbackðo ¼ �OÞ

¼
ðka � k2Þðka �

1
2
k2Þ½ðka �

1
2
k2Þ2 þ O2


k2ðka �
1
2
k2Þ2 þ Z½ðka �

1
2
k2Þ2 þ O2
½2ðka �

1
2
k2Þ2 þ c2k2ðka �

1
4
k2Þ


,

ð20Þ

where Z ¼ ðl=AÞ
2 measures the relative strength of the additive noise and the signal.

Regardless of the values of other parameters, SNR drops to zero for k2 ¼ ka;
meaning that the total power density comes from the noise and the signal is totally
undistinguishable from it. For Z ¼ 0 (20) formally diverges for k ! 0 (recall that
since there is no threshold, the system transfers the signal even for a vanishing
multiplicative noise). SNR remains finite for Z40 and since the second term in the
denominator of (20) is nonnegative, SNRðk2;Z; cÞpSNRðk2; 0; 
Þ: If the above
inequality is strong, the presence of the additive noise acts destructively on the
system’s capabilities to transfer the signal. In any case, SNR decreases monotonically
as the multiplicative noise increases: there is no stochastic resonance.

For weak signals (ZX1) the SNR scales as Z�1; which is readily seen in (20).
Furthermore, 8Z40;k : SNRðk2;Z; ca0ÞoSNRðk2;Z; 0Þ: if the additive and multi-
plicative noises are correlated, the system’s capabilities to transfers the periodic
signal are slightly worse than those of the system with uncorrelated noises.
Numerical simulations show that the system can transfer signals as weak as Zt100;
but for such a weak signal the difference between the c ¼ 0 and jcj ¼ 1 cases is
scarcely noticeable.

Finally, we may ask what is the relative ‘‘height’’ of the d-peak in the spectrum
associated with the signal to the d-peak associated with what manifests itself as a
constant forcing and results from the presence of the correlations. Not surprisingly,

Psignal

P0
¼

A2

ðlkcÞ2
4ðka �

1
2
k2Þ2

ðka �
1
2
k2Þ2 þ O2

, (21)

which once again shows that in the presence of the correlations between the
multiplicative and additive noises, the signal is drowned by the correlated noise as
the multiplicative noise level increases. Note that the ratio (21) diverges if lkc ¼ 0;
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this reflects the fact that if any of the noises vanishes, or if the noises are
uncorrelated, there is no constant shift in the output, cf. Eq. (14) above.
4. A multiplicative signal

We now consider a model described by the following equation:

_a ¼ �ðka þ kxðtÞ þ A cosðOt þ fÞÞa þ lc xðtÞ þ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
ZðtÞ , (22)

where all quantities have meanings and properties of the corresponding quantities in
Eq. (12) above. The only difference is that the signal is now coupled parametrically
to the transmitter. We have discussed this model in Ref. [18], but only for the
uncorrelated case (c ¼ 0), where we have shown that because of the presence of
the additive noise, the system responds, in terms of its autocorrelation function, to
the signal even though the average realization of aðtÞ goes to zero.

4.1. Analytical results

A formal solution to Eq. (22) reads

aðtÞ ¼ l
Z t

0

e�kaðt�t0Þ exp �k
Z t

t0
xðt00Þdt00 � A

Z t

t0
cosðOt00 þ fÞdt00

� �
�ðc xðt0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
Zðt0ÞÞdt0 , ð23Þ

where we have assumed that the initial value að0Þ ¼ 0 for simplicity. As in the
previous section, we will use this formal solution in calculating the expectation value
of the process aðtÞ and its autocorrelation function. The calculations run similarly to
those for the additive noise and make use of the expectation values evaluated in the
appendix. For the expectation value we obtain

haðtÞi ¼ �
1

2
lkc

Z t

0

e�ðka�ð1=2Þk2Þðt�t0Þ

� exp �
2A

O
sin 1

2
Oðt � t0Þ cosðfþ 1

2
Oðt þ t0ÞÞ

� �
dt0 . ð24Þ

If the signal is weak, jA=Oj51; we may expand the expectation value (24), not
averaged over the initial phase, to obtain

haðtÞi �!
t!1

�
clk

2ðka �
1
2
k2Þ

1þ
A

O
cosðOt þ fþ efÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2efq
0B@

1CA , (25a)

tan ef ¼
ka �

1
2
k2

O
. (25b)

We can see that in the limit of weak signals, the transmitter asymptotically displays
a constant shift and oscillations. The amplitude of these oscillations relative to the
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constant background grows steadily as the multiplicative noise level increases
towards kmax: the oscillations induced by a parametrically coupled signal are not

drowned in the noisy background. The presence of these oscillations is clearly a
constructive effect of the correlations as in the uncorrelated case, c ¼ 0; haðtÞi � 0:

If we further average Eq. (24) over the phase of the incoming signal, we obtain

0aðtÞT ¼ �
1

2
lkc

Z t

0

dt0 e�ðka�ð1=2Þk2Þðt�t0Þ

�
1

2p

Z 2p

0

df exp �
2A

O
sin 1

2
Oðt � t0Þ cosðfþ 1

2
Oðt þ t0ÞÞ

� �
¼ �

1

2
lkc

Z t

0

dt0 e�ðka�ð1=2Þk2Þt0

�
1

2p

Z 2p

0

df exp �
2A

O
sin 1

2
Ot0 cos f

� �
, ð26Þ

since the integration over f runs over the entire period of the integrand and therefore
the value of the inner integral cannot depend on 1=2Oðt þ t0Þ: An integral
representation of the modified Bessel function

I0ðzÞ ¼
X1
n¼0

ðz=2Þ2n

ðn!Þ2
¼

1

2p

Z 2p

0

expðz cos fÞdf (27)

can immediately be recognized [24]:

0aðtÞT ¼ �
1

2
clk

Z t

0

e�ðka�ð1=2Þk2Þt0I0
2A

O
sin 1

2
Ot0

� �
dt0 . (28)

Furthermore, as

0p
Z 1

t

e�ðka�ð1=2Þk2Þt0I0
2A

O
sin 1

2
Ot0

� �
dt0p

Z 1

t

e�ðka�ð1=2Þk2Þt0I0
2A

O

� �
dt0

¼
1

ka � ð1=2Þk2
I0

2A

O

� �
e�ðka�ð1=2Þk2Þt �!

t!1
0 , ð29Þ

we may conclude that

0aðtÞT�!
t!1

�
1

2
lkc

Z 1

0

e�ðka�ð1=2Þk2Þt0I0
2A

O
sin 1

2
Ot0

� �
dt0 (30)

provided that kokmax ¼
ffiffiffiffiffiffiffi
2ka

p
; otherwise the process is divergent, which is readily

seen directly from Eq. (24). Observe that if AXka � ð1=2Þk2; the expectation value
(30) formally diverges in the limit O ! 0; even though realizations for some
particular values of the initial phase f may be convergent.

For the correlation function we obtain

0aðt � 1
2
tÞaðt þ 1

2
tÞT ¼ J1 þ J2 þ J3 , (31)
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where

J1 ¼ l2e�ðka�ð1=2Þk2Þt
Z t

0

ds e�2ðka�k2ÞsI0
A

O
Z1

� �
, (32a)

J2 ¼
3

2
ðlkcÞ2e�ðka�ð1=2Þk2Þt

Z t�1
2t

0

ds e�2ðka�k2Þs

�

Z t�1
2t�s

0

du e�ðka�ð1=2Þk2ÞuI0
A

O
Z2

� �
, ð32bÞ

J3 ¼
1

4
ðlkcÞ2

Z t�1
2t

0

ds e�ðka�ð1=2Þk2Þs
Z t

0

du e�ðka�ð1=2Þk2ÞuI0
A

O
Z3

� �
, (32c)

and Zi are certain functions involving trigonometric functions of t and the
integration variables, but not of t. We can see that this correlation function
converges for ko

ffiffiffiffiffi
ka

p
¼ kmax=

ffiffiffi
2

p
: A reasoning similar to that used in (29) shows

that the correlation function becomes stationary in the limit t ! 1: In the limit
O ! 0; the correlation function (31) formally diverges if A42ðka � k2Þ: Note also
that the square of the strength of the additive noise l multiplies all terms in (32). The
situation is slightly paradoxical: without the additive noise, almost all realizations of
the process aðtÞ eventually die out, yet as in the output process the power attributed
to ‘‘signal’’ and to ‘‘noise’’ scale by l2; the SNR does not depend on the additive
noise level.

4.2. Numerical results

Because of the analytical structure of Eq. (32), any further analysis of this
correlation function should be performed numerically. Instead of numerically
calculating the Fourier transform of Eq. (31), we have directly integrated Eq. (22)
by the Heun method [25] with a time step h ¼ 1=256; calculated the power
spectrum for each realization and averaged over 512 realizations of the noises
and the initial phase. We have used Marsaglia algorithm [26] to generate the
GWNs and the famous Mersenne Twister [27] as the underlying uniform
generator. Selected results are presented on Fig. 1. As we can see, if the external
frequency is small and the two noises are uncorrelated, the process aðtÞ does not
display any oscillations, cf. panel (i). If the noises become correlated, distinct
sharp peaks corresponding to the driving frequency and its higher harmonics
appear, cf. panels (ii) and (iii). For a large driving frequency, in the uncorrelated
case there is a broad peak centered at the driving frequency, cf. panel (iv). If the
noises get correlated, a sharp line appears, superimposed on the broad peak, cf.
panels (v) and (vi).

If there are no correlations, oscillations introduced by a parametrically coupled
signal are, by their very nature, damped with an effective damping constant
ka � ð1=2Þk2: If the driving frequency is very small, with O�1

bðka � ð1=2Þk2Þ�1; the
transmitter is dominated by the damping term and the resulting power spectrum is
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Fig. 1. Numerical power spectra of the process (22) for various input signal frequencies and correlations

between the noises. The input signal frequency equals O ¼ p=8 (panels (i)–(iii)) and O ¼ 2p (panels

(iv)–(vi)). The multiplicative and additive noises are uncorrelated (c ¼ 0) on panels (i), (iv), partially

correlated (c ¼ 1
2
) on panels (ii), (v), and fully correlated (c ¼ 1) on panels (iii), (vi). Other parameters,

common for all panels, are ka ¼ 1
2
; k ¼

ffiffiffiffiffi
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p
=2; l ¼ 1

4
; and A ¼ 1:

P.F. Góra / Physica A 354 (2005) 153–170164
non-oscillatory (Fig. 1, panel (i) above). For larger frequencies a broad peak,
characteristic for damped oscillations, appears in the power spectrum (Fig. 1, panel
(iv)). The presence of correlations between the additive and multiplicative noises
changes the situation. Sharp lines, characteristic for undamped oscillations, appear
in the power spectrum for both small and large driving frequencies. We can see that
the correlations have a strong constructive effect on the transmitted signal in case of a
multiplicative coupling.

The presence of higher harmonics of the driving frequency on panels (ii), (iii)
reflects a nonlinear nature of the multiplicative coupling between the transmitter and
the external signal.

4.3. The origin of the constructive role of correlations

To understand, at least qualitatively, why correlations between the additive
and multiplicative noises reinforce the parametrically coupled signal, observe that
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Eq. (22) is formally equivalent to

_a ¼ � ðka þ kxðtÞ þ A cosðOt þ fÞÞ a �
cl
k

� �
�

cl
k

ka �
cl
k

A cosðOt þ fÞ þ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
ZðtÞ . ð33Þ

If we now introduceea ¼ a � cl=k , (34)

we obtain

_ea ¼ � ðka þ kxðtÞ þ A cosðOt þ fÞÞea �
cl
k

ka

�
cl
k

A cosðOt þ fÞ þ l
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2

p
ZðtÞ . ð35Þ

The correlated part of the noise has been formally removed from Eq. (35). We can
now see that the presence of correlations effectively amounts to (i) lowering of the
amplitude of the additive noise, (ii) introducing a constant additive forcing, and (iii)
additively coupling to the transmitter a periodic signal with exactly the same phase
and frequency as the multiplicative one. The amplitude of the additional signal is
proportional to the product of the correlation coefficient and the strength of the
additive noise. As we already know from Section 3, an additive periodic signal
introduces undamped oscillations into the correlation function which, in turn,
introduce very sharp lines into the power spectrum. Such lines are clearly visible on
Fig. 1.

Note that a transformation analogous to (34), when applied to the system with a
purely additive signal (12), does not affect the signal. This observation, perhaps,
clarifies why the presence of correlations in the additive case does not lead to any
constructive effects.
5. Discussion

In this paper we have discussed the effects of correlations between additive and
multiplicative noises in a model of a linear transmitter (5). We have shown that the
effects of correlations is different depending on whether the signal is coupled
additively or multiplicatively. In the former case, the correlations act destructively:
the amplitude of the outgoing signal increases with the level of the multiplicative
noise, but the constant shift introduced by the correlations increases even faster, the
amplitude of the oscillations relative to the shift decreases, and the signal is
eventually drowned by the noise. Note that the correlations act here against the
noise: the multiplicative noise enhances the signal, but the correlations diminish it.
Similar effects can be seen in the power spectrum and the SNR of the outgoing
signal. The fact that correlations reduce the destructive effects of noise has been
reported previously; papers quoted in the introduction provide examples of such
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systems. What we have here is an example of correlations reducing the constructive
effect of noise.

These formal results, and the correlation function (17) in particular, agree with
those reported in Ref. [20], where the Gaussian white noise has been obtained as a
limiting case of a dichotomous, colored noise. This should come as no surprise: there
is a generally held belief (see e.g. [28]) that in a well defined limit the two, in principle
very different, kinds of noise have identical effect on the dynamics of a system.
A comparison of our present results with those of Ref. [20] provides yet another
confirmation of this statement.

The situation is entirely different for the case of a multiplicative signal. We have
shown that for a weak incoming signal not averaged over the phase, the outgoing
signal displays oscillations that do not vanish as the level of the multiplicative noise
increases. Numerical evidence suggests that without the correlations, the power
spectrum averaged over both realizations of the noise and the initial phase does not
display any signs of oscillations for low frequencies and only damped oscillations for
larger frequencies. This is easy to understand: a multiplicative signal is, by its very
nature, damped, and if the wavelength of the signal is large, the signal does not
recover before if gets completely washed away by the damping. The presence of
correlations changes this picture altogether: the power spectrum displays distinct,
sharp lines for all frequencies of the input signal. We have showed analytically that
correlations between the multiplicative and additive noises are effectively equivalent
to adding an extra signal, with exactly the same phase and frequency as the
multiplicative one, to the system. The amplitude of this extra signal is proportional
to the correlation coefficient and it is this signal that produces the sharp lines
(d-peaks) in the power spectrum.

We have assumed in Section 2 that the two noises present in the system together
form a two-dimensional Gaussian process. On a formal level, this property is
reflected in the relation between the amplitudes of the correlated and uncorrelated
parts of the additive noise. If we relax this assumption, instead of (5) we obtain

_a ¼ �ðka þ kxðtÞ þ Am cosðOt þ fÞÞa þ lxxðtÞ þ lZZðtÞ þ Aa cosðOt þ fÞ ,

(36)

where no special dependence between lx and lZ is assumed. The results reported in
this paper can now be recovered if c2 is replaced by l2x=ðl

2
x þ l2ZÞ and Z ¼ ðl=AaÞ

2 is
replaced by ðl2x þ l2ZÞ=A2

a: Thus, results reported do not depend on the assumption
that the joint distribution of the noises is Gaussian. They do depend, however, on the
assumption that each individual noise is Gaussian and point-correlated in time.

I acknowledge a very helpful discussion with Prof. Peter Hänggi that helped me to
clarify certain ambiguities present in a draft version of this paper.
Appendix A. The expectation values

While calculating the expectation value of aðtÞ and the correlation function
of this process, one encounters several integrals that involve the expectation
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value of the exponential of an integral of the multiplicative noise xðtÞ:
Specifically,

exp

Z T

0

jðt0Þxðt0Þdt0
� �
 �

¼ exp
1

2

Z T

0

½jðt0Þ
2 dt0
� �

, (A.1)

where T is a certain time and jðtÞ is a certain function, not necessarily continuous
(cf. [17,29]). Similarly,

Zðt1Þ exp
Z T

0

jðt0Þxðt0Þdt0
� �
 �

¼ 0 , (A.2a)

Zðt1ÞZðt2Þ exp
Z T

0

jðt0Þxðt0Þdt0
� �
 �

¼ dðt1 � t2Þ exp
1

2

Z T

0

½jðt0Þ
2 dt0
� �

(A.2b)

because ZðtÞ; xðtÞ are independent GWNs. The other two expectation values are more
challenging. We start with

C1 ¼ xðt1Þ exp
Z T

0

jðt0Þxðt0Þdt0
� �
 �

. (A.3)

We expand the exponential function in a Taylor series, interchange the orders of
summations, and obtain

C1 ¼
X1
n¼0

1

n!

Z T

0

dtm1 . . .

Z T

0

dtmn
jðtm1 Þ . . .jðtmn

Þhxðtm1Þ . . . xðtmn
Þxðt1Þi . (A.4)

The expectation value on the right-hand side of (A.4) involves n þ 1 terms.
Therefore, only the terms with n ¼ 2m þ 1 will give a nonzero contribution to the
sum. The expectation value thus involves 2ðm þ 1Þ noise terms. It factors out to
a product of m þ 1 two-point correlations and there are ð2m þ 1Þ!! ways to choose
the pairs. In every possible choice, one of the pairs involves t1 and a certain tm; and
the remaining m pairs involve two tms. Thus

C1 ¼
X1
m¼0

ð2m þ 1Þ!!

ð2m þ 1Þ!

Z T

0

jðtmÞ xðtmÞxðt1Þ
� �

dtm

� �

�

Z T

0

dtm1

Z T

0

dtm2jðtm1Þjðtm2Þhxðtm1Þxðtm2 Þi
� �m

¼
X1
m¼0

1

2mm!
jðt1Þ

Z T

0

½jðtmÞ
2 dtm

� �m

¼ jðt1Þ exp
1

2

Z T

0

½jðtmÞ
2 dtm

� �
. ðA:5Þ
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The last remaining expectation value involves two noise terms multiplying the
exponential:

C2 ¼ exp

Z T

0

jðt0Þxðt0Þdt0
� �

xðt1Þxðt2Þ

 �

¼
X1
n¼0

1

n!

Z T

0

dtm1 . . .

Z T

0

dtmn
jðtm1Þ . . .jðtmn

Þhxðtm1 Þ . . . xðtmn
Þxðt1Þxðt2Þi ,

ðA:6Þ

where, as above, we have expanded the exponential into the power series. Only the
terms with n ¼ 2m will give a nonzero contribution to the sum. The expectation
value of the product of noise terms factors out to a product of two-point
correlations. Again, there are ð2m þ 1Þ!! ways to choose the pairs. In ð2m � 1Þ!! cases
the noises at t1; t2 will be coupled with each other, and in the remaining cases they
will be coupled with different tms. Therefore

C2 ¼
X1
m¼0

ð2m � 1Þ!!

ð2mÞ!
hxðt1Þxðt2Þi

�

Z T

0

dtm1

Z T

0

dtm2jðtm1Þjðtm2Þhxðtm1Þxðtm2 Þi
� �m

þ
X1
m¼1

ð2m þ 1Þ!!� ð2m � 1Þ!!

ð2mÞ!

�

Z T

0

jðtmÞhxðtmÞxðt1Þidtm

� � Z T

0

jðtnÞhxðtnÞxðt2Þidtn

� �
�

Z T

0

dtm1

Z T

0

dtm2jðtm1Þjðtm2Þhxðtm1Þxðtm2 Þi
� �m�1

¼ dðt1 � t2Þ
X1
m¼0

1

2mm!

Z T

0

½jðtmÞ
2 dtm

� �m

þ jðt1Þjðt2Þ
X1
m¼1

1

2m�1ðm � 1Þ!

Z T

0

½jðtmÞ
2 dtm

� �m�1

¼ ½dðt1 � t2Þ þ jðt1Þjðt2Þ
 exp
1

2

Z T

0

½jðtmÞ
2 dtm

� �
. ðA:7Þ

This approach can be easily generalized to colored Gaussian noises. Suppose xðtÞ is a
Gaussian noise with zero mean and correlations of the form

hxðtÞxðt0Þi ¼ hðjt � t0jÞ , (A.8)

where
R1
�1

hðuÞdu ¼ 1: Then, instead of (A.7), we obtain

exp

Z T

0

jðt0Þxðt0Þdt0
� �

xðt1Þxðt2Þ

 �
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¼ hðjt1 � t2jÞ þ

Z T

0

jðtmÞhðjtm � t1jÞdtm

� � Z T

0

jðtnÞhðjtn � t2jÞdtn

� �� �
� exp

1

2

Z T

0

dtm

Z T

0

dtn jðtmÞjðtnÞhðjtm � tnjÞ

� �
ðA:9Þ

and similar expression for other expectation values.
As we have said, the function j needs not to be continuous. In many practical

situations, for example in evaluating expressions like

exp

Z t2

t1

jðt0Þxðt0Þdt0
� �
 �

(A.10)

with 0pt1ot2pT ; jðtÞ would be the characteristic function of an interval:

jðtÞ ¼

0; tot1 ;
1
2
; t ¼ t1 ;

1; t1otot2 ;
1
2
; t ¼ t2 ;

0; t4t2 :

8>>>>>><>>>>>>:
(A.11)

The rationale for putting 1=2 at the endpoints is that

1

2
¼

Z t2

t1

dðt � t1Þdt ¼

Z 1

�1

jðtÞdðt � t1Þdt ¼ jðt1Þ . (A.12)

The first equality stems from the fact that in
R t2

t1
dðt � t1Þdt the integrand contains

only ‘‘a half of the peak’’. By the same token, for example

xðt1Þ exp �k
Z T

t1

xðt0Þdt0
� �
 �

¼ �1
2
k expð1

2
k2ðT � t1ÞÞ , (A.13)

where TXt1 and Eq. (A.5) has been used.
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