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Abstract

A model of overdamped and externally stimulated oscillators is discussed. It is shown analyti-
cally that in the uncoupled case a wide class of random distributions of parameters of individual
oscillators leads to a long-tail distribution of resting points. Interactions between the individual
oscillators destroy these long tails partially (nearest-neighbours interaction) or completely (mean
0eld interactions). As the levels of a local coupling increase, domains of similarly acting oscil-
lators are formed. The collective behaviour becomes important for large local coupling at which
the long tails are destroyed. In this case, the observed pattern of resting states is a re2ection of
both the quenched disorder and interactions between the oscillators.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Power-law, or long-tail, distributions of various quantities have been observed in
many systems, ranging from earthquakes [1], through evolving networks [2], coupled
map lattices [3], percolation [4], avalanches [5] to distributions of company income
and sizes [6], to quote just a couple of most recent results. A characteristic feature
of such systems is an occurrence of large 2uctuations with individual subsystems (or
replicates) markedly diBering from the rest. Although systems that exhibit power-law
distributions are frequently observed, there is still no universally accepted framework
which can explain the origin of the abundance and diversity of such distributions.
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It has been shown [7] that in some cases interactions among individual agents fa-
cilitate the emergence of the long tails. In other situations, a quenched disorder of
initial parameters of the respective models plays a crucial role in a future evolution
of the system. Variability in the transient behaviour, resulting from small diBerences
in initial conditions or values of critical parameters, is then re2ected in the 0nal state
[8]. We show that quenched parametric disorder can also be responsible for long-tail
distributions.
In the present paper we discuss a system of overdamped and periodically stimu-

lated particles (oscillators) whose behaviour is governed by two competing processes:
The internal dynamics drives them to their natural resting points, while the external
stimulation tries to destabilize these resting points. Such behaviour is quite common in
practice and may lead to very interesting phenomena. In our case, individual oscillators
diBer from each other and their parameters are randomly drawn from a distribution.
The oscillators may be independent (uncoupled) or may interact with each other; the
former case corresponds to a statistical ensemble of non-identical individuals who obey
identical dynamical laws.
The most interesting aspect of such a system is whether the oscillators go to non-

trivial resting points, and if so, what is the 0nal distribution of these resting points.
We show analytically that in the uncoupled case a broad class of the parameter dis-
tributions leads to a long-tail distribution of resting points: A disorder in the pa-
rameters described by distributions frequently encountered in natural systems induces
a distribution of resting points that is characterised by diverging moments. Typi-
cally, the distribution can be normalized, but even the mean is not properly de-
0ned. Moreover, we show that it is the oscillators for which the decay following
the external stimulus is slowest that are responsible for the presence of the long
tails.
If individual oscillators are coupled, collective eBects may show up. We consider

here two types of coupling: nearest neighbours and mean 0eld type. With nearest
neighbours coupling switched on, the distribution of resting points gets narrower, but
still many oscillators tend to go to very large values, and the mechanism responsible
for this is essentially the same as in the uncoupled case. When the coupling is of the
mean 0eld type, resting points of all oscillators lie in a narrow interval around the
mean.
This paper is organized as follows: In Section 2 we introduce and motivate our

model. In Section 3 we present analytical results for the uncoupled case and exam-
ples of typical resting points distributions. Numerical results for the coupled case are
presented in Section 4. Possible applications of the formalism are brie2y discussed in
Section 5, and concluding remarks are given in Section 6.

2. The model

Let us assume that a single oscillator is described by a variable y(t). The dynamics
of y(t) is split into two competing parts with very diBerent time scales. A slow process
is generated by an overdamped motion in a simple harmonic potential with a stable
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0xed point at y = 0 so that

dy
dt

=−�y : (1)

We assume that at times t = tn, n= 1; 2 : : : the motion is interrupted by a fast process.
The perturbation is strictly limited in time, and the amplitude of the modi0cation is
scaled appropriately so that the eBect of it is 0nite. The sequence {tn}∞n=1 can be either
periodic, tn = n�, or random. In this paper we consider the 0rst case only. Thus, we
assume that the dynamics of y(t) is governed by the equation

dy
dt

=−�y + �
∑
n

	(t − n�)g(y) : (2)

�¿ 0 is introduced to simplify the manipulation of the (integrated) strength of a pulse.
Between the pulses y(t) simply decays so that

y(n�−) = e−��y((n− 1)�+) : (3)

Because y(t) undergoes a discontinuous jump at the pulse, Eq. (2) must be solved with
an utmost care [9,10]. We have shown in Ref. [9] that the value after the nth pulse
y(n�+) is related to the value just before this pulse y(n�−) by an implicit relationship

∫ y(n�+)

y(n�−)

dy
g(y)

= � : (4)

Assuming that (4) can be solved, we can formally write the solution as

y(n�+) = y(n�−) + ��(y(n�−)) : (5)

In general �(y) �= g(y). (3) and (5) together yield a stroboscopic formulation of the
problem (2) (yn ≡ y(n�+)):

yn = e−��yn−1 + ��(e−��yn−1) : (6)

The 0rst term on the right-hand side of Eqs. (2) and (6) describes the decay between
pulses. Second term describes the in2uence of an external stimulation.
As the primary purpose of the in-pulse modi0cation is to destabilize the stationary

point y = 0, we assume that 9g(y)=9y¿ 0 for y→ 0. In addition, in this paper we
assume that asymptotically the force acting on the particle during the pulse does not
depend on the position of the particle so that g(y)→ const for y→∞, and the function
g(y) is a monotonic function of y. Sometimes it is more natural to de0ne the eBect of
the pulse on the level of the stroboscopic map by specifying �(y) in (5). The latter
case may occur when the impulse summarizes in an “arti0cial” time of 0nite steps
a process that can take a considerable “real” time. The dynamics during the pulse
diBers considerably from the free evolution (1) although the pulse does not need to be
short. Then, the starting point of the analysis is the stroboscopic map (6) itself rather
than an equation of motion (2). In the following we will consider fairly general forms



A. Kleczkowski, P.F. G-ora / Physica A 327 (2003) 378–398 381

of �, but speci0c results will be given for two cases: a state-independent pulse

yn = zyn−1 + � (7)

(here and in the following z ≡ e−��), which we call model A, and an asymptotically
state-independent pulse

yn = zyn−1 + �
zyn−1

1 + �zyn−1
; (8)

which we call model B. �(y) = y=(1 + �y) is well known in enzyme kinetics as a
Michaelis–Menton relationship; � is a parameter determining the transition between a
low-y and high-y behaviour of the map.
In the above, we considered a deterministic behaviour of a single particle. When

an ensemble of such particles is introduced, the properties of the replicates may vary:
The properties of the harmonic potential, �, the strength of the perturbing 0eld, �, the
frequency of the pulses, �, and the additional parameters like � may be diBerent in
diBerent oscillators. Instead of using constant (deterministic) values of the parameters,
we will use random numbers drawn from certain probability distributions. Thus, we
will consider a set of stroboscopic maps for variables yn(i) labelled by an index i,

yn(i) = z(i)yn−1(i) + ��i(z(i)yn−1(i)) ; (9)

where z(i) = exp(−�(i)�(i)) and the function �i has the same form for all i. We
allow �(i) and �(i) to vary within a population, keeping all other parameters at 0xed
(deterministic) values. Note that � is the interval between external stimuli, and yn(i)
is the value of the ith oscillator just after the nth stimulus. In the uncoupled case it is
possible that diBerent oscillators are stimulated with diBerent periods; this is equivalent
to considering an ensemble of single oscillators diBering, among others, in their stim-
ulation periods. However, when the coupling is switched on (see below), stimulation
periods of all oscillators must be equal for the sake of a model consistency. Therefore,
considering � to be a stochastic variable is meaningful only in the uncoupled case.
An obvious extension of the model is to consider coupling between individual parti-

cles. In this paper we assume that the coupling occurs during the pulse and is through
a harmonic potential connecting two individual particles. We assume that the mini-
mum of this potential corresponds to the resting case of the system without the pulsed
perturbation (commensurate phase). Thus the map (9) becomes

xn(i) ≡ z(i)yn−1(i) ; (10a)

yn(i) = xn(i) + �(i)�i(xn(i))−
∑
j

kij
Ni

(xn(i)− xn(j)) ; (10b)

where Ni is the number of oscillators for which kij �= 0. We consider two cases
of coupling: The local coupling corresponds to the nearest neighbours interaction
kij ∼ 	i; i−1 + 	i; i+1, and the global coupling in which every particle is connected to
every other particle with kij = k = const.
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3. The uncoupled case

If there is no coupling, our model reduces to a collection of maps

yn+1 = e−��yn + ��(e−��yn) ; (11)

where we have dropped the indices (i) for brevity. Parameters �¿ 0 and �¿ 0 may
diBer among the oscillators, but formal expressions for the evolution of each oscillator
are the same. To model the diBerences between individual oscillators, we assume that
� is a random number drawn from a certain distribution P�(�). We 0rst need to 0nd
a distribution of the random variable

z = e−�� : (12)

For the distribution of z we obtain

Pz(z) =
∫ ∞

0
	(e−�� − z)P�(�) d�=

∫ 1

0
	(u− z)P�

(
− ln u
�

)
du
�u

=
1
z�
P�

(
− ln z
�

)
: (13)

It is easy to verify that 0¡z¡ 1 is a necessary condition for Pz(z) not to vanish
identically.
The most interesting feature of (11) is that it can have a 0xed point, satisfying

y∗ = zy∗ + ��(zy∗) : (14)

This equation can be formally solved, y∗ = F(z). Since z is a random variable, so is
y∗. Assuming that F can be inverted, at least locally, for a distribution of the 0xed
points we obtain

P(y∗) =
∫ 1

0
	(y∗ − F(z))Pz(z) dz = 1

�z∗

(
dF
dz

∣∣∣∣
z=z∗

)−1

P�

(
− ln z∗

�

)
; (15)

where (13) has been used and z∗ = F−1(y∗).
The 0xed point y∗ can assume a large value only if there is little decay between

the pulses: y∗ can be large only if z is slightly below unity. Thus �= 1− z must be
small and positive for y∗ →∞. In this limit, (14) is equivalent to

�y∗ = ��(y∗ − �y∗) : (16)

We expand the right-hand side of (16) to the 0rst order in � and obtain

�	 ��(y∗)
y∗(1 + � d�dy |y=y∗)

: (17)

Now assume that z approaches unity as

1− z = �	 �
(y∗)s

(18)
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with s¿ 1. In order for Eq. (17) to be consistent with (18) we need to have

��(y∗)
1 + � d�dy |y=y∗

	 �
(y∗)s−1 (19)

for y∗ →∞. If �(y) has, at least asymptotically for y→∞, a form

�(y) =
S(y)

y�Q(y) + R(y)
; (20)

where S(y), Q(y), R(y) are polynomials of arbitrary degrees n, m, and l, respectively,
with n6 l6m, and 06 �¡ 1, (19) is satis0ed, provided that s = m− n+ �+ 1. In
this case �∼y−s+1 and 1 + � d�=dy behaves like O(1).

In the y∗ →∞ regime we can replace the right-hand side of (14) by its asymptotic
form

(1− z)y∗ = �
(zy∗)s−1 : (21)

We diBerentiate with respect to z and obtain

s(y∗)s−1 dy
∗

dz
= �

sz − (s− 1)
zs(1− z)2 : (22)

Now we use (18) and arrive at

dy∗

dz
=

1
s�

(y∗)s+1
(
1− �

(y∗)s

)1−s
	 (y∗)s+1

s�
: (23)

Thus
(
dF
dz

∣∣∣∣
z=z∗

)−1

≡
(
dy∗

dz

)−1

	 s�
(y∗)s+1 : (24)

Finally, using (15), (18) and (24), we conclude that in the asymptotic regime y∗ →∞
the tail of the distribution of the 0xed points behaves as

P(y∗) 	 s�
�(y∗)s+1 P�

(
�

�(y∗)s

)
: (25)

In other words, the behaviour of P�(�) at �→ 0 determines the tail of the distribution
of the 0xed points: If P�(�) goes to a non-zero value or goes to zero suOciently slow,
or even if it mildly diverges, the 0xed point distribution has a long tail.
Note that this approach is valid only if s¿ 1 and � assumes, at least asymptoti-

cally, the form (20). Should �(y) have this form for all values of y, some additional
constraints for the polynomials S(y), Q(y), R(y) must be speci0ed in order for the
map (11) to have a stable 0xed point and to be always positive provided the sequence
of {yn} starts from a nonnegative number. For instance, if �(y) takes the form

�(y) =
y

1 + �ym+�
(26)
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with m¿ 1, 06 �¡ 1, and �¿ 0, which belongs to the general class (20), the map
(11) (a) assumes only positive values provided it starts from a positive value, (b) has
a 0xed point at y(0) = 0, and (c) for � larger than the threshold value

�¿ �threshold = e�� − 1 ; (27)

has a unique stable and positive 0xed point. We are not saying, though, that (26) is
the most general form of �(y) to guarantee this.
We now apply the above formalism to our two models A, B.

3.1. Model A

With �= 1, (11) reads

yn+1 = e−��yn + � : (28)

This map has a 0xed point

y∗ =
�

1− e−��
; (29)

which is always stable and attracting. For the distribution of the 0xed points we obtain

P(y∗) =
�y∗

�(y∗ − �)(y∗)2 P�
(
−1
�
ln
(
1− �

y∗

))
; (30)

and in the limit y∗ →∞ (30) becomes

P(y∗) 	 �
�(y∗)2

P�

(
�
�y∗

)
: (31)

As we can see, the asymptotic behaviour of P(y∗) with y∗ → 0 is determined by the
behaviour of P�(�) at �→ 0+. If P�(�)∼ �# for �→ 0+ with #¿−1 (otherwise P�(�)
would not be normalizable),

P(y∗)∼ const
(y∗)2+#

; y∗ →∞ : (32)

Thus, any distribution of P�(�) that is singular for �→ 0 (−1¡#¡ 0) or has a 0nite
value at � = 0 (like a uniform or an exponential distribution) will induce a long-tail
distribution P(y∗) such that all moments of P(y∗) diverge.

3.2. Model B

With � given by (8), (11) becomes

yn+1 = e−��
(
yn +

�yn
1 + �e−��yn

)
: (33)
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Unlike the map (28), the map (33) has two 0xed points:

y(0) = 0 and y∗ =
(1 + �)e−�� − 1
�e−��(1− e−��)

: (34)

y(0) is stable only for � below the threshold value

�threshold = e�� − 1 : (35)

Conversely, y∗ is stable for all � above the threshold value (35) and unstable below. In
other words, for given values of � and �, � must be large enough for y∗ to be stable.
The same statement can also be formulated as follows: y(0) is stable (y∗ is unstable)
for

e−�� ¡
1

1 + �
; (36)

and y(0) is unstable (y∗ is stable) for �, �, � not satisfying the inequality (36).
It is easy to verify that a stable 0xed point of the map (33) is also an attracting

point: any sequence {yn}∞n=0 starting with a positive y0 will in the limit n→∞ either
go to y(0) if the inequality (36) holds or to y∗ otherwise. The situation where yn goes
to y(0) is usually termed “oscillator death”. As we shall see, the principal diBerence
between models A and B lies in the fact that in the latter case the oscillators may
“die” while in the former they always go to a positive resting point.
The probability of the oscillator death is equal to the probability of y(0) being stable:

P0 = Prob(y(0) stable) =
∫ 1=(1+�)

0
Pz(z) dz =

∫ ∞

ln(1+�)=�
P�(�) d� : (37)

Similarly, the probability of yn going to y∗, or the oscillator survival, is given by

P∗ = Prob(y∗ stable) = 1− P0 =
∫ ln(1+�)=�

0
P�(�) d� : (38)

For the distribution of the non-zero resting (0xed) points we get:

P(y∗) =
1
z∗�

�(z∗)2(1− z∗)2
(1 + �)(z∗)2 − 2z∗ + 1

P�

(
− ln z∗

�

)
; (39)

where

z∗ =

√
(1 + �− �y∗)2 + 4�y∗ − (1 + �− �y∗)

2�y∗
: (40)

Note, however, that unlike in the model A, with P(y∗) given by (39), we have∫∞
0 P(y∗) dy∗ = P∗¡ 1: As there is a possibility of oscillator death, P(y∗) is not
normalized to unity.
In order to 0nd the asymptotic behaviour of the distribution (39) let us 0rst observe

that for y∗ →∞, z∗ 	 1− �=(�y∗). Thus

P(y∗) 	 �
��(y∗)2

P�

(
�

��y∗

)
: (41)
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We can see that in the regime y∗ →∞, the 0xed points distribution (41) has exactly the
form of (32), but with � scaled by 1=�. The asymptotic expansion (32) is, consequently,
valid for the model B as well. This results from the fact that in the limit y→∞ the
model (8) reduces to the model (7) with � scaled as above.

3.3. Both � and � random

If we consider a collection of non-interacting oscillators, we may admit that replicates
diBer not only in �, but also in the times between external stimuli, � (cf. Section 2
above). Because of the symmetry between � and � in (12), everything that has been
said in the preceding subsection can be immediately translated to the case of � 0xed
and � random. Now assume that � is drawn randomly from a distribution P�(�), and � is
drawn randomly from a distribution P�(�); we further assume that they are independent.
Because both � and � are positive, their respective distributions must vanish for negative
arguments. For the distribution of z (12) we now obtain

Pz(z) =
∫ ∞

0

∫ ∞

0
d� d� 	(e−�� − z)P�(�)P�(�)

=
∫ ∞

0

d�
�z
P�(�)P�

(
− ln z
�

)
: (42)

It may appear that the above formula is not symmetric in P� and P�. This lack of
symmetry is, in fact, super0cial: a simple change of variables in (42) interchanges the
roles of P� and P�. Note that unlike in the case of only one of �, � being random, Pz(z)
given by (42) may be singular at z→ 1 even though both P� and P� are nonsingular.
In the model A, the distribution of the 0xed points is given by

P(y∗) =
�

(y∗)2
Pz

(
1− �

y∗

)
: (43)

Its asymptotic behaviour is determined by the behaviour of Pz(z) at z→ 1.
In the model B, for the probabilities of the oscillator death and survival we get,

respectively,

P0 =
∫ 1=(1+�)

0
dzPz(z) =

∫ ∞

0
d� P�(�)

∫ ∞

�−1 ln(1+�)
d� P�(�) ; (44)

P∗ =
∫ ∞

0
d� P�(�)

∫ �−1 ln(1+�)

0
d� P�(�) : (45)

The last equality results from the normalization of P� and P�. For the distribution of
non-zero 0xed points we obtain

P(y∗) =
�(z∗)2(1− z∗)2

(1 + �)(z∗)2 − 2z∗ + 1
Pz(z∗) (46)
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with z∗ de0ned by (40). Once again
∫∞
0 P(y∗) dy∗=P∗¡ 1. The asymptotic behaviour

of P(y∗) is given by

P(y∗)∼ �
�(y∗)2

Pz

(
1− �

�y∗

)
; y∗ →∞ ; (47)

which is again of the form (43) with � scaled by 1=�.
As we have seen, the maps A and B diBer mainly in that the map A has only one

0xed point, and the map B has two 0xed points, one of which corresponds to the
oscillator death. The asymptotic (y∗ →∞) properties of both maps are identical. We
stress the fact that the long tails in the distribution of non-zero 0xed points result from
the behaviour of Pz(z) at z→ 1, which in turn corresponds in either �, or �, or both
going to zero. It is, therefore, not the long tails in P� or P� that lead to the long tails in
P(y∗); rather than that, very regular and seen in many real-life applications behaviour
of P�, P� at zero leads to long tails in P(y∗). Examples presented in Table 1 show
that distributions of parameters expected in many natural systems lead to distributions
with divergent moments; note that in most cases the variance and even the mean of
the resulting distribution are not properly de0ned. The second and third columns of
this Table show what types of distributions of � and � lead to a particular tail in the
distribution of the resting points shown in the 0rst column.

3.4. Variation in other parameters

Variation in � does not induce any “long-tail” distribution of P(y∗), providing P�(�)
does not exhibit such a behaviour. The arguments of the preceding subsections can be
repeated to obtain

P(y∗) =
(
dF
d�

)−1

P(�∗) ; (48)

where y∗=F(�∗) (compare with (15)). DiBerentiating (14) with respect to � we obtain

P(y∗) =
(1− z)− �(d�=dy)|y=zF(�∗)

�(zF)
P(�∗) : (49)

In the large y∗ limit �→ const for both models A and B, so that

P(y∗)∼P(�∗); y∗ →∞ : (50)

This shows that the tails of the distribution of y∗ follow the asymptotic behaviour of
�.
As we have seen above, the main diBerence in the asymptotic behaviour between

model A and model B is the scaling of � by a factor �−1. We can use this observation to
extend the result (50) to the case of a quenched disorder in �. Thus, for any distribution
P�(�) which is 0nite or mildly diverging, there will be a “long-tail” distribution of
the resting points y∗, namely P(y∗)∼ (y∗)−2, due to a change in variables in (50).
However, in many practical applications �−1 (or �=�) rather than � is likely to have a
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Table 1
Tails of the distribution of 0xed points P(y∗) resulting from various distributions of � and �. Due to
symmetry, entries can be interchanged between the second and third columns without aBecting the 0rst one.
“Fixed” means that the corresponding parameter has a constant value across the population

Tail of P(y∗) � distribution � distribution

ln y∗

(y∗)1+�
b�

%(�)
x−1+�e−bx

c�

%(�)
y−1+�e−cy

0¡�¡ 1

1
(y∗)1+�

b�

%(�)
x−1+�e−bx Fixed

0¡�¡ 1

b�

%(�)
x−1+�e−bx Uniform

0¡�¡ 1

bm+1

%(m + 1)
xme−bx

cn+1

%(n + 1)
yne−cy

0¡� = min(m; n) + 1¡ 1; m �= n

lny∗

(y∗)2
Uniform Uniform

Exponential Uniform

Exponential Exponential

1
(y∗)2

Uniform Fixed

Exponential Fixed

bm+1

%(m + 1)
xme−bx Uniform

m¿ 0

lny∗

(y∗)2+m
bm+1

%(m + 1)
xme−bx

cm+1

%(m + 1)
yme−cy

m¿ 0

1
(y∗)2+m

bm+1

%(m + 1)
xme−bx Fixed

m¿ 0

bp+1

%(p + 1)
xpe−bx

cq+1

%(q + 1)
yqe−cy

m = min(p; q)¿ 0
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physical interpretation, and any regular distribution of �−1 yields a regular distribution
of the resting points. In the rest of the paper we concentrate on the quenched disorder
in �.

4. Numerical results for the coupled case

In this Section we consider the eBects of interactions between individual oscillators
on the distribution of the resting points. As we have mentioned, we assume that in-
teractions occur during or immediately after the pulses, and we start with the nearest
neighbour coupling. In this case Eqns. (10) take the form

yn(i) = z(i)yn−1(i) + �(i)�(z(i)yn−1(i))

− k
2
(2z(i)yn−1(i)− z(i − 1)yn−1(i − 1)− z(i + 1)yn−1(i + 1)) : (51)

Here the index i numbers the oscillators and k is the coupling constant. In model A
the above equation can be written as

Ỹ n = AỸ n−1 + �̃ ; (52)

where A is the matrix resulting from (51), Ỹ n = [yn(1); yn(2); : : : ; yn(N )]T and �̃ =
�[1; 1; : : : ; 1]T. The 0xed point can be found by solving

(1− A)Ỹ ∗ = �̃ : (53)

The matrix 1− A is a tridiagonal matrix with elements

(1− A)i; i = 1− (1− k)z(i) ; (54a)

(1− A)i; i−1 =−k
2
z(i − 1) ; (54b)

(1− A)i; i+1 =−k
2
z(i + 1) : (54c)

Eq. (53) has a unique solution if the matrix 1 − A is invertible. However, only
solutions with all y∗(i)¿ 0 are physically meaningful, and this can be satis0ed if the
spectrum of 1−A lies in the right half-plane. 1−A is a random matrix, possibly very
large, and the task of 0nding its spectrum is very demanding despite a simple algebraic
structure of this matrix. Nevertheless, it is easy to 0nd a simple condition which if
ful0lled, guarantees that the spectrum lies in the right half-plane. Speci0cally, by the
Gershgorin theorem [11] the real part of the spectrum of this matrix is bounded from
below by mini {ui}, where

ui = 1− (1− 2k)z(i)− k(z(i − 1) + z(i + 1)) : (55)

If ∀i : ui ¿ 0, also mini ui ¿ 0, and it is straightforward to verify that 06 k ¡ 1 is a
necessary and suOcient condition for ui ¿ 0 to hold for all possible values of z—this is
thus the range of the coupling constant in which physically meaningful solutions exist.
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Fig. 1. Distribution of 0xed points of the map (52). Parameter � is drawn uniformly from the interval [0; 1].
Lines plotted correspond, back to front, to k=0, 2×10−4, 2×10−3, 2×10−2, 0:2, 0:4, 0:6, 0:8, respectively.
Number of oscillators N = 5× 105, � = 1.

Note that if z(i) = z(i − 1) = z(i + 1) = 1, ui = 0, but as z(i)→ 1 only asymptotically,
z(i) can actually equal unity with zero probability; on the other hand, for k¿ 1, ui
may equal zero even if none of z(i)=1. There is still a possibility that for a particular
realization of the system all 0xed points are positive (physical) even for k¿ 1; we
have just shown that for 0¡k¡ 1 the 0xed points must be positive in all realizations.
Further analysis has been performed numerically. Instead of solving (53), we have

directly run the map (52). The number of oscillators was N = 5 × 105 and periodic
boundary conditions have been used (for a large system the result diBers only slightly
from that with free boundaries). To make sure that all oscillators settled on their resting
points, 103 iterations have been performed, and the resulting distribution has been
averaged over 50 realizations. Fig. 1 shows histograms of the resting points distributions
resulting from �’s uniformly distributed in [0; +] with += 1. If the coupling constant
vanishes, a clear 1=y2 tail is seen (a sharp drop for very large y is an artefact resulting
from the sample being 0nite, as with the distribution of � including 0 the distribution
of y should extend to ∞). If the coupling is switched on, regions with power-law
scaling persist for very weak couplings, but for k as little as 0:2 they disappear and the
resting points cluster in a narrow band. Similar results have been obtained for diBerent
values of + (not plotted) and for �’s drawn from diBerent distributions. Fig. 2 show
results for P�(�) = �e−�—the only important diBerence is that the scaling exponent is
now −3, as expected. In each case studied the system became numerically unstable as
soon as k approached unity, which signals the onset of unphysical behaviour.
For the model B with coupling, or the map

yn(i) = yn−1(i) + �
z(i)yn−1(i)

1 + �z(i)yn−1(i)
− k

2
(2z(i)yn−1(i)

− z(i − 1)yn−1(i − 1)− z(i + 1)yn−1(i + 1)) : (56)
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Fig. 2. Same as Fig. 1 but with � drawn according to P�(�) = �e−�.
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Fig. 3. Distribution of 0xed points of the map (56). Parameter � is drawn uniformly from the interval [0; 1].
Lines plotted correspond, back to front, to k=0, 2×10−4, 2×10−3, 2×10−2, 0:2, 0:4, 0:6, 0:8, respectively.
Number of oscillators N = 5× 105, � = 1, � = 1.

no analytical results have been found. We have performed numerical simulations un-
der the same conditions as for the model A, and the results are strikingly similar
(cf. Fig. 3). The only diBerence is that while for the map (51) with �’s uniformly dis-
tributed a clear maximum in P(y∗) develops for y∗¿ 1, there is no such phenomenon
in the map (56), which signals that a signi0cant portion of the oscillators “die” or go
to y(0) = 0. Again, the system became numerically unstable for k 	 1. These results
show that there is not much diBerence between the models A and B even with the
coupling switched on. In both models the coupling of diBusive type tries to smooth
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out diBerences between the replicates and if the coupling is large enough, it brings all
the oscillators to a narrow band in the y space.
We now turn to the mean-0eld coupling. The coupled maps now become

yn(i) = z(i)yn−1(i) + �− k
N − 1

N∑
j=1

[z(i)yn−1(i)− z(j)yn−1(j)] ; (57)

for the model A, and

yn(i) = z(i)yn−1(i) + �
z(i)yn−1(i)

1 + �z(i)yn−1(i)

− k
N − 1

N∑
j=1

[z(i)yn−1(i)− z(j)yn−1(j)] ; (58)

for the model B, respectively. The equation satis0ed by the 0xed points of (57) has
the form (53) with

(1− A)i; i = 1− (1− k)z(i) ; (59a)

(1− A)i; j =− k
N − 1

z(j); j �= i : (59b)

Note that A no longer is tridiagonal. By an argument similar as above, we can show
that for N�1 the spectrum of 1 − A lies in the right half-plane, or that physically
meaningful solutions exist, for 06 k ¡ 1, exactly like in the previously discussed case.
By numerically simulating the map (57) under conditions identical to those used above,
we get results analogous to those of the map with the nearest neighbours coupling: For
small couplings there are regions in which the power scaling persists. These regions
disappear as the coupling increases and 0xed points of the map (57) become con0ned
to a narrow band, Fig. 4. However, while distributions obtained with the map (52)
approached zero gradually, with quite pronounced 2uctuations for large values of y∗,
distributions obtained with the map (57) have sharp edges and are much narrower that
in the previous case. Also the general shapes of the distributions diBer (c.f. Fig. 5). This
is a consequence of the fact that nearest neighbours coupling tries to smooth the system
locally, and therefore aBects mostly the points that deviate from their neighbours. In
contrast, the mean 0eld coupling has a global character and therefore will aBect all
points to the same extent.
Results with diBerent values of + or with diBerent P�(�) are also analogous to those

discussed previously.

4.1. Cluster distribution and domain forming

When the coupling is switched on, the oscillators in a similar resting state can be
localised in clusters in space (with a one-dimensional space represented here by the
index i). In order to quantify the clustering, we de0ne a domain as a compact set of
oscillators for which the value of y(i) exceeds an arbitrary threshold, yc. Thus, inside
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Fig. 4. Distribution of 0xed points of the map (57). Parameter � is drawn uniformly from the interval [0; 1].
Lines plotted correspond, back to front, to k=0, 2×10−4, 2×10−3, 2×10−2, 0:2, 0:4, 0:6, 0:8, respectively.
Number of oscillators N = 5× 105, � = 1.
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Fig. 5. Comparison of 0xed point distributions in model A with mean 0eld (heavy line) and nearest neigh-
bours (thin line) coupling. Parameter � is drawn uniformly from the interval [0; 1]. In each case number of
oscillators N = 5× 105, � = 1, the coupling constant k = 0:8.

a cluster at least one of the neighbours of an oscillator in a “high” state (y(i)¿yc)
is also in the same state.
The pattern of alternating “high” and “low” domains is generated by two basic

mechanisms. Simply thresholding a completely random distribution of resting states
generates apparent clustering that should be, however, distinguished from an additional
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Fig. 6. Normalised distributions of cluster sizes in a one-dimensional realisation of the model with a global
(a) and local (b) coupling. Note the logarithmic scale for P(s). The width of the lines denotes varying levels
of coupling from k = 0 (thick line) through k = 0:025, 0:2 to 0:5 (thin line). 106 oscillators, yc = 8, � = 5,
� = 1.

order introduced by coupling between neighbouring oscillators. In order to study the
dependence of domain formation on coupling, these two factors must be separated.
We characterise the distribution of “high” and “low” oscillators by calculating the

resting state of the array of oscillators for a given distribution of �s and subsequently
identifying oscillators belonging to “high” (“low”) clusters. Fig. 6 shows selected
examples of cluster size distributions for diBerent values of coupling. The distribu-
tions are approximately exponential for the whole range of a coupling constant. The
probability of observing a cluster with a size s is thus given by P(s)∼ exp(−s=,).
A characteristic size of a cluster, ,, can then be estimated from the simulated data as
a slope of the straight-line relationship between log(P(s)) and s, as in Fig. 6. , can
also be interpreted as an average cluster size. Simulations presented here have been
performed for the model B.
In the case when there is no coupling, cluster size distribution re2ects directly the

quenched disorder in the parameters. In this case, , can be related to the average
density of oscillators in the “high” state in the following way: Assuming no correla-
tion between neighbouring oscillators, the probability of having a “high” oscillator next
to a given oscillator equals the proportion of “high” oscillators to the total number,
p ≡ Nhigh=Ntotal. If the “high”/“low” states are allocated randomly and independently,
the probability of having s “high” oscillators in a cluster is ps. Thus, the probability
of creating a cluster of exactly size s is equal to ps(1− p)2 (the factor (1− p)2 cor-
responding to having two “low” oscillators at two ends). Reparametrising this formula
we obtain exp(−s=,0) = ps(1− p)2, so that the characteristic length in the uncoupled
case, ,0 is given by ,−1

0 =−log(p).
By comparing the actual (0tted) values of , to ,0 we can quantify the eBects of the

coupling on the formation of the domains. In particular, large values of , (or ,=,0�1)
correspond to high levels of spatial correlation between the oscillators, signi0cantly ex-
ceeding potential “random” correlations resulting purely from the underlying quenched
disorder.
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Fig. 7 shows the dependence of ,=,0 on the coupling constant k. The ratio is in-
dependent of the threshold in a wide range of yc, providing yc falls within a support
of a distribution of the resting states (see e.g. Fig. 5). For any value of the global
coupling and for low values of the local coupling, the distribution of the resting states
is dominated by the diBerences between oscillators rather than non-local eBects, and
therefore is completely random, ,=,0 	 1. Under this assumptions, the clustering is
generated purely by the underlying quenched disorder.
For higher values of the local coupling, domains of highly correlated oscillators are

formed by the interactions and therefore ,=,0�1, see Fig. 7. Even then, however,
the correlation length is relatively small (only twice as large as for a purely random
pattern), and so the clustering pattern is still dominated by the quenched disorder rather
than by the coupling. The characteristic correlation length for the local coupling appears
to follow a power law (see also an inset in the 0gure).

5. Possible applications

Although the primary purpose of the present paper is to discuss the mathematical
formalism involved, in this section we brie2y mention some of its possible
applications.
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Systems discussed in this paper come out as natural models for many biological and
ecological processes. Suppose for example that y(t) gives the density (numbers) of
parasites within an individual. New parasites are introduced at (almost) regular intervals
through eating or drinking contaminated water—these correspond to the external stimuli
in our model. Between the intakes, parasites are removed from the organism and so
their number decays. The resting point distributions from Sections 3 and 4 now describe
the distribution of the parasites within individuals drawn from a population. Results
presented here might be thus helpful in understanding overdispersion noted in parasite
burden in some human or animal diseases [12]. The same model may also describe
dynamics of a seed-bank for an annual plan population in the presence of environmental
variability and dispersal. A slight modi0cation of the model leads to a proper description
of a competition between two or more species. These issues will be discussed in detail
elsewhere [13].
Our model has also a very simple yet interesting interpretation in terms of econo-

physics [14]. Consider a group of people in receipt of regular payments � (salary or
bene0ts) which are uniform across the population and arriving at time t = n� (say,
monthly). The funds are then spent throughout the month, at a rate proportional to the
current account balance. The latter assumption can be relaxed as long there is a mono-
tonic relationship of the balance before the payment at the end of the month to the bal-
ance at the beginning of the same month (after the payment). The rate � varies between
people according to some simple and bounded probability distribution. The resulting
distribution of wealth (characterised by a balance yn after the payment each month) is
highly skewed with the tail described by a power law y−2. High levels of dispersion
are easy to understand as individuals who spent particularly slowly are able to accumu-
late funds relatively quickly. We also note that in order to increase an overall wealth
of a society, people should be encouraged to spent less (decrease in �) rather than be
oBered a larger income (increase in �). The coupling (wealth transfer), proportional to
the diBerence in savings limits the excesses of the wealth accumulation, but initially af-
fects only the tails of the distribution. In real applications there are more nonlinearities
as agents with more funds can invest proportionally more and therefore obtain a higher
return.
It is also perhaps interesting to note that maps similar to ours have been studied

in the context of the Frenkel–Kontorova model [15], to which our model bears some
formal similarity.

6. Discussion

We have shown that for a wide class of maps the disorder in some parameters
may lead to long-tail distributions of the 0xed points. Such behaviour can be ex-
pected for many distributions of parameters believed to occur in many natural sys-
tems: uniform, Poisson, exponential, -2 and many others that do not vanish fast
enough for small arguments. It is not tails of the underlying distributions of param-
eters that lead to the long tails in the distributions of the 0xed points; rather than
that, distributions that may diBer wildly in their tails but behave similarly for small
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arguments, lead to identical tails in the distribution of the 0xed points. A univer-
sality of a power law that is not a part of the model construction is an interesting
feature. On the level of mathematical formalism used, this universality is a conse-
quence of a nonlinear change of variables needed to transform our problem from one
stochastic variable, �, to another variable, z = e−��. It is interesting to note that a
similar approach has been recently used in Ref. [16], where long tails in temporal
correlations also resulted from a nonlinear transformation between various stochastic
variables.
We have also shown that two models discussed here in detail, (7) and (8), which

diBer for small arguments but share a similar behaviour in the asymptotic regime, lead
to similar distributions of the 0xed point. The principal diBerence between these models
is that the latter has two 0xed points and there is a probability that some oscillators
will “die”, or go to the trivial 0xed point y(0) = 0. All qualitative results valid for (8)
are also valid for (26).
In the coupled case, for model A we have analytically established a range of admissi-

ble couplings, that is to say, the couplings that lead to physically meaningful solutions.
In model B our numerical results strongly suggest that admissible coupling are the same
as in model A. This once more con0rms that there is little diBerence between models
A and B. The interactions destroy the power law scaling seen in the uncoupled case.
These results are in contrast with those of Ref. [7], where interactions facilitated the
emergence of long-tail distributions, but this diBerence can be explained by two factors:
First, there was no external stimulation in Ref. [7], and the external stimulation plays a
crucial role in the dynamics of the present system. Second, Biham et al. have used mul-
tiplicative coupling of individual agents with the mean, while in our case the coupling
is of diBusive type and tends to smooth out any diBerences between the individual
oscillators.
We also looked at formation of domains of oscillators by introducing a threshold

into a distribution of the 0xed points of the oscillators. We introduced a method of
spatial pattern analysis that can distinguish between an apparent clustering re2ecting
the randomness of the quenched disorder and the eBects of interactions between the
oscillators. Small levels of coupling (either global or local) aBect the peaks of the
resting states within the clusters, but the distribution of cluster sizes is largely un-
aBected by the coupling and follows an exponential (Poisson) distribution. For the
global coupling, this holds for all levels of coupling. With the strength of the local
coupling increasing, the power-law distribution of resting states within “high” clus-
ters is 0rst distorted and then disappears, although the cluster sizes are still largely
random. For still higher values of local coupling, large domains start to appear, but
at this point the power-law distribution of the peaks is already destroyed (compare
the values of coupling in Fig. 1 and Fig. 7). The distribution and dynamics
of clusters deserve a separate study, and we will address it in future
papers.
Finally, we note that the nearest neighbours coupling admits a greater degree of dis-

order than coupling of the mean 0eld type. It will be interesting to see how additional
interactions, between second, third etc. neighbours, or between oscillators coupled ran-
domly, change the domains by introducing additional smoothing.
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