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I am neither a man of skills nor a man of knowledge

but only a seeker.

Albert Einstein
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Chapter 7

Brownian Motion

7.1 Einstein’s concept of Brownian motion

This and the following Chapters extend the mate-
rial presented in Chapter 2, Section 2.5, where we
presented already different approaches to stochastic
processes.
In the case of Brownian motion all the approaches
work equally well and are essentially equivalent, how-
ever, each of them has its own area of application and
its own domain of validity outside of the case of dif-
fusion processes: they apply to different cases of the
so-called anomalous diffusion as well. Therefore we
do not hesitate to discuss the same issue from differ-
ent points of view and to present different derivations
of the same results. Such a deep understanding al-
ways pays off.

Motivated mostly by description of Brownian mo-
tion several different but strongly interconnected ap-
proaches were devised for the description of phenom-

3
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4 Brownian Motion

ena where the stochastic nature of systems plays a
considerable role. The ingenious microscopic deriva-
tion of the diffusion equation by A. Einstein (which
contained, in a nutshell, several different approaches)
and the discussion by P. Langevin marked the two
main ways of description of fluctuation phenomena,
one based on the discussion of the deterministic equa-
tions for the probability densities, another one based
on the discussion of a particular stochastic realiza-
tions of the process. These approaches, refined both
from physical and from the mathematically point of
view build now the main instrument of description of
both equilibrium and nonequilibrium processes on a
mesoscopic scale.

Einstein, in his analysis of the situation has con-
nected the motion of suspended particles with diffu-
sion and showed that this diffusive behavior follows
from the three postulates. First, the particles con-
sidered are assumed not to interact with each other:
their trajectories are independent. Second, one as-
sumes that the motion of the particles lacks long-
time memory: one can choose such a time interval
τ , that the displacements of the particle during two
subsequent intervals are independent. Third, the dis-
tribution of a particle’s displacements s during the
subsequent time intervals φ(s) possesses at least two
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lower moments. Moreover, for the force-free situation
φ(s) is symmetric. The displacement of the particle
can thus be considered as a result of many tiny, in-
dependent, equally distributed steps.

The further line of his reasoning is very close to
what we will call now a Kramers-Moyal expansion,
see Chapter 2. For the simplicity, following Einstein,
we analyze a one-dimensional problem:

The concentration of particles n in vicinity of point
x is proportional to the probability density f(x, t)
to find one particle at this point. Comparing the
probabilities at time τ and at time t+ τ we get (due
to the independence of the new displacement of the
previous position and to the fact that x(t + τ ) =
x(t) + s)

f(x, t + τ ) =
∫

f(x− s, t)φ(s)ds. (7.1)

Now, since both τ and s are both small compared
to the time- and space-scales of interest, one can ex-
pand the function f in Taylor series on both sides of
the equation. On the left-hand side it is enough to
expand up to the first order in t, on the right-hand
side we need the second order in s. We get:

f+





∂f

∂t



 τ+... = f+





∂f

∂x





∫

sφ(s)ds+
1

2







∂2

∂x2
f







∫

s2φ(s)ds+... .

(7.2)
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The integral
∫

sφ(s)ds vanishes due to the symmetry.
In the lowest order we thus get:

∂f

∂t
=
σ2

2τ

∂2

∂x2
f, (7.3)

where σ2 =
∫

s2φ(s)ds. Here we recognize a diffusion
equation, and associate σ2/2τ with the diffusion co-
efficient D. The solution of Eq.(7.3) is, clearly, a
Gaussian

f(x, t) =
1√

4πDt
exp





− x2

4Dt





 , (7.4)

so that the root-mean-square displacement of the
particle along the x-axis would be λx =

√

〈x2〉 =√
2Dt, which gives the direct way of experimental

measurement of D.
The derivation of the diffusion equation by A. Ein-

stein was the very first step of statistical physics
into the new domain of non-equilibrium phenomena.
Note however, that it was not the derivation of the
diffusion equation, which seemed to Einstein to be
the main topic of this work: The discussion of the
diffusion of particles in the solution gave the way
to determine the Avogadro number NA through the
macroscopic measurements on large particles, the mea-
surement performed by Perrin some 3 years later.
Such measurements were necessary to provide solid
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basement for atomistic theory of matter. The corre-
sponding theoretical considerations were summarized
in Einstein’s PhD thesis ”Eine neue Bestimmung der
Moleküldimensionen” (New method for determina-
tion of molecular sizes) presented on April 30, 1906
to the University of Zürich.

7.2 The Langevin equation: theme and variations

7.2.1 The Langevin equation

In his article published in Comptes Rendus in 1908
Paul Langevin proposed another approach to descrip-
tion of Brownian motion, than one of Einstein and
Smoluchowski. This one was assumed to be ”in-
finitely simpler” than the Einstein’s one and seemed
to be based only on the equipartition theorem. Here
we repeat the main argumentation of the original
work (Langevin, 1908).

Let us consider the motion of the Brownian particle
in fluid. On the average this motion is governed by
the Newtonian dynamics under friction, mv̇ = −γv,
where γ is the friction coefficient (for a macroscopic
spherical particle this friction follows the Stokes law,
so that γ = 6πηr, where r is the particle’s radius).
However, this equation, leading to the continuous
decay of the particle’s velocity, holds only on the
average. In order to describe the erratic motion of
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the particle, resulting from random, uncompensated
impacts of the molecules of surrounding fluid, we
have to introduce additional, fluctuating force ξ(t)
(”noise”). We assume only that this force has zero
mean (so that it does not lead to the overall motion
on average), and that it is independent on x, which
mirrors the homogeneity of the whole system. We
thus write

mv̇ = −γv + ξ(t). (7.5)

Our first task will be to find the mean squared
displacement of the particle. Let us now multiply
both sides of Eq.(7.5) by x(t) and use the evident
fact that xv̇ = xẍ = d

dt
(xẋ) − ẋ2. We thus get

m
d

dt
(xẋ) = mẋ2 − γxẋ + xξ. (7.6)

Let us now average this equation over the realizations
of the process. Dividing both parts of the equation
by m we get:

d

dt
〈xẋ〉 = − γ

m
〈xẋ〉 +

〈

ẋ2
〉

+
1

m
〈xξ〉 . (7.7)

The last mean value vanishes due to the indepen-
dence of x and ξ and to the fact that the mean value
of ξ is zero: 〈xξ〉 = 〈x〉 〈ξ〉 = 0. Moreover, due to
the equipartition theorem, the mean squared veloc-
ity of the particle in our one-dimensional model is so
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that m
〈

ẋ2
〉

/2 = kT/2, i.e.

〈

ẋ2
〉

=
kT

m
. (7.8)

Thus, for the mean 〈xẋ〉 one has

d

dt
〈xẋ〉 = − γ

m
〈xẋ〉 +

kT

m
. (7.9)

Let us now assume that the initial particle’s position
is taken to be at the origin of coordinates. Then
〈x(0)ẋ(0)〉 = 0. Under this initial condition Eq.(7.9)
can easily be solved and delivers

〈x(t)ẋ(t)〉 =
∫ t

0
exp

[

− γ

m
(t− t′)

] kT

m
dt′ =

kT

γ

[

1 − exp
(

− γ

m
t
)]

.

(7.10)
As a next step, we note that 〈x(t)ẋ(t)〉 = 1

2
d
dt

〈

x2(t)
〉

,
so that the mean squared displacement of the par-
ticle can be found by an additional integration of
Eq.(7.10):

〈

x2(t)
〉

= 2
∫ t

0
〈x(t′)ẋ(t′)〉 dt′ = 2

kT

γ



t− m

γ

(

1 − exp
(

− γ

m
t
))



 .

(7.11)
For large time the leading term corresponds to

〈

x2(t)
〉

= 2
kT

γ
t, (7.12)
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i.e. to the diffusive behavior with the diffusion coef-
ficient D = kT/γ.

7.2.2 Thermalization of the velocity: The fluctuation-dissipation

theorem

From our previous discussion it may seem that no
properties of the force except for its symmetry are
of importance. However, the assumption of the ther-
malization of the velocity, so that

〈

v2
〉

= kT/m,
poses rather tight conditions on the behavior of the
force. In order to show this let us examine the Langevin
equation more carefully.

From the Langevin equation we immediately have:

v̇ = − γ

m
v +

1

m
ξ(t). (7.13)

This is the simplest linear differential equation of the
form we have already seen in the previous paragraph,
so that its solution can be put down immediately:

v(t) = v(0) exp
(

− γ

m
t
)

+
1

m

∫ t

0
dt′ξ(t−t′) exp

[

− γ

m
t′
]

.

(7.14)
Now it is easy to calculate the velocity squared:

v2(t) = v2(0) exp
(

−2
γ

m
t
)

+
2

m
v(0) exp

(

− γ

m
t
)

∫ t

0
dt′ξ(t− t′) exp

[

− γ

m
t′
]

+

+







1

m

∫ t

0
dt′ξ(t− t′) exp

[

− γ

m
t′
]







2

. (7.15)
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Averaging this expression, we see that the first term
is not changed since it is deterministic, the second one
gives on the average zero since the averaging is the
linear operation and as those can be permuted with
the integration, and since moreover 〈ξ(t− t′)〉 = 0.
To average the third term we first rewrite the square
of the integral as a repeated integral,

[

∫ t

0
ξ(t− t′) exp

(

− γ

m
t′
)]2

= (7.16)
[

∫ t

0
dt′ξ(t− t′) exp

(

− γ

m
t′
)] [

∫ t

0
dt′′ξ(t− t′′) exp

(

− γ

m
t′′
)]

=
∫ t

0

∫ t

0
dt′dt′′ exp

(

− γ

m
t′
)

exp
(

− γ

m
t′′
)

ξ(t− t′)ξ(t− t′′).

Performing now the averaging we get:

v2(t) = v2(0) exp
(

−2
γ

m
t
)

(7.17)

+
1

m2

∫ t

0

∫ t

0
dt′dt′′ exp

[

− γ

m
(t′ + t′′)

]

〈ξ(t− t′)ξ(t− t′′)〉 .
If we now assume the noise to be a stationary random
process, then its correlation function depends only on
the difference of the arguments, 〈ξ(t− t′)ξ(t− t′′)〉 =
C(t′ − t′′). Thus, we can put down

v2(t) = v2(0) exp
(

−2
γ

m
t
)

(7.18)

+
1

m2

∫ t

0

∫ t

0
dt′dt′′ exp

[

− γ

m
(t′ + t′′)

]

C(t′ − t′′).

Let us now consider the thermalization process. If
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the overall integration time is much larger than both
the correlation time of the force and the character-
istic time m/γ of decay of deterministic motion, the
limits of integration can be extended to infinity. We
can now change to the sum and to the difference vari-
ables: s = (t′ + t′′) /2 and q = (t′− t′′) (the absolute
value of the Jakobian of this transformation is 1). If
the correlation function decays fast compared to the
deterministic motion, τc � m/γ, the integrations in
s and q may be considered as independent so that
〈

v2(t)
〉

' v2(0) exp
(

−2
γ

m
t
)

+
2

m2

∫ ∞
0
ds exp

[

−2
γ

m
(s)

]

∫ ∞
0
C(q)dq =

= v2(0) exp
(

−2
γ

m
t
)

+
C

mγ
. (7.19)

where C =
∫∞
0 C(t)dt is the integral of the correla-

tion function C(t′− t′′). The first term decays expo-
nentially with time, so that under thermalization we
have

〈

v2
〉

eq
=

C

mγ
. (7.20)

Comparing this result with the equipartition condi-
tion

〈

v2
〉

eq = kT/m we see that C = kTγ. This
result connecting the behavior of the random force
to the friction coefficient and thus to the dissipa-
tion in the deterministic motion is a special case of
the fluctuation-dissipation theorem. Using the previ-
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ously established connection between γ and the dif-
fusion coefficient D we get C = Dγ2.

The velocity will thermalize and the Langevin ap-
proach will be valid if the integral

∫∞
0 C(t)dt con-

verges. This is violated if the correlation function
of the force decays so slow that

∫∞
0 C(t)dt diverges.

The overall behavior in this case can be vastly differ-
ent from one described above and could correspond
to the so-called anomalous diffusion, see Section 7.6.

7.2.3 The properties of the noise

Dividing the overall interaction between the Brown-
ian particle and the medium into a deterministic part
(friction) and a random part (noise), we already dis-
pensed from the idea to fully describe the system’s
dynamics on very short time scales: both the fric-
tion and the random force stem essentially from the
molecular impacts and follow very complex dynam-
ics. Looking at the situation at very short time scales
we would not recognize any constant friction force.
The situation gets very clear when we consider, for
example, a particle in a rarefied medium, say, a dust
particle in the air. In this case it is clear that the in-
teraction between the particle and the air molecules
corresponds to a sequence of separated, very short,
practically punctual events of momentum transfer
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(impacts), and the periods of practically no interac-
tion. The velocities of the gas particles are governed
by the Maxwell distribution, so that the components
of their momenta are Gaussian. In order to sepa-
rate between that deterministic and the stochastic
component we need to perform a kind of temporal
pre-averaging over some physically small time inter-
val ∆t. The the friction force appears on the average
due to the fact that the particle moving, say, with
the positive velocity in x-direction meets more gas
molecules hitting it from the right (against the its mo-
tion direction) than from the left. The velocity of our
particle is finite, and momentum transferred in each
impact has the finite second moment. The overall
change of the particle’s momentum ∆p =

∑

i ∆p(ti)
where ti is the instant of i-th impact. The mean force
is then f = ∆p/∆t and equals to the mean momen-
tum transfer per impact. Subtracting this mean from
the actual value of ∆p we get the noise. Note that
since ∆p is a sum of many (presumably) indepen-
dent random variables possessing the finite second
moment, then distribution of ∆p at longer times (af-
ter many impacts) will tend to a Gaussian, as a con-
sequence of the Central Limit Theorem. Thus, the
distribution of the transferred momentum during the
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time ∆t reads

P (∆p) ' 1
√

2πσ(∆t)
exp









−(∆p− f∆t)2

2σ2(∆t)









.

(7.21)
Here f is the deterministic force (which was taken
f = −γv in our previous considerations) and δp =
∆p− f∆t is the random component of the momen-
tum change during the time ∆t. Assuming this change
to be due to the random force ξ, we get δp =

∫ t+∆t
t ξ(t′)dt′.

Then the dispersion σ2(∆t) can be connected with
the correlation properties of the noise. Since the noise
is assumed to be homogeneous in time we can take
t = 0 without losing the generality. Using the iden-
tity

δp2(t) =
[

∫ ∆t

0
ξ(t′)dt′

]2
=

∫ ∆t

0
ξ(t′)dt′ ·

∫ ∆t

0
ξ(t′′)dt′′ =(7.22)

=
∫ ∆t

0

∫ ∆t

0
ξ(t′)ξ(t′′)dt′dt′′

and averaging this result over the realizations of the
noise we get

σ2(∆t) =
〈

δp2(∆t)
〉

=
∫ ∆t

0

∫ ∆t

0
〈ξ(t′)ξ(t′′)〉 dt′dt′′.

(7.23)
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Assuming that 〈ξ(t′)ξ(t′′)〉 = C(|t′ − t′′|) and chang-
ing to a new variable q = t′ − t′′ we get

σ2(∆t) =
∫ ∆t

0
dt′

∫ t′

−t′ C(|q|)dq = 2
∫ ∆t

0
dt′

∫ t′

0
C(q)dq.

(7.24)
Assume now that

∫ t′
0 C(|q|)dq converges so fast that

2
∫ ∆t

0
dt′

∫ t′

0
C(q)dq ' 2

∫ ∆t

0
dt′

∫ ∞
0
C(q)dq = 2C∆t

(7.25)
(this fast convergence is the mathematical expres-
sion of the physical assumption that the forces at
different ∆t-intervals are uncorrelated). Noting that
C = Dγ2 and that according to the fluctuation-
dissipation theorem one has D = kT/γ we get that
the change of the particle’s momentum during the
time ∆t follows the probability distribution

P (∆p) ' 1√
4πkTγ∆t

exp









−(∆p− f∆t)2

4kTγ∆t









.

(7.26)
Thus, we see that in many cases it is reasonable to
assume that the noise in the Langevin equation has
a Gaussian distribution. Moreover, one can take this
noise to be δ-correlated, so that

〈ξ(t)ξ(t′)〉 = 2Cδ(t− t′) = 2kTγδ(t− t′), (7.27)

which exactly corresponds to the behavior assumed
by Eq.(7.25) for any ∆t. Thus, the noise is supposed
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to be Gaussian and white. Moreover, since the av-
eraged force value is subtracted, 〈ξ(t)〉 = 0. The
process corresponding to the integral of the noise

W (t) =
∫ t

0
ξ(t)dt (7.28)

is called a Wiener process. The curve depicting this
process on the (t,W )-plane is continuous (in the sense
that large jumps are very improbable) but nowhere
differentiable. Its fractal dimension is 2. The in-
troduction of a Wiener process gives several mathe-
matical advantages and leads to mathematically firm
derivation of many results. Physically one however
has be aware, that it corresponds to generalizing the
intermediate-scale dynamics to the smallest, micro-
scopic scales, which may be incorrect.

7.3 Taylor-Kubo formula and velocity-velocity correlations

There exists one more method of calculation of the
mean squared displacement, which may seem to be
even simpler than even the original Langevin’s one.
We already used this method implicitly in our previ-
ous discussions, however, it is reasonable to discuss it
here in some detail. Let us consider a particle moving
with the velocity v(t). If the velocity of the particle
is know, it is easy to calculate its displacement

x(t) =
∫ t

0
v(t′)dt′ (7.29)
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(we again assume that the particle’s position at t = 0
is x = 0). To calculate the mean squared displace-
ment we use the already familiar trick:

x2(t) =
[

∫ t

0
v(t′)dt′

]2
=

∫ t

0
v(t′)dt′ ·

∫ t

0
v(t′′)dt′′ =

=
∫ t

0

∫ t

0
v(t′)v(t′′)dt′dt′′. (7.30)

Averaging this equation we get
〈

x2(t)
〉

=
∫ t

0

∫ t

0
〈v(t′)v(t′′)〉 dt′dt′′. (7.31)

We now assume the stationarity of the random pro-
cess v(t) and define the velocity-velocity correlation
function B(τ ) = 〈v(t)v(t+ τ )〉 (note that this func-
tion is an even function of τ which follows from its
independence on t for a stationary process). We get:

〈

x2(t)
〉

=
∫ t

0

∫ t

0
B(|t′ − t′′|)dt′dt′′. (7.32)

Let us first assume that the velocity-velocity correla-
tion decays rather fast, so that it is integrable. This is
the case, for example, for the genuine Langevin case,
where it decays exponentially, with the characteristic
time τbr = m/γ. Let us now change in the double
integral, Eq.(7.31), to a new variable q = t′ − t′′

〈

x2(t)
〉

=
∫ t

0
dt′

∫ t′

−t′ B(|q|)dq = 2
∫ t

0
dt′

∫ t′

0
B(|q|)dq.

(7.33)
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Since integral over q is convergent, for t � τbr the
upper limit of integration can be changed for infinity:

〈

x2(t)
〉

= 2
[∫ ∞

0
B(|q|)dq

]

t, (7.34)

which immediately gives us the value of the diffusion
coefficient

D =
∫ ∞
0

〈v(t)v(0)〉 dt : (7.35)

the diffusion coefficient is nothing else than the inte-
gral of the velocity-velocity correlation function. This
fact was first discovered by G.I. Taylor (in a related
but slightly different context of the passive particles’
transport by a random wind, Taylor, 1921) and is
typically referred to as a Taylor-Kubo formula.

Let us now turn to the case of a Langevin equation
and obtain the value of the diffusion coefficient. To
calculate the velocity-velocity correlation function we
start from Eqs.(7.13) and (7.14). Averaging the so-
lution of Eq.(7.14) over the realizations of the noise,
we get

〈v(t)〉noise = v0 exp
(

− γ

m
t
)

(7.36)

so that

〈v(t)v(0)〉noise = v2
0 exp

(

− γ

m
t
)

. (7.37)

However, an additional averaging over the initial ve-
locity v2

0 is necessary. The equipartition theorem says



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

20 Brownian Motion

that
〈

v2
0

〉

eq = kT/m, so that

B(t) = 〈v(t′)v(t′′)〉 =
kT

m
exp

(

− γ

m
t
)

. (7.38)

Evaluating the integral, Eq.(7.35), for our correlation
function, Eq.(7.38), we get

D = kT/γ, (7.39)

an already familiar result.
Note that in order to have a long-time diffusive

behavior, the convergence of the integral, Eq.(7.35)
is necessary. The situation when the integral di-
verges lead to different kinds of anomalous diffu-

sion. Quite a few examples of such processes are
known. If, for example, B(τ ) ∝ τ−α for τ large, the
corresponding integral diverges if α ≥ −1, leading to
superdiffusion. In this case evaluating of Eq.(7.33)
gives 〈x2(t)〉 ∝ t2−α for α < 1 and 〈x2(t)〉 ∝ t ln t
for α = 1 and t large. This last situation is physically
relevant. In 1968 Alder and Wainwright performed
numerical calculations of the velocity autocorrelation
function in a system of hard discs and spheres using
molecular dynamics (Alder and Wainwright, 1968,
1969). The process here corresponds to a Brownian
motion of one (marked) particle in the fluid of the
particles of the same mass. They found out that this
correlation function decays at long times essentially
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as t−d/2, with d being the dimension of space, i.e.
d = 2 for the discs and d = 3 for spheres. This
work has initiated a vivid discussion. The reason for
such a behavior is that the motion of the Brownian
particle is in fact a much more complicated process
than one assumed by Langevin. The motion of a
particle in a fluid creates a velocity field in a fluid
itself, which is rather persistent and interacts with
the particle motion: Contrary to the Langevin’s as-
sumption the fluid as a whole is not quite quiescent,
and its velocity at the particle’s position depends on
the particle’s motion prehistory. The corresponding
explanation and calculations may be found in the
books of Balescu (1975) and of Zwanzig (2001). For
us now it is important to note that in 3d the velocity-
velocity correlation decays fast enough to be inte-
grable, so that the Einstein’s and Langevin’s picture
of the Browninan motion still holds; the behavior in
2d may however be quite different.

The long-lasting correlations and memory effects
lead to non-Markovian Langevin constructions, typ-
ically of the form

mẍ = −U ′(x) −
∫ t

0
dt′ẋ(t′)K(t− t′) + ξ(t) (7.40)

where K(t) is the memory-kernel. The noise ξ(t) is
typically taken to be Gaussian but not white. The
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corresponding fluctuation-dissipation relation (the Nyquist
theorem) connects the memory kernel and the corre-
lation function of the noise. A simple model leading
to such equations will be considered in Section ??.

7.4 The overdamped limit

Essentially, for the separation of integrations in s and
in q in Eq.(7.19) it is of no importance, which time
scale shorter, it is only important that they differ
strongly. We now turn to the situation, m/γ � τc,
corresponding to the so-called overdamped limit of
the Brownian motion.

Let us return to the Langevin equation

mv̇ = −γv + ξ(t) (7.41)

and consider now a very light particle withm/γ → 0.
In this case the particle’s motion is governed by the
Aristotelian dynamics

ẋ = v =
1

γ
ξ(t), (7.42)

so that the velocity of the particle follows immedi-
ately the acting force. The solution follows from the
Taylor’s result,

〈

x2(t)
〉

=
1

γ2

∫ t

0
dt′

∫ t′

−t′ C(q)dq, (7.43)
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so that B(r) = γ−2C(τ ). Assuming that the integral
∫∞
0 B(τ )dτ converges and considering times t � τc
we get

〈

x2(t)
〉

= 2t
1

γ2

∫ ∞
0
C(q)dq, (7.44)

so that
〈

x2(t)
〉

grows diffusively. Comparing Eq.(7.44)
with the definition of the diffusion coefficient

〈

x2(t)
〉

= 2Dt (7.45)

we get in this case

D =
1

γ2

∫ ∞
0
C(r)dr. (7.46)

This definition of the diffusion coefficient coincides
with the previous one since as we have already seen
also in the underdamped situation

∫∞
0 C(r)dr = Dγ2.

We now make a small change in our notation. We
namely can dispense from γ in the Eq.(7.42) and in-
troduce a new notation for the noise term:

ẋ =
√

2Dη(t), (7.47)

where the noise η now possess the unit integral of its
correlation function:
∫ ∞
−∞ 〈η(0)η(t)〉 dt = 2

∫ ∞
0

〈η(0)η(t)〉 dt = 1. (7.48)

Since we are interested only in the times which are
much larger than the correlation times of the noise,
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we can take the last practically equal to zero and put
down

〈η(0)η(t)〉 = δ(t), (7.49)

thus assuming the noise to be white. We also note
that Eq.(7.47) describes the long-time behavior of a
massive Langevin particle, now in the long time limit,
i.e. for t� m/γ.

We note that the Langevin motion can also be con-
sidered under the action of some external force, say,
gravitation, like it is the case in the Perrin’s exper-
iment with colloidal particles in water. In this case
the initial Langevin equation reads

mv̇ = f − γv + ξ(t) (7.50)

where f is the external force (e.g. f = −mg in the
Perrin’s situation). Taking the limit m/γ → 0 (and
changing to our new notation) we get

ẋ = µf +
√

2Dη(t) (7.51)

with the mobility µ = 1/γ, which is the form of the
Langevin equation of the widest use. Let us now turn
to a simple example.

7.4.1 Example: The Ornstein-Uhlenbeck process

There are several good reasons to discuss the behav-
ior of an overdamped particle in a harmonic poten-
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tial. The situation was first discussed by Smolu-
chowski in 1913. His argumentation however was
different from one we use here, where the process
is considered as an example for using the Langevin
scheme.

The corresponding Langevin equation reads

ẋ = −κ
γ
x +

√
2Dη(t). (7.52)

The random process governed by the Eq.(7.52) is
called the Ornstein-Uhlenbeck process (Uhlenbeck and
Ornstein, 1930). The corresponding process is of
interest since it is one of the few less trivial situa-
tions where the closed analytical solution is possible.
Let us consider the initial condition problem when
the particle starts at t = 0 at a given coordinate
x(0) = x0. We note that this equation for x coin-
cides (up to the notation) with the one governing the
velocity of the particle in the classical Langevin prob-
lem, so that the correlation function of the particle’s
coordinate cam be immediately put down. Parallel
to §7.2.2 we have

〈x(t)〉 = x0 exp



−κ
γ
t



 (7.53)

and

〈x(t)x(0)〉 =
〈

x2
0

〉

exp



−κ
γ
t



 . (7.54)
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We note that τ = γ/κ has a dimension of time; this
is the typical relaxation time of the process.

Let us now discuss the Ornstein-Uhlenbeck process
from the thermodynamical point of view and some
its peculiar properties. Consider a general thermo-
dynamical system under isothermal conditions, and
take x to be a relevant thermodynamical variable.
According to the Zeroth Law, a system, let evolve
freely, will sooner or later achieve an equilibrium. Be-
ing perturbed from the equilibrium state, the system
returns back to it; this process takes some time and
is called relaxation. The thermodynamical potentials
(say, the free energy) have at equilibrium their sim-
ple, quadratic minima; the corresponding thermody-
namic force f = −∂F/∂x is thus linear in the vari-
able x describing the deviation from the equilibrium,
f = −κx, and our problem is equivalent to one of
the behavior of an overdamped harmonic oscillator.

Let us now consider fluctuations of x around its
equilibrium value (taken to be x = 0). According
to the Onsager’s regression principle introduced in
Chapter 6 (which is a generalization of the primary
Langevin’s picture to the case of liner thermody-
namic theories), small fluctuations decay on the aver-
age in the same way as macroscopic deviations from
equilibrium. However, we know, that these fluctua-



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

The overdamped limit 27

tions in equilibrium do not vanish: this fact is taken
into account by the additional random force. Thus,
the Ornstein-Uhlenbeck process (or its multidimen-
sional generalizations) describes fluctuations within
the linear nonequilibrium thermodynamic scheme, and
is just as important and universal as the scheme itself.

The probability density of the particle’s position
at time t can for this case be found exactly. The ap-
proach is based on the linear property of our Langevin
process. Using the fact that

ẋ = −κ
γ
x +

√
2Dη(t) (7.55)

we put down the formal solution of this ODE in form:

x(t)−x0 exp



−κ
γ

(t− t0)



 =
√

2D
∫ t

t0
dt′η(t−t′) exp



−κ
γ

(t′ − t0)



 ,

(7.56)
which differs only in notation from our Eq.(7.14). Its
right hand side corresponds to a weighted sum of in-
dependent Gaussian variables, and thus is also nor-
mally distributed. To see this, let consider the sub-
division of the integral on the right-hand side into
non-intersecting intervals ∆t:
∫ t

t0
dt′η(t− t′) exp



−κ
γ

(t′ − t0)





=
∑

n

∫ t0+(n+1)∆t

t0+n∆t
dt′η(t− t′) exp



−κ
γ

(t′ − t0)




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=
∑

n
exp



−κ
γ
t∗n





∫ t0+(n+1)∆t

t0+n∆t
dt′η(t− t′) (7.57)

where, according to the mean value theorem, t∗n ∈
[t0 + n∆t, t0 + (n + 1)∆t]. We already know that all

integrals
∫ t0+(n+1)∆t
t0+n∆t dt′η(t−t′) are Gaussian-distributed

and independent and have zero mean. So are also
the products of these integrals with the exponential
prefactors. Since the sum of independent Gaussian
variables also has a Gaussian distribution, we see that
the lhs of Eq.(7.56) is distributed according to a sym-
metric Gaussian law. From the symmetry it follows
that the mean value of the right hand side is zero and
thus

〈x(t)〉 = x0 exp(−τ−1t), (7.58)

where the characteristic relaxation time τ = γ/κ is
introduced. It is not hard to find the dispersion of
the distribution of the right-hand side. Using the fact
that 〈η(t)η(t′)〉 = δ(t− t′) we get

σ2(t) = 2D
〈(

∫ t

t0
dt′η(t− t′)e

1
τ (t′−t0)

)2〉

= 2D
∫ t

t0

∫ t

t0
dt′dt′′δ(t− t′ − t + t′′)e

1
τ (t′+t′′−2t0)

= 2D
∫ t

t0
dt′e

2
τ (t′−t0) = Dτ



1 − e
2(t′−t0)

τ



 .(7.59)
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Thus, the probability p(x, t|x0, t0) reads

p(x, t|x0, t0) =

√

√

√

√

√

1

2πDτ (1 − e−2(t−t0)/τ )
exp





− (x− e−(t−t0)/τx0)
2

2Dτ (1 − e−2(t−t0)/τ)





 .

(7.60)
The first two central moments M1 = 〈x〉, Eq.(7.58),
and M2 =

〈

(x− 〈x〉)2
〉

, Eq.(7.59), relax exponen-
tially to their equilibrium values. After the equi-
libration (i.e. for the times t � τ ) the process
gets stationary and describes equilibrium fluctuations
around the value x = 0. The distribution of fluctua-
tions p(x) = p(x, t|x0,−∞) is Gaussian,

p(x) =

√

√

√

√

√

1

2πDτ
exp





− x2

2Dτ





 , (7.61)

with the mean squared value of x equal to Dτ . Now,
let us remember that, according to the Einstein’s re-
lation D = kT/γ and that τ = γ/κ. Thus, we
have Dτ = kT/κ, so that p(x) corresponds to the
Boltzmann distribution

p(x) =

√

√

√

√

κ

2πkT
exp





− κx2

2kT





 , (7.62)

the equilibrium value of κ
〈

x2
〉

= kT , according to
the equipartition theorem.

The Ornstein-Uhlenbeck process is one of a few sit-
uations when the probability density can be imme-
diately deduced from the Langevin picture and from
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the properties of the noise. In all other cases the
Fokker-Planck approach providing us with the par-
tial differential equation for this probability density
is more appropriate.
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Fokker-Planck and Master Equations

8.1 Equations for the probability density

We note that the initial approach of Einstein was
based on the discussion of the deterministic equations
for the probability densities, while the Langevin’s one
emphasized the stochastic nature of single realiza-
tions. The generalization of the Einstein’s approach
leads to what is now known as a Fokker-Planck equa-
tion. Phenomenologically, the equation can be de-
rived along the lines of the Fick’s approach, by com-
bining the linear response assumption and the conti-
nuity equation (Fick, 1855). The diffusion-like equa-
tion essentially for the overdamped motion with drift
was first proposed by A. Fokker in his dissertation
in 1914, and discussed by M. Planck in 1918. The
work of Planck starts from the note that Fokker pub-
lished only the equation itself, without any deriva-
tion. Such derivation was promised but never pub-
lished. The same equation was proposed by Smolu-

31
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chowski in the work ”Über Brownsche Molekularbe-
wegung unter Einwirkung äußerer Kräfte und deren
Zusammenhang mit der verallgemeinerten Diffusion-
sgleichung” (Smoluchowski, 1915).

Thus, the particle’s density n(x, t) or the proba-
bility to find a particle p(x, t) fulfills the equation

∂p

∂t
p = −divJ (8.1)

where J is the probability current. On the other
hand, this current may appear due to the two factors:
the concentration gradient and the external force f :

J = −D∇p+ µfp (8.2)

where µ is the particle’s mobility. Combining the
equations we get the diffusion equation with drift:

∂p

∂t
= ∇ (−µfp+D∇p) . (8.3)

The standard derivation of the Fokker-Planck equa-
tion due to Smoluchowski, Kolmogorov et al. follows
the lines of the Einstein’s discussion and starts from
the general Markovian assumption. One considers
the process characterized by the transition probabil-
ities p(x, t|x′, t′), the probability for a particle to be
at x at time t provided it started at x′ at time t′ < t.
We note that x here has not necessarily to be con-
sidered as a scalar, but for the simplicity we use the
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scalar notation.
Our initial considerations are the ones already dis-

cussed in the end of Chapter 2. The Markovian prop-
erty leads us to the assumption that probability to
be at x at time t haven started at x0 at time t0 can
be expressed through the integral

p(x, t|x0, 0) =
∫

dx′p(x, t|x′, t′)p(x′, t′|x0, 0) (8.4)

which essentially doesn’t mean anything else than
the statement of the fact that at time t′ the particle
has to be found at some place it really could get to.
Depending on the community, this equation is termed
as a Smoluchowski, or as a Chapman-Kolmogorov
equation. We now consider the time t′ as being close
enough to t: subtracting p(x′, t′|x0, 0) from the both
parts of the integral equation we get

p(x, t|x0, 0)−p(x′, t′|x0, 0) =
∫

dx′p(x, t|x′, t′)p(x′, t′|x0, 0)−p(x′, t′|x0, 0).
(8.5)

We now discuss the situation when the difference
∆t = t−t′ can be considered as small. The left-hand
side can be approximated through ∂

∂t′p(x, t
′|x0, 0)∆t.

We shall assume that typical changes in the coordi-
nates during this short time are also to some extent
small. Let us denote r = x − x′ and introduce the
transition probabilities w(y, r; t,∆t) = p(y + r, t +
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∆t|y, t). Now we rewrite Eq.(8.5) in the form

∂

∂t
p(x, t|x0, t0)∆t =

∫

drw(x−r, r; t,∆t)p(x−r, t|x0, 0)−p(x, t|x0, t0)

(8.6)
and start expanding the integrand in powers of r. We
namely use the fact that

w(x− r, r; t,∆t)p(x− r, t|x0, t0) = w(x, r; t,∆t)p(x, t|x0, 0) (8.7)

−r ∂
∂x
w(x, r; t,∆t)p(x, t|x0, 0) +

+
1

2
r2 ∂

2

∂x2
w(x, r; t,∆t)p(x, t|x0, 0) + ...

which lets us rewrite the first integral in the form

∂

∂t
p(x, t|x0, t0)∆t = p(x, t|x0, t0)

∫

drw(x, r; t,∆t) (8.8)

− ∂

∂x
p(x, t|x0, t0)

∫

drrw(x, r; t,∆t) +

+
∂2

∂x2
p(x, t|x0, t0)

∫

drr2w(x, r; t,∆t) + ...

−p(x, t|x0, t0).

Noting that due to the normalization
∫

drw(y, r; t,∆t) =
1 we see that the first and the last terms of the ex-
pression in the right-hand side cancel. Performing
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the limiting transition ∆t→ 0 one has

∂

∂t
p(x, t|x0, t0) =

∞
∑

n=1

(−1)n

n!

∂n

∂xn
Kn(x, t)p(x, t|x0, t0)

(8.9)
where the transition moments

Kn(x, t) = lim
∆t→0

1

∆t

∫

dr rnw(x, r; t,∆t). (8.10)

The expression Eq.(8.9) corresponds to the Kramers-
Moyal expansion. For the case of the Brownian mo-
tion and other diffusive processes one finds that only
2 first transition moments are different from zero:
there are

A(x, t) = lim
∆t→0

1

∆t

∫

dr r w(x, r; t,∆t) (8.11)

and

B(x, t) = lim
∆t→0

1

∆t

∫

dr r2w(x, r; t,∆t). (8.12)

All higher moments vanish under the limiting tran-
sition ∆t→ 0 since

∫

dr rnw(x, r; t,∆t) = O(∆t2) for n ≥ 3. (8.13)

In this case the Kramers-Moyal expansion of the Chapman-
Kolmogorov equation leads to the Fokker-Planck equa-
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tion for p(x, t|x0, t0)

∂

∂t
p(x, t|x0, t0) = − ∂

∂x
A(x, t)p(x, t|x0, t0)+

1

2

∂2

∂x2
B(x, t)p(x, t|x0, t0).

(8.14)
Comparing this general equation with our phenomeno-
logical equation, Eq.(8.3), we see that it also has a
form of a continuity equation,

∂

∂t
p =

∂

∂x



−Ap +
1

2

∂

∂x
Bp



 . (8.15)

Note that the transition probability p(x, t|y, s) is
essentially a function of two spatial variables,x and
y, the initial and the final particle’s positions, and
two times t and s. It is often desirable to have
the equation which defines the function p(x, t|y, s)
with respect to its initial position and to the time
s = t0.This can be easily done by considering the in-
crement p(x, t|y, s)− p(x, t|y′, s′) and repeating the
steps leaving to the Fokker-Planck equation, we get
(under the same assumptions)

− ∂

∂s
p(x, t|y, s) = A(y, s)

∂

∂y
p(x, t|y, s)+1

2
B(y, s)

∂2

∂y2
p(x, t|y, s).

(8.16)
Eq.(8.16) is called the backward Kolmogorov equa-
tion, while the Fokker-Plack equation in this context
is called the forward one. The differential operator
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L+ acting on p(x, t|y, s) in the right-hand side of
this equation is adjoint to the differential operator in
the right-hand side of the forward (Fokker-Planck)
equation L with respect to the scalar product of two
function (f, g) =

∫

(f(x)g(x)dx in the sense that
(f,Lg) = (L+f, g).

We also note that the Pawula’s theorem states that
either the first two moments (having exactly the be-
havior described by Eqs.(8.11) and (8.12)) are enough
for the full description, or the whole infinite series has
to be used. Truncating the series after any other term
than the second one leads to equations which do not
guarantee the non-negativity of their solutions, which
therefore cannot be interpreted as probability density
functions. In this case the integral equation represen-
tations cannot be reduced to anything considerably
more simple.

In the case of the overdamped motion the coeffi-
cients A and B can be easily obtained from the dis-
cussion of the overdamped Langevin motion, Eq.(7.51).
From Eq.(??) we get the transition probability den-
sity w(x, r; t,∆t) to be Gaussian

w(x, r; t,∆t) =
1√

4πD∆t
exp





−(r − µf∆t)2

4D∆t







(8.17)
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from which we get thatA(t) = µf andB = ∆t−1
[

(µf∆t)2 + 2D∆t
]

→
2D for ∆t → 0, and that the higher transition mo-
ments (being the combinations of the two lower ones)
are of a higher order in ∆t. Hence, the resulting
Fokker-Planck equation reads

∂

∂t
p =

∂

∂x



−µfp +D
∂

∂x
p



 , (8.18)

(withD and µ connected by the fluctuation-dissipation
relation D = kTµ). Eq.(8.18) is exactly the one
following from our initial phenomenological consid-
erations. The Fokker-Planck equation for the over-
damped situation is often called the Smoluchowski
equation.

We note that taking the limits in Eq.(8.11) and
(8.12) corresponds essentially to the derivatives of
the corresponding transition moments. The first one
can be then interpreted as the mean velocity at point
x, 〈v(x)〉, and the second one as the time derivative
of the mean squared displacement from x, connected
to a local diffusion coefficient.

The form of the Fokker-Planck equation stays the
same if one considers the variable x as a vector in the
coordinate or in the phase space: The only important
assumptions are the Markovian nature of transitions
and the existence of transition moments. The vector
form of the Fokker-Planck equation reads (compare
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Chapter 2):

∂

∂t
p =

∑

i

∂

∂xi





−Aip +
1

2

∑

j
Dij

∂

∂xj
p





 . (8.19)

8.2 Special stochastic processes

8.2.1 Example 1: The Ornstein-Uhlenbeck process revisited

Let us return to the Ornstein-Uhlenbeck process de-
scribing the behavior of an overdamped particle in
the harmonic potential under the influence of white
noise. The Smoluchowski equation is

∂

∂t
p =

∂

∂x





κ

γ
xp +D

∂

∂x
p



 . (8.20)

There are several methods to solve Smoluchowski
equations; many of them are discussed in detail in
Risken’s book (Risken, 1988, 1994).

Note that a Smoluchowski equation (with coordinate-
independent D) in a field of a potential force f =
−∇U can be reduced to a Schödinger equation by
taking p(x, t) =

√

peq(x)g(x, t), where peq(x) is the
equilibrium solution, peq(x) = exp [−U(x)/kT ]. The
equation for g(x, t) then reads

− ∂

∂t
g = D





− ∂2

∂x2
+ Ueff(x)





 g, (8.21)
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with the effective potential

Ueff(x) =





1

2kT

∂U

∂x





2

− 1

2kT

∂2U

∂x2
. (8.22)

The advantage of putting the Smoluchowski equa-
tion in this form is the fact that the operator in the
right-hand side of Eq.(8.21) is now Hermitian, and
the equation itself allows for a much simpler analyti-
cal treatment. For example, it is a great convenience,
that the right and left eigenfunctions of this operator
coincide, so that the simple eigenfunction decomposi-
tion approach, known from the quantum mechanics,
works:

g(x, t) =
∑

n
φn(x)Φn(t) (8.23)

where the temporal functions are governed by ordi-
nary differential equations of the type

dΦn(t)

dt
= −λnΦn(t); (8.24)

λn are the eigenvalues of the Schrödinger operator on
the right-hand side. Moreover, the potential Ueff (x)
has an additional symmetry (it corresponds to a so-
called supersymmetric quantum mechanics, Genden-
stein and Krive, 1985) so that it immediately follows
that one of the eigenvalues is zero, which corresponds
to a steady (equilibrium) state, and that this state is
non-degenerate.
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For the quadratic potential corresponding to the
Ornstein-Uhlenbeck process, the effective potential
given by Eq.(8.22) is quadratic again. Thus, the
Fokker-Planck equation describing the Ornstein-Uhlenbeck
process is reduced to the Schrödinger equation for a
harmonic oscillator. No wonder that all properties of
the solutions are known. As a solution of the initial-
value problem we get of course an already known
result,

p(x, t|x0, t0) =

√

√

√

√

√

1

2πDτ (1 − e−2(t−t0)/τ )
exp





− (x− e−(t−t0)/τx0)
2

2Dτ (1 − e−2(t−t0)/τ)





 .

(8.25)
It is interesting to note, that the Ornstein-Uhlenbeck

process (essentially the process with the exponen-
tially decaying covariation) is the only diffusive pro-
cess (with continuous trajectories) that is Gaussian
and Markovian at the same time.

Let us consider a homogeneous Gaussian process,
corresponding to the system at equilibrium. The
joint probability density p(x, t, x0, t0) = p(x, x0, t−
t0) is fully defined by the dispersion σ and by the
covariance g(t− t′) = 〈x(t)x(t′)〉 /σ2 and reads

p(x, t, x0, t0) =
1

2πσ2
√

(1 − g2)
exp





−(x2 − 2gxx0 + x2
0)

2σ2(1 − g2)





 .

(8.26)
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We note that since limdt→0 〈x(t + dt)x(t)〉 = 〈x(t)x(t)〉 =
σ2, one has g(0) = 1. To obtain the transition
probability, which is the conditional probability for
a particle to be at x at time t provided it was in
x0 at time t0 we use a Bayes theorem, according to
which p(x, t, x0, t0) = p(x, t|x0, t0)p(x0, t0), and take
p(x0, t0) to be a one-point, equilibrium probability
density,

p(x0, t0) = p(x0) =

√

√

√

√

√

1

2πσ2
exp





− x2
0

2σ2





 . (8.27)

Combining Eqs.(8.26) and (8.27) we get:

p(x, t|x0, t0) =

√

√

√

√

√

1

2πσ2(1 − g2)
exp





− (x− gx0)
2

2σ2(1 − g2)





 .

(8.28)
Inserting this transition probability into a Chapman-
Kolmogorov equation

p(x, t|x0, 0) =
∫

dx′p(x, t|x′, t′)p(x′, t′|x0, 0)
(8.29)

and performing the integrations we get that
√

√

√

√

√

1

2πσ2(1 − g(t)2)
exp





− (x− g(t)x0)
2

2σ2(1 − g(t)2)





 = (8.30)

=

√

√

√

√

√

1

2πσ2(1 − g(t− t′)2g(t′)2)
exp





− (x− g(t− t′)g(t′)x0)
2

2σ2(1 − g(t− t′)2g(t′)2)






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from which for any t′ ∈ [0, t] it follows that

g(t) = g(t− t′)g(t′). (8.31)

The only differentiable solution of this functional equa-
tion is an exponential: taking dt = t− t′ to be small
we get:

g(t) = g(t′) +
dg(t′)

dt′
dt = g(dt)g(t′). (8.32)

We thus get:

1

g(t′)

dg(t′)

dt′
dt = g(dt) − 1. (8.33)

Noting that g(0) = 1 and denoting τ−1 = −g′(0) we
get

1

g(t′)

dg(t′)

dt
dt = −τ−1dt (8.34)

so that
d

dt
log g(t) = −τ−1 (8.35)

and thus g(t) = exp(−t/τ ). The corresponding deriva-
tion can be generalized to multidimensional case as
well.

8.2.2 Example 2: The Klein-Kramers equation

As an example of multivariate Fokker-Planck equa-
tion let us consider an underdamped case, correspond-
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ing to the genuine Langevin treatment. The mechan-
ical state of the system is now characterized by a pair
(v, x) of phase variables so that the probability den-
sity p depends on these two variables and on the time:
p(v, x, t). The overall equations for v and x read:

mv̇ = f(x) − γv + ξ(t)

ẋ = v (8.36)

The coefficients A and B are no more scalars: Thus,
A is now a vector and B is a 2 × 2 matrix. The
transition probabilities for the vector

r =







∆v
∆x





 =







v(t + ∆t) − v(t)
x(t + ∆t) − x(t)





 (8.37)

can be found by noting that ∆v = 1
m

∫ t+∆t
t [f(x) − γv + ξ(t)] dt '

1
m [f(x) − γv] ∆t+O(∆t2)+ 1

m

∫ t+∆t
t ξ(t)dt. The first

two terms are deterministic, distribution of the last
term is given by Eq.(7.26). The development of ∆x
is also deterministic, so that in the lowest order we
have ∆x = v∆t. Thus,

w(∆v,∆x, x, v, t,∆t) = (8.38)

1√
2πkTγ∆t

exp



















−
[

∆v − 1
m

(f(x) − γv) ∆t
]2

2kTγ∆t



















δ(∆x− v∆t).
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The transition moments are:

A(x) =
1

∆t







〈∆v〉
〈∆x〉





 =







1
mf(x) − γ

mv
v(x)





 , (8.39)

and

B =
1

∆t







〈

∆v2
〉 〈∆x∆v〉

〈∆x∆v〉 〈

∆x2
〉





 →






kTγ 0
0 0







(8.40)
since the averages 〈∆x∆v〉 and

〈

∆x2
〉

are both pro-
portional to ∆t2 and moreover

〈

∆v2
〉

= 〈∆v〉2 +
σ2(∆t) = m−1 (f(x) − γv)2 ∆t2+4kTγ∆t→ 4kTγ∆t.
The overall Fokker-Planck equation for the probabil-
ity density p(v, x, t) now reads:

∂

∂t
p = − ∂

∂x
vp− ∂

∂v

1

m
(f−γv)p+kTγ ∂

2

∂v2
p. (8.41)

This equation is often referred to as a Klein-Kramers
equation (Klein, 1922, Kramers, 1940). Assuming
that the force f(x) is a potential one, f(x) = − ∂

∂xU(x),
it is not hard to show that for the case when p(v, x)
is given by

p(v, x) =
1

Z
exp





−mv
2/2 + U(x)

kT





 (8.42)

with

Z =
∫ ∫

exp





−mv
2/2 + U(x)

kT





 dvdx, (8.43)
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the right-hand side of the equation vanishes inde-
pendently on the value of γ. Of course, Eq.(8.42)
is a canonical distribution, and the absence of γ in
this equation underlines the fact that the equilibrium
properties of a system do not depend on the assump-
tions on its kinetic behavior. Note that the equilib-
rium distribution p(v, x) factorizes into a product of
the Maxwell distribution of the velocities and of the
”barometric” distribution,

1√
2πkT

exp





−mv
2

2kT





 · 1

Q
exp





−U(x)

kT





 (8.44)

with Q =
∫

exp
(

−U(x)
kT

)

dx. This may not be the
case for steady states other than the equilibrium. We
note that Fokker-Planck equation, Eq.(8.41) can be
presented in its usual form of the continuity of the
probability current

∂

∂t
p(x, t) = − ∂

∂x
Jx −

∂

∂v
Jv (8.45)

with the probability current

J =







Jx
Jv





 =







vp
1
m

(f − γv)p + kTγ ∂
∂v
p(v, t)







(8.46)
Note that the probability current (which is the cur-
rent in the phase space, corresponding to the fact
that the phase coordinates of the system continu-
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ously change under its Hamiltonian evolution) does
not vanish in the equilibrium, while the particles’ cur-
rent I(x) = 〈Jx(x)〉 =

∫

vp(x, v)dv definitely does.
We note that Eq.(8.41) for the joint probability dis-

tribution of the coordinate and the velocity can be
considered as a combination of the continuity equa-
tion for the coordinate,

∂

∂t
p(x, t) = − ∂

∂x
v(x, t)p(x, t) (8.47)

and the ordinary Fokker-Planck equation for the ve-
locity

∂

∂t
p(v, t) = − ∂

∂v

1

m
(f −γv)p(v, t)+kTγ

∂2

∂v2
p(v, t).

(8.48)
which are coupled by the fact that the force f ap-
pearing in the last one may be x-dependent.

8.3 The Fokker-Planck equation and the Liouville equation

The phenomenological derivation of the diffusion equa-
tion by Fick (and our phenomenological derivation of
the Fokker-Planck equation as a diffusion equation
with drift) was based on the local continuity equa-
tion for the probability density (i.e. on the Liouville
equation in the broader sense). The relation between
the Fokker-Planck equation and the Liouville equa-
tion may be made clearer by the discussion of the
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immediate derivation of the first from the last. In
our discussion we closely follow the book Zwanzig,
2000. We use here a one-dimensional, scalar nota-
tion, making more clear the main steps. The trivial
generalization to the multivariate case will be dis-
cussed at the end of the paragraph.

Let us consider the random process x(t) governed
by the equation of motion

dx

dt
= v(x) + ξ(t) (8.49)

where ξ(t) is a Gaussian random variable (noise), so
that 〈ξi(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′). We
are looking for the probability distribution function
of the values of xi at time t. This probability density
P (x, t) may be obtained from the one for a special
realization of the noise ξ(t), i.e. from the solution
of the Liouville (continuity) equation. Assuming the
local conservation law (the continuity equation) for
P we can write that

∂P

∂t
+

∑

i

∂

∂x





∂x

∂t
P



 = 0. (8.50)

Replacing the time derivative of x on the right-hand
side of this equation by the expression given by Eq.(8.49)
we get:

∂P

∂t
= − ∂

∂x
[(v(x) + ξ(t))P ] . (8.51)
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This is a stochastic differential equation givingP (x, t)
in a particular realization of the process.

Eq.(8.51) is a linear differential equation, whose
formal solution can be obtained as follows. Let us
introduce the linear operator L corresponding to the
deterministic part of the behavior:

L̂P =
∂

∂x
(f(x)P ) . (8.52)

Eq.(8.51) then reads:

∂P

∂t
= −L̂P − ∂

∂x
[ξ(t)P ] . (8.53)

The formal solution of this system is a generalization
of the solution of a linear differential equation (say,
Eq.(7.14)) and reads:

P (x, t) = e−L̂tP (x, 0)−
∫ t

0
dse−L̂(t−s) ∂

∂x
[ξ(s)P (x, s)] .

(8.54)
This solution shows explicitly that P (x, t) depends
on the noise at all times s < t. We now substitute
this result into the last term in the right-hand side of
Eq.(8.53) and get:

∂

∂t
P (x, t) = −L̂P (x, t)− ∂

∂x
ξ(t)e−L̂tP (x, 0)+

∂

∂x
ξ(t)

∫ t

0
dse−L̂(t−s) ∂

∂x
[ξ(s)P (x, s)] .

(8.55)
Now, the ensemble average of this probability den-
sity, p(x, 0) = 〈P (x, 0)〉 follows. The first term in
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the right-hand side, containing the P (x, t) only is
averaged easily. The second one, containing only the
initial condition (independent on the realization of
the noise) and ξ(t) vanishes under the averaging, so
that only the third one, with the paired noise factors,
needs to be averaged explicitly:

∂

∂t
p(x, t) = −L̂p(x, t)+∇

∫ t

0
dse−L̂(t−s)∇ [〈ξ(t)ξ(s)P (x, s)〉] .

(8.56)
Now, for s 6= t ξ(t) is uncorrelated with ξ(s) for all
s < t and thus with the state of the system P (x, s)
(given by the values of the noise at earlier times). Due
to the symmetry of the noise, the integrand is zero for
all s 6= t, so that 〈ξ(t)ξ(s)P (x, s)〉 = 0 for s 6= t. On
the other hand, P (x, s) given by an integral Eq.(8.54)
over the times s′ < s = t, is dominated by the values
of the noise at the previous times, and thus can be
considered as independent from ξ(t) exactly at time
t, so that 〈ξ(t)ξ(s)P (x, s)〉 = 〈ξ(t)ξ(s)〉 〈P (x, s)〉 ≡
2Dδ(t− s)p(x, t).

Thus,

∂

∂t
p(x, t) = −L̂p(x, t) +

∂

∂x

∫ t

0
dse−L̂(t−s) ∂

∂x
2Dδ(t− s)p(x, s)

=
∂

∂x
(f(x)p) +

∂2

∂x2
Dp (8.57)

which is a Fokker-Planck equation we looked for. We
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note that this is a typical derivation on the physical
degree of the accuracy: we didn’t bother too much
about the properties of e−L̂(t−s), the mathematician
should do this.

The generalizations to the multidimensional case
is trivial: we consider the multidimensional random
process {xi(t)} governed by the equations of motion

dxi
dt

= vi(x1, ..., xn) + ξi(t) (8.58)

where ξ(t) = (ξ1(t), ..., ξn(t)) is the vector of Gaus-
sian random variables (noises) whose correlation prop-
erties are 〈ξi(t)〉 = 0 and

〈ξ(t)ξ(t′)〉 = 2Bδ(t− t′). (8.59)

We are looking for the probability distribution func-
tion of the values of xi at time t. The local conser-
vation law now reads

∂P

∂t
+

∑

i

∂

∂xi





∂xi
∂t
P



 = 0. (8.60)

Replacing the time derivative of xi on the right-hand
side of this equation by the expression given by Eq.(8.49)
we get:

∂P

∂t
= −∑

i

∂

∂xi
[(vi(x1, ..., xn) + ξi(t))P ] . (8.61)

This is a stochastic differential equation giving p(x, t)
in a particular realization of the process.
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The linear operator L corresponding to the deter-
ministic part of the behavior reads

L̂P =
∑

i

∂

∂xi
(vi(x1, ..., xn)P ) , (8.62)

so that performing the same steps as before we get

∂p

∂t
= −∇v(x)p + ∇B(x)∇p. (8.63)

8.4 Transition rates and master equations.

The Kramers-Moyal expansion used in §8.1 is a for-
mal trick which allows for mathematically rigorous
derivation of a Fokker-Planck equation; this trick
however is physically not quite transparent. There-
fore we discuss here another variant of the approach,
which has immediate thermodynamical implications
and connects our discussion of Brownian motion with
the canonical formalism of statistical physics.

Let us assume the following structure for the transi-
tion probability during the time ∆t, w(x, r; t,∆t) =
p(x + r, t + ∆t|x, t):
w(x, r; t,∆t) =

[

1 − ∆t
∫

dx′w(x′|x + r)
]

δ(r) +(8.64)

+w(x + r|x)∆t +O(∆t2).

The meaning of the assumption is as follows: Imag-
ine that at time t the system was in state x; during
the time ∆t it made a transition to a state x + r.
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The probability of such a transition is now expressed
through the transition rate w(x + r|x); the function
w(x|y) is the probability of transition from y to x per
unit time. The first term follows from the normaliza-
tion condition

∫

drw(x, r; t,∆t) = 1 which must be
fulfilled for any ∆t. Its interpretation is that at time
t the system could already have been in state x + r;
this probability of not changing the state is assumed
to decay as ∆t grows.

Assuming the form, Eq.(8.64) we get instead of
Eq.(8.6) the following equation:

∂

∂t
p(x, t|x0, t0)∆t =

[

−
∫

dx′w(x′|x)p(x, t|x0, t0) + (8.65)

+
∫

drw(x|x− r)p(x− r, t|x0, t0)
]

∆t +O(∆t2).

Taking the limit ∆t→ 0, we get after evident trans-
formations, the following equation for p(x, t|x0, 0):

∂

∂t
p(x, t|x0, 0) =

∫

dx′w(x|x′)p(x′, t|x0, 0)(8.66)

−
∫

dx′w(x′|x)p(x, t|x0, 0).

Eq.(8.66) is called a master equation, and has a trans-
parent physical meaning: The change in the proba-
bility p(x, t|x0, 0) per unit time is due to the two
competing processes: to the inflow due to the fact
that the system may changed its state from some
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other state x′ to the state x and to the outflow, due
to the fact that it may have already been in state
x and may have left it for another state. Of course,
we can obtain further a Fokker-Planck equation from
the master equation, assuming that the transitions
are only very-short-ranged, so that at least the two
first moments of ∆x are finite. Using Eq.(8.64) we
get

A(x) =
∫

dr rw(x + r|x) (8.67)

and

B(x) =
∫

dr r2w(x + r|x). (8.68)

If these two moments are finite, the Fokker-Planck
equation follows from the master equation in a usual
way, and reads

∂

∂t
p =

∂

∂x



−vp +D
∂

∂x
p



 (8.69)

withD = B/2 and v = A− 1
2
∂
∂xB. If these lower two

moments diverge, we have to do with a genuine jump-
process, whose description lies outside of the range
of applicability of standard Fokker-Planck equations,
see Chapter 12, but still can be treated within the
master equation formalism.

For a discrete system, where the states are num-
bered by whole numbers n instead of a continuous
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variable x the situation gets even more transparent:

∂

∂t
p(n, t|n0, 0) =

∑

n′
wn′→np(n

′, t|n0, 0)−∑

n′
wn→n′p(n, t|n0, 0)

(8.70)
where wn′→n is the transition rate from the state n′

to the state n. The coefficients wn′→n form a matrix
W . Such discrete equations are in many cases more
reasonable instruments of description than the con-
tinuous ones, especially in the cases when n can be
interpreted not as a coordinate, but as a number of
particles (birth-death processes, chemical reactions,
etc.).

8.5 Energy diffusion and detailed balance

Master equations are often introduced on a quite
formal basis, and are intimately connected with the
thermodynamical formalism. Let us assume a closed
system in a contact with the heat bath at temper-
ature T . According to the Zeroth Law, whatever
nonequilibrium the initial state of the system is, in
course of the time the system will tend to an equilib-
rium one, if all external perturbations are switched
off. Let ν enumerate the states of this system. Let
moreover Eν be the energy of the state ν. Then, the
final, equilibrium state of the system will be charac-
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terized by the Boltzmann distribution

peq(ν) =
1

Z
exp



−Eν

kT



 . (8.71)

We now consider the relaxation of our system from a
nonequilibrium state characterized by the some dis-
tribution function p(ν) to the equilibrium state. We
note that during this evolution the states themselves
(which depend on the external conditions which are
assumed not to change) do not change; the relax-
ation is fully due to the change of the probabilities
for a system to be in a state ν. Let us assume these
probabilities to follow the master equation with con-
stant transition rates. This assumption follows from
the one of the time-independent nature of the states
and of the heat bath.

We note that the assumption of the time-independent
states fully characterized by their energy may have
quite different physical implications. The simplest
situation is that the states Eν are the localized quan-
tum states (say of an electron at different impurities
in a doped semiconductor), and the incoherent tran-
sitions between them are caused by the interaction
with the heat bath. Just as simple are the Ising-
like systems without any internal dynamics. Here
the only possible changes are the flips of single spins
or their clusters. Each such discrete event may (or
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may not) change the energy of the system. A simi-
lar situation takes place at a coarse-grained level of
description in a classical system corresponding to a
particle in a rugged energy landscape (see Ebeling et
al., 1984; Engel and Ebeling, 1987, Haus and Kehr,
1987). An underdamped situation corresponds to a
much more complex situation: Here, even at a con-
stant energy, a complex dynamics corresponding to
the ”microcanonical” (i.e. purely Hamiltonian) evo-
lution of the system takes place. In order to be able
to assume that the state is fully characterized by the
value of its energy, we have to consider a ”state” as
a microcanonical ensemble of systems, equally pop-
ulating the energy surface H(x, p) = Eν . The inter-
action of the system with the heat bath introduces
the transitions between different energy surfaces, the
rates of such transitions are wν′→ν.

The equilibrium state is a stationary (time-independent)
solution of the master equation:

0 =
∑

ν′
wν′→νpeq(ν

′) −∑

ν′
wν→ν′peq(ν). (8.72)

Thus, the Zeroth Law requires that
∑

ν′
[wν′→νpeq(ν

′) − wν→ν′peq(ν)] = 0. (8.73)

This requirement is tightened by the Second Law:
one namely has to assume that not only the sum,
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but each term separately vanishes, so that

wν′→νpeq(ν
′) − wν→ν′peq(ν) = 0. (8.74)

It follows that

wν→ν′

wν′→ν
=
peq(ν

′)

peq(ν)
≡ exp



−Eν′ − Eν

kT



 . (8.75)

This assumption is called the principle of detailed

balance. If the external conditions are time-dependent,
the detailed balance principle has to hold at each time
for time-dependent rates, as long as Markovian dy-
namics holds. The same assumptions are of course
valid in the continuous case.

The meaning of the principle is as follows: Imag-
ine that the transition rates between the states 1
and 2 of the system do not follow Eq.(8.74), so that
the number of the transitions from state 1 to the
state 2 is not balanced by the backwards transitions.
For example, let us assume that in equilibrium more
transitions take place immediately from 1 to 2 than
back from 2 to 1: the back flow from 2 to 1 fol-
lows through some intermediate state(s) 3, so that
a perpetual current 1 → 2 → 3 → 1 flows. (The
perpetual superconductive currents or the probabil-
ity currents discussed above are not the currents be-
tween the states, but currents within a state; they
are not forbidden by the following consideration). If
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the energy of the state 2 is lower than the energy of
state 1, then at first step the energy is dissipated to
the heat bath, and the second step, 2 → 3 → 1,
is thermally activated: the energy is taken from the
bath. The equilibrium state is stable, so that small
external perturbation wouldn’t change the state con-
siderably. Thus, if an ingenious gadgeteer would be
able to use the unbalanced 1 → 2 current for produc-
ing work against small external force, this work will
be produced on the cost of cooling the only one heat
reservoir, which is explicitly forbidden by the second
law. We refrain here from the discussion of possible
constructions of such perpetual mobile. The discus-
sion of the thermodynamical implications of detailed
balance was given in Bridgman, 1928.

Now let us return to our master equation in the
case when it can be reduced to a Fokker-Planck one
and show that the Einstein’s relation follows in gen-
eral from the detailed-balance principle (essentially
the initial discussion by Perrin about the exact equi-
libration of the two currents was a kind of use of it!).
Note that in the case when the master equation can
be reduced to a Fokker-Planck one, i.e. in the case
when w(x+r|x) decays sufficiently fast as a function
of r, the detailed balance requires the connection be-
tween the transition moments: In the overdamped
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case one can assume E(x) = U(x) = − ∫

f(x)dx, so
that the energy difference between the state x + r
and the state x is E(x + r) − E(x) = − ∫

f(x)dx,
and the transition rates between these states are con-
nected by

w(x+r|x) = w(x|x+r) exp







∫ x+r

x

f(x)

kT
dx





 . (8.76)

Let us now assume that our system is homogeneous,
so that w(x + r|x) = w(x|x − r). (The inhomoge-
neous situation will be considered in some detail later
on). Combining the homogeneity with Eq.(8.76) we
get:

w(x− r|x) = w(x + r|x) exp







∫ x+r

x

f(x)

kT
dx





 .

(8.77)
Furthermore, we assume that also for the case f = 0
the corresponding moments exist, so that the situ-
ation is characterized by a constant diffusion coeffi-
cient and by a constant mobility. We moreover con-
sider the force as so weak, that the lowest-order (lin-
ear) approximation in f(x) is sufficient. The integrals
for A and B then read

A(x) =
∫ ∞
−∞ dr rw(x + r|x) =

∫ ∞
0
r [w(x + r|x) − w(x− r|r)] dr

=
∫ ∞
0
rw(x + r|x)





1 − exp







∫ x+r

x

f(x)

kT
dx











 ≈
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≈
∫ ∞
0
w(x + r|x)r





1 − 1 − r
f(x)

kT







= −f(x)

kT

∫ ∞
0
w(x + r|x)r2dr. (8.78)

Note that the term of the zeroth order vanishes. The
lowest-order approximation for the coefficient B is
zeroth order in f and reads

B =
∫ ∞
−∞ dr r2w(x + r|x) =

∫ ∞
0
r [w(x + r|x) − w(x− r|r)] dr

=
∫ ∞
0
w(x + r|x)r2





1 + exp







∫ x+r

x

f(x)

kT
dx











 ≈

≈ 2
∫ ∞
0
w(x + r|x)r2dr. (8.79)

Thus, one readily infers that A(x) = −f(x)
2kT

B. Re-
membering that B/2 is exactly the diffusion coeffi-
cient D we get

∂

∂t
p =

∂

∂x



− D

kT
f(x)p +D

∂

∂x
p



 , (8.80)

i.e. the particles’ mobility µ is connected to D via
D = kTµ.

8.5.1 System in contact with several heat baths

The detailed balance principle guarantees that in equi-
librium the distribution over the energy states in the
isotherimc system is the Boltzmann one. It thus con-
nects the forwards and the backwards rates of the
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transitions taking place in presence of the heat bath.
However, in many cases, at least not too far from the
equilibrium, the rates of different transitions can be
considered as independent from each other, and can
be taken to depend only on the local temperature
at which the transition takes place. This allows us
for discussion systems in a contact with several heat
baths. A very simple toy model of such a system is
considered in what follows.

As an example we consider here a simple system
with three energy levels 1,2, and 3, see Fig.8.1. The
results discussed here can easily be generalized to
more complex situations or to continuous systems.
The discrete system considered here is a very sim-
ple one and allows for full mathematical descriptions.
The potential differences between states 1and 2, 3
and 2, and 1 and 3 are U12 and U32, respectively,
both of them positive (the energy difference between
3 and 1 is then U31 = U12 − U32). If the system is
kept at a constant temperature, the currents through
whatever bond vanish. Moreover, the probabilities
to find a particle on the site i does not depend on
whether the bond 31 is present or absent. This is the
consequence of the transitivity of thermodynamical
equilibrium.

Let us now consider the system in contact with two
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heat baths, so that the bond 1-2 is kept at tempera-
ture T1, and the transition 2-3 at temperature T2. In
what follows we assume T1 > T2 and U12 > U32, so
that the difference U31 = U12−U32 is positive. Phys-
ically, it can be considered as a minimalistic model
of a thermocouple (state 1: ”electron in the con-
ductor 1”, state 2 – ”electron in the conductor 2”,
state 3 – electron in the conductor 3”) or as a model
for the water circulation in the atmosphere (state 1:
”water molecule on the surface of the ocean”, state
2 – ”water molecule in the rain cloud”, state 3 –
”water molecule in the mountain lake”). However
in all these cases the potential energies are essen-
tially the chemical potentials, which themselves de-
pend on temperature and other parameters, so that
the whole thermodynamics of the system gets ex-
tremely involved. Here we dispense from thermody-
namics and fully concentrate on the dynamics of the
system. For simplicity, we take all downhill transition
rates to be equal to w−

ij = w (the so-called Metropo-
lis prescription, often used in numerical Monte-Carlo
simulations of thermodynamical system), the uphill
rates will then be w+

ij = w− exp(−Uij/kBT ).
Then, the probabilities (or the particle densities) in

states 1,2, and 3 are given by the stationary solution
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Fig. 8.1 Left: A simple discrete model of a three-level system considered in the text. Right: One
of possible continuous realizations of the model: A thermocouple, in which the two contacts of
different metals (shown in black and in gray) are kept at different temperatures. For the circuit
with an ideal ampere meter A with zero resistivity the potential difference U31 is always zero.

of the Master equation

d

dt
p1 = wp2 + wp3 − w



e
− U12

kBT1 + e
− U13

kBT2



 p1

d

dt
p2 = we

− U12
kBT1p1 + we

− U32
kBT2p3 − 2wp2 (8.81)

d

dt
p3 = we

− U13
kBT1p1 + wp2 − w



1 + e
− U32

kBT2



 p3.

where pi is the probability to find the particle on
the site i. Note that the sum of the probabilities
p1 + p2 + p3 = 1 is the integral of the motion, so
that the three equations are not independent. Let us
consider the stationary situation. The corresponding
solutions for p1 and p2 then read

p1 =
1

1 + e
− U12

kBT1 + e
− U13

kBT2

, (8.82)
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p2 =
e
− U12

kBT1 + e
− U12

kBT1e
− U32

kBT2 + e
− U32

kBT2e
− U13

kBT1


1 + e
− U12

kBT1 + e
− U13

kBT1







2 + e
− U32

kBT2





,

(8.83)
and

p3 =
e
− U12

kBT1 + 2e
− U13

kBT2


1 + e
− U12

kBT1 + e
− U13

kBT1







2 + e
− U32

kBT2





. (8.84)

Knowing pi we can also calculate the currents through
the bonds, Iij = wijpi − wjipj. For example,

I12 =
e
− U13

kBT1e
− U32

kBT2 − e
− U12

kBT1


1 + e
− U12

kBT1 + e
− U13

kBT2







2 + e
− U32

kBT2





. (8.85)

Of course, the stationary currents through all three
bonds are the same. We see that due to the fact
that U13 + U32 = U12 the current vanishes exactly
for T1 = T2 and is nonzero if the temperatures of
the transitions are different. In our discrete model
this is exactly the thermocurrent. Now, we can in
principle tap the 31 bond to win energy from this
current. However, the efficiency of our system will
depend on the particular mechanism of how do we
win the energy from the current.

In order to avoid complications let us consider a
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Fig. 8.2 A cascade of three-level systems with transitions kept at different temperatures as a
prototype of continuously working heat engine.

system shown in Fig.8.2. It is a cascade of N such
systems switched in series, so that now the site 3
of the previous system is exactly the site 1 of the
next one. The existence of the overall current means
now that particles injected in the left-hand side of
the system are transported uphill (the corresponding
model is simply a discrete variant of one discussed by
Buttiker, 1987). When reaching the top, the parti-
cles are used to produce useful work, say, to charge
the battery or to rotate the wheel. Since the energy
difference between the upper right and the lower left
site is very large, the spontaneous backward transi-
tions may be neglected, so that we really don’t need
to think about how do the thermal fluctuations of the
battery’s voltage really look like. (The impossibility
of backward transitions in the working medium of the
system is a rather typical case, since, say, the way
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from the ocean to the lake is only possible through
evaporation, but not through swimming up the river.
The mechanism forbidding this is, however, different,
and has to do with the properties of collective mo-
tion, an aspect which is absent in our simple model).
Under stationary conditions, due to the periodicity,
we have, as an equation for p1,

0 = 2wp2 − w



e
− U12

kBT1 + e
− U32

kBT2



 p1 (8.86)

which is complemented by the fact that p1 + p2 = 1.
We thus have

p1 =
2

2 + e
− U12

kBT1 + e
− U32

kBT2

(8.87)

and

p2 =
e
− U12

kBT1 + e
− U32

kBT2

2 + e
− U12

kBT1 + e
− U32

kBT2

. (8.88)

We can also calculate the stationary current through
the system (as a current through the 12-bond),

I = p1e
− U12

kBT1 − p2 =
e
− U12

kBT1 − e
− U32

kBT2

2 + e
− U12

kBT1 + e
− U32

kBT2

. (8.89)

We see that for the case U12 > U32 and e
− U12

kBT1 −
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e
− U32

kBT2 > 0 i.e. for
T2

T1
<
U32

U21
(8.90)

the system indeed pumps particles uphill, against the
overall potential difference.

Now, imagine that the current between 3 and 1
produces a useful work. The useful power then is P =
Ȧ = INU31. We also can calculate the heat taken
from the hot reservoir (at temperature T1). Since the
energy of the particle at sites 1 and 2 differ by exactly
U12, this energy is the one that has to be dissipated to
the bath when a downhill transition from 2 to 1 takes
place, and the one which has to be gained from the
bath under the uphill transition. The corresponding
heat power then reads

Q̇ = NU12I, (8.91)

and the efficiency η of the system reads

η =
Ȧ

Q̇
=
U31

U12
=
U12 − U32

U12
= 1 − U32

U12
. (8.92)

The efficiency of our system is thus independent on
temperature. According to Eq.(8.90) we thus have

η ≤ 1 − T2

T1
(8.93)
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and moreover we see that the Carnot value is achieved
when T2

T1
= U32

U21
, so that the current vanishes (stalling

conditions, work at zero power) which exactly corre-
sponds to the quasistatic situation in usual, cyclically
working heat engines. It is also interesting to calcu-
late the efficiency at largest power. Let us now fix
T1 and T2 and U12 and tune U32 until the maximum
power

P = N(U12 − U32)
e
− U12

kBT1 − e
− U32

kBT2

2 + e
− U12

kBT1 + e
− U32

kBT2

= max .

(8.94)
is achieved. We note that in this case the maximal
efficiency is not only the function of the quotient be-
tween the temperatures of the heat baths, but depend
on their relation to potentials. If the temperatures
are low, the overall efficiency stays close to the Carnot
one since the currents are small. However, when both
temperatures, T1 and T2 are high compared to the
energetic barriers, another result appears, and the
maximal efficiency tends to exactly one half of the
Carnot value. We note that no general expression for
the efficiency at maximal power exists, which would
be valid for all systems. The well-known expressions
like the the celebrated Novikov-Curzon-Ahlborn for-
mula η = 1 −

√

T2/T1 Novikov, 1958; Curzon and
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Ahlborn, 1975 are pertinent to rather special situa-
tions. In application to cyclically working machines
these problems are the issue of the so-called ”finite
time thermodynamics” (see Andersen, 1984).

Several other systems with different heat baths were
considered in the literature, mostly inspired by the
Feynman’s ratchet-and-pawl device or by an earlier
”thermal fluctuation rectifier” by L. Brillouin (Bril-
louin, 1950). The diode thermal fluctuation recti-
fier (Sokolov, 1998; Sokolov, 1999) is only a slightly
more complicated machine than our simple discrete
ratchet. It unveils, however, the important property
of all realistic devices of such kind, namely the pos-
sibility of heat transport through the fluctuations of
”mechanical” degrees of freedom, which makes them
intrinsically irreversible and lowers the efficiency even
under stalling conditions in comparison with the Carnot’s
value. The genuine Feynman’s device (consisting of
a vane at temperature T1 and of a ratchet-and-pawl
mechanism at temperature T2 connected by a solid
axle) is a much more intricate system. Feynman him-
self assumed its efficiency to be a Carnot one; how-
ever Parrondo and Espanol (1996) have shown that
it is not the case.

The simplest model system illustrating such mech-
anism of heat transport is an ”adiabatic piston” in
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contact with two gases at temperatures T1 and T2

(conceptually, but not mathematically the simplest
situation here corresponds to a frictionless piston of
mass M which moves in a cylinder, separating two
gases. The walls of the cylinder and the piston itself
do not conduct heat), see Kestemont (2000), van der
Broeck, (2001). The fluctuations of the piston’s ve-
locity transfer energy from one gas to another. On
the average no work is performed, so that the effect
we have to do here with is exactly heat conduction
through mechanical degree of freedom. The corre-
sponding works of the Belgian groups also discuss
the limits of applicability of Langevin approach to
such systems, which seems to perform reasonably if
the piston is heavy enough.

The more general issue of thermodynamics of ratchet-
like devices under different types of forcing has found
much attention in the last decade, since their way of
functioning is closely related to the one of many bio-
logical ”molecular motors”, see Astumian and Hänggi,
2002. Rather exhaustive review of different aspects
of such motors can be found in Reiman (2002), Frey
(2002), Parrondo and De Cisneros (2002).
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Chapter 9

Escape and first passage problems

The possibility to calculate the probability density
function or its moments, like the mean square dis-
placement, does not exhaust the whole class of prob-
lems of stochastic theory. One of the most important
classes of other problem settings are the first passage
problems for a stochastic process. Mathematically,
the task is to calculate the probability density φ(t)
(as a function of time) for a process x(t) to reach for
the first time a point x, or a set of points (a typ-
ical one-dimensional problem position), or to cross
a boundary of a spatial domain in spatial dimen-
sion more than one. Physical problems leading to
this mathematical formulation are abundant. The
genuine first-passage problems are often pertinent to
reaction kinetics, where the two particles interact if
they approach each other at distance a. These situa-
tions correspond to crossing the boundary, so to say,
from the outside. An opposite situation of the cross-

73
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ing a boundary from inside, emerges when describing
a decay of a bounded state in some given potential
(a problem emerging by the description of, say, disso-
ciation of a complex molecule, Ebeling, Schimansky-
Geier and Romanivsky, 2002). This situation is of-
ten termed as an escape problem. In ecology, the
first passage through some prescribed value, might
mean the extinction of the population, or the start
of the epidemic outbreak. The literature discussing
the first passage problems both from the mathemati-
cal, and from the physical point of view, is abundant.
A simple introduction into the topic is given in the
book Redner, 2001. In this Chapter we consider only
some simple situations. Understanding these situa-
tions is, however, necessary for understanding fluc-
tuation effects in chemical reactions, Chapter 10, or
the emergence of anomalous diffusion in complex po-
tential landscapes, Chapter 11.

9.1 General considerations

In this chapter we first concentrate on one-dimensional
problems. Let us first look at the realizations of
the corresponding random process and try to find
a mathematical formalization of the problem. The
physical situation here can be formulated as follows:
At time t = 0 a particle is introduced into a system
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at x = 0. As soon as particle reaches the place x0 the
realization is stopped, the time necessary to reach the
boundary (the first passage time) is recorded. Then,
we can obtain the distribution of these times, and use
it for further calculations. It is important to note that
we are interested in the frequencies of the realizations
of a random process, i.e. in the trajectories (paths)
of the particle. In order to get the distribution of the
first passage times, we have to know, in how many
realizations the path of the particle crossed the point
x = x0 at times t′ < t. In order to count them, it is
enough to assume an absorbing boundary condition
at x = x0: Particles having touched the point disap-
pear and their trajectories are disregarded at future
times. We assume the overdamped regime of motion,
where the probability density to find a particle’s at
point x is governed by Smoluchowski equation

∂p(x, t)

∂t
= −µf ∂p(x, t)

∂x
+D

∂2p(x, t)

∂x2
. (9.1)

Here the force f = −dU/dx. In cases corresponding
to the systems considered in thermodynamics (i.e.
ones possessing true thermodynamical equilibrium)
the mobility µ and the diffusion coefficient D are
connected to each other through the Einstein’s rela-
tion D = µkBT . The equation, Eq.(9.1) has to be
solved under the boundary condition p(x0, t) = 0 and
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for the initial condition p(x, 0) = δ(x), so that the
corresponding solutions are essentially the Green’s
functions of the Fokker-Planck equation, p(x, t) =
G(x, t|0, 0). It is important to stress here that the
equivalence of our assumption that all particles touch-
ing x0 disappear and the actual condition that the
trajectories crossing x0 have to be disregarded at
larger times assumes the continuity of the trajec-
tories, which is the case for Brownian motion, but
might be violated for some processes described by
generalizations of a Fokker-Planck equation (Chechkin
et al., 2003), so that care has to be taken when gen-
eralizing the results discussed here to the processes
other than Fickian diffusion.

After solving the equation for all times, we can
calculate the overall probability for the particle to
stay within the interval, which is

P (t) =
∫ x0

−∞ p(x, t)dt (9.2)

and note that the change in P (t) between the times
t and t + dt is exactly the probability to leave the
interval during dt. This is,

ψ(t) = −dP (t)

dt
. (9.3)
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By noting that

dP (t)

dt
=

∫ x0

−∞
∂p(x, t)

∂t
dx (9.4)

and using Eq.(9.1) we get

ψ(t) =
∫ x0

−∞





−µf ∂p(x, t)
∂x

+D
∂2p(x, t)

∂x2





 dx. (9.5)

Applying partial integration, and using the natural
boundary condition p(x, t) → 0 and for x → −∞
we get:

ψ(t) = −D ∂p(x, t)

∂x

∣

∣

∣

∣

∣

∣

∣

x=x0

, (9.6)

i.e. that the first passage time probability density is
equal to the diffusion current through the absorbing
boundary. If we are interested in the case of two ab-
sorbing boundaries at the ends of an interval the cor-
responding currents give us the probability per unit
time to leave the interval through the corresponding
end.

This approach based on the solution of the for-
ward equation assumes the knowledge of its time-
dependent solution, and is the typical ”physicist’s”
approach to the problem, which is not necessarily the
simplest or the most elegant one. However, this is the
one which works and, moreover, the one which works
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reliably even when the coefficients in the Fokker-
Planck equation are time-dependent.

9.2 The renewal approach.

The renewal approach to the first passage problem
uses explicitly the continuity of sample paths and
the Markovian nature of the problem. It reduces the
solution of a problem with absorbing boundary con-
dition to one for the free problem, one with natural
boundary conditions, which is sometimes much sim-
pler. The deficiency of the approach is however that
it is only effective in the one-dimensional case.

Let us start from the simple case of a single bound-
ary situated at x = x0. We consider the process
starting at t = 0 at x = 0. Imagine that at some
time tf > 0 the particle is found to the right of the
boundary, at some point xf > x0. The probability
of this event is given by the transition probability
density function of the ”free” process p(xf , tf |0, 0).

Due to the continuity of trajectories, the process
has to have passed the point x0 before reaching x at
some time t < tf (and might have passed the point x0

one or several times after this). Thus the realizations
of the process leading from x to xf may be uniquely
classified with respect to the time they first crossed
x0. Let us denote ψ(t, x0) the first passage time dis-
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tribution through point x0, and concentrate on all
realizations of the process contributing to ψ(t, x0).

Here the Markovian nature of the process comes in
play. The probability that the particle reaches x =
xf at t = tf provided it was at x0 at time t depends
only on x0 and t but not on the history of the process
at t < t0 and is given by the transition probability
density function of the free process p(xf , tf |x0, t0).
This means that the probability density to cross the
point x0 at time t and then to reach xf at time tf
is simply a product p(xf , tf |x0, t)ψ(t, x0). Summing
over all possible times t < tf one gets

p(xf , tf |0, 0) =
∫ tf

0
p(xf , tf |x0, t)ψ(t, x0)dt. (9.7)

This is an exact equation determining the first pas-
sage time for a Markovian process.

A next step can be done if the process x(t) in a
”free” motion is stationary (i.e. whenever the co-
efficients in our Fokker-Planck equation are time-
independent). In this case the transition probabil-
ity density depend only on the difference between its
time arguments: p(x2, t2|x1, t1) = G(x2, x1, t2 − t1)
and is equal to the Green’s function solution of the
Fokker-Planck equation with time-independent coef-
ficients. The integral in the r.h.s. of Eq.(9.7) has
now a form of a convolution. Another simplification
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stems from the fact that for diffusion processes one
can take a limit xf → x0 (since the corresponding
Green’s function is nonsingular in this limit), so that

G(x0, 0, tf) =
∫ tf

0
G(x0, x0, tf − t)ψ(t, x0)dt. (9.8)

This is a Volterra integral equation, which easily can
be solved numerically. The simplest way to its ana-
lytical solution is to take Laplace transforms of the
both sides of the equation, so that G̃(x2, x1, u) =
∫∞
0 G(x1, x2, t)e

−utdτ . Applying this transform we
get G̃(x0, 0, u) = G̃(x0, x0, u)ψ̃(u, x0), i.e.

ψ̃(u, x0) =
G̃(x0, 0, u)

G̃(x0, x0, u)
. (9.9)

Of course, in many situations, the inverse Laplace
transform has to be performed numerically. How-
ever, the expression for the mean first passage τ =
∫∞
0 tψ(t, x0)dt = d

du
ψ̃(u, x0)

∣

∣

∣

∣

u=0
follows easily.

The renewal approach can also be applied for cal-
culating splitting probabilities. Let us consider a par-
ticle moving between the two absorbing boundaries.
Here the two first passage probabilities, ψ(t, xL) for
first crossing the left boundary situated at xL and
ψ(t, xR) of first crossing the right boundary situated
at xR. Parallel to our previous consideration one
can say that if the particle which started at x = 0
at t = 0 is found at time t to the right from the
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right boundary (at some xf > xR) it might either
have first crossed the right boundary without touch-
ing the left one at some time t′ < t and then made the
way from xR to xf or crossed first the left boundary
and then made the way from xL to xf . The prob-
ability to touch the left boundary for the first time
without previously touching the right one between
times t and t+dt is given by the function ψ(t, xL)dt
and the probability to first touch the right bound-
ary (without touching the left one before) is given
by ψ(t, xR)dt. Note that ψ(t, xL) and ψ(t, xR) are
not proper probability density functions: both inte-
grals PL =

∫∞
0 ψ(t, xL)dt and PR =

∫∞
0 ψ(t, xR)dt

(representing the probabilities to leave the interval
through its left or through its right boundary, the so-
called splitting probabilities) are in general less than
unity. The normalization condition for the splitting
probabilities is given by PL + PR = 1. Following the
same scheme as before we obtain

G(xf , t|0, 0) =
∫ t

0
G(xf , t|xR, t′)ψ(t′, xR)dt′+

∫ t

0
G(xf , t|xL, t′)ψ(t′, xL)dt.′

(9.10)
This is an equation determining both ψ(t, xL) and
ψ(t, xR) since it has to be valid for any xf . To ob-
tain the explicit equations we take another xf to lie
to the left from the left boundary, and then make the
limiting transition, taking the corresponding xf ’s to
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tend to the boundaries of the interval from the out-
side. Since for stationary case the integrals in both
such equations are of the convolution type we can
make the Laplace-transform of the both and get

GRRψR +GRLψL = GR0 (9.11)

GLRψR +GLLψL = GL0,

where the following shorthand notation is introduced
for the Green’s functions: GRR = G̃(xR, xR; u),GLL =
G̃(xL, xL; u),GRL = G̃(xR, xL; u),GLR = G̃(xL, xR; u),
GR0 = G̃(xR, 0; u), and GL0 = G̃(xL, 0; u). More-
over, ψL = ψ̃(u, xL) and ψR = ψ̃(u, xR). The solu-
tion of the system of equations (9.11) is

ψL =
GR0GLL −GL0GRL

GRRGLL −GLRGRL
(9.12)

and

ψR =
GRRGL0 −GLRGR0

GRRGLL −GLRGRL
(9.13)

so that the probabilities can be found explicitly. The
splitting probabilities PL and PR are simply given by
the limiting values of the corresponding functions at
u→ 0.

For non-Markovian processes Eq.(9.8) might or might
not hold, depending on the exact nature of the pro-
cess. Thus it still holds for ”semi-Markovian” situa-
tions like continuous-time random walk models dis-
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cussed in Chapter 11. In this case the renewal ap-
proach is effective and preferable because the prob-
ability density for free motion might be obtained by
the alternative methods, without explicitly solving
corresponding (non-Markovian, fractional) Fokker-Planck
equations. Eq.(9.8) does not in general hold for the
processes described by non-Markovian Langevin equa-
tions or by moving averages. However, for a station-
ary non-Markovian process Eq.(9.8) might still be
a reasonable approximation: it simply assumes that
having arrived to a position of the absorbing bound-
ary, the particle has practically forgotten initial con-
ditions, so that its further behavior can be described
by a new initial condition problem. Of course it
does not imply that the corresponding solution of
the initial-value problem resembles to any extent the
Green’s function of any Markovian process. In this
case the renewal approximation based on Eq.(9.8) is
equivalent to the so-called Wilemski-Fixman approx-
imation (Wilemski and Fixman, 1974, Sokolov, 2003)
being widely used for description of reactions involv-
ing polymers.

9.2.1 Example: Free diffusion in presence of boundaries

As an example let us consider the first passage time
distribution for free diffusion (Brownian motion), where
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G(x2, x1, t) = (4πDt)−1/2 exp
[−(x2 − x1)

2/4Dt
]

, so
that

G̃(x2, x1, u) =
1√
4Du

exp



|x2 − x1|
√

√

√

√

u

D



 . (9.14)

This delivers ψ̃(u, x0) = exp(|x0|
√

u/D) from which
it follows that

ψ(t, x0) =
|x0|√

4πDt3/2
exp







x2
0

4Dt





 . (9.15)

This distribution of the first passage time to a bound-
ary is called Smirnov, Lévy-Smirnov or sometimes
”inverse Gaussian” distribution, and decays for long
times as ψ(t, x0) ∝ t−3/2 so that it does not have the
first moment: the mean first passage time diverges.
Note that the function ψ(t, x0) is a proper probabil-
ity density function, so that

∫∞
0 ψ(t, x0)dt = 1. This

means that the particle in 1d is eventually captured
at the boundary. This fact has to do with the recur-
rence of the one-dimensional Wiener process, which
visits any point on the line with probability 1 at
longer times.

We note that our consideration here based on the
fact that the trajectories of the process are continu-
ous. The result that at long times ψ(t, x0) ∝ t−3/2

is, however, valid also for a large class of jump pro-
cesses, i.e. the ones with discontinuous trajectories.
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However in the case ψ(t, x0) has to be considered not
as the distribution of first passage times, but as the
distribution of times at which the particle is for the
first time found on the other side of x0 than its ini-
tial position x = 0 was, see Chechkin et al., 2003.
This statement is one of the important consequences
of the Sparre-Andersen theorem from the theory of
random walks, see Feller, 1991.

Let us now consider splitting probabilities for a
particle starting at X = 0 on the interval with ab-
sorbing boundaries at xL < 0 < xR. Using equa-
tions (9.12) and (9.13) and our Laplace-transformed
Green’s function, Eq.(9.14) we get after expanding
the exponential up to the first order in their argu-
ments:

PR = 1 − PL =
1

2
+

|xL| − |xR|
2|xR − xL|

. (9.16)

9.3 Mean life time in a potential well

One of the most important results following from the
theory based on the Fokker-Planck equation is the
typical life-time in a potential well, i.e. the time nec-
essary to overcome a potential barrier. Since this re-
sult will be repeatedly used in what follows, we shall
discuss it here in some detail.

The situation considered here is depicted in Fig.9.1.
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Fig. 9.1 The typical potential discussed in the escape problem: a potential well with a simple
quadratic minimum and flat maximum

Imagine, a particle starts at the minimum of the po-
tential, at point x = 0. We say that the particle
overcame a barrier if it arrived for the first time at
a maximum of the potential curve at x = x0. The
value of the potential energy of the particle there is
U(x0) while the minimum of the potential energy at
x = 0 is taken for the reference point, U(0) = 0.

9.3.1 The flow-over-population approach

In order to find the mean first passage time, we don’t
need to solve the whole time-dependent problem.

Let us return to the physical formulation of the
problem, and again discuss the experiment with putting
the particles into a system. However, in order to ob-
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tain the result, it is not necessary to put the particles
one by one, and wait until the corresponding realiza-
tion terminates. Let us imagine that at the point
x = 0 a constant current of strength I is flowing
into the system, see Fig.9.2. At the beginning, after
switching on such current, the concentration of parti-
cles in the system will grow, and the output current,
leaving the system at point x0, will be smaller than
the input current I . Eventually, the steady state is
reached, the input and the output currents equili-
brate, and the steady-state concentration profile es-
tablishes itself. Now, if the mean first passage time,
i.e. the time a particle on the average spends within
the system, is τ , the mean number of particles within
the system will be exactly Iτ .

This mean number is nothing else than the integral
over the steady-state concentration of the particles
over the whole system (in our case over the semi-
infinite interval −∞ < x < x0). Thus, we have:

τ = I−1
∫ x0

−∞ p(x)dx (9.17)

where p(x) is the steady-state solution of the Fokker-
Planck equation (9.1). Note that the Fokker-Planck
equation is essentially the continuity equation for the



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

88 Escape and first passage problems

Fig. 9.2 The flow over population approach: We assume the particles are introduced at x = 0
and leave the system through the absorbing boundary at x = x0. This corresponds to the constant
current of particles (or probability) through the system.

probability current, and that

I = µ(x)f(x)p(x, t) −D(x)
d

dx
p(x, t). (9.18)

Here we remind that f = −dU/dx. This is an ordi-
nary linear differential equation, which can be rewrit-
ten in the form:

dp(x)

dx
+ p(x)

µ(x)

D

d

dx
U(x) = − I

D(x)
(9.19)

Eq.(9.19) is a linear differential equation, whose for-
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mal solution reads:

p(x) = exp(−V (x))





p(0) −
∫ x

0

I

D(x)
exp(V (x′))dx′







(9.20)
with V (x) = µ(x)U(x)/D(x) = U(x)/kBT . The
boundary condition p(x0) = 0 leads to the expression
for p(0):

p(0) = exp(−V (0))
∫ x0

0

I

D(x)
exp(V (x′))dx′.

(9.21)
From here on we assume for simplicity that the mo-
bility and the temperature are constant throughout
the whole system. According to our choice of the ref-
erence energy in Fig.9.2 we have exp(−V (0)) = 1,
which simplifies the expressions. Note that the prob-
ability current to the left from point x = 0 van-
ishes, so that to the left of this point the steady-
state solution coincides with the equilibrium solution
p(x) = p(0) exp(−V (x)). We thus have:

N(x) =



























I

D
exp(−V (x))

∫ x0

0
exp(V (x′))dx′ for x ≤ 0

I

D
exp(−V (x))

∫ x0

x
exp(V (x′))dx′ for 0 < x < x0

.

(9.22)
We thus have the following expression for the mean



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

90 Escape and first passage problems

first passage time in the system:

τ =
1

D

∫ 0

−∞ exp(−V (x′))dx′
∫ x0

0
exp(V (x′))dx′ +

+
1

D

∫ x0

0

[

exp(−V (x′′))
∫ x0

x′′ exp(V (x′))dx′
]

dx′′,(9.23)

the expression that can be rewritten in a form

τ =
1

D

∫ x0

0
dy′

∫ y′

−∞ dy′′ exp[V (y′) − V (y′′)]. (9.24)

Let us now concentrate on the case of a deep well or
small temperatures. In this case we can make simple
estimates for our integrals which now depend only on
the properties of the potential close to points x = 0
and x = x0.

9.3.2 The Arrhenius law

Let us assume that close to the maximum at point
x = x0 one has V (x) ' V (x0)−(2kBT )−1U ′′(x0)(x0−
x)2 and evaluate Eq.(9.23). In this case the integral
∫x0
0 exp(V (x′))dx′ in the first line of the last expres-
sion and the integral
∫x0
x′′ exp(V (x′))dx′ (which, for x′′ not too close to x0,
is practically a constant) are approximately equal to
each other and are given by the saddle-point approx-



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

Mean life time in a potential well 91

imation
∫ x0

0
exp(V (x′))dx′ '

√
πkBT

√

2|U ′′(x0)|
exp[V (x0)].

(9.25)
If we assume that the potential has a simple quadratic
minimum close to x = 0, i.e. that V (x) ' (2kBT )−1U ′′(0)x2,
the same type of an approximation for
∫ 0
−∞ exp(−V (x′))dx′ and for

∫x0
0 exp(−V (x′))dx′ again

shows that the integrals are approximately equal to
each other and can be approximated by

∫ x0

0
exp(−V (x′))dx′ '

√
πkBT

√

2U ′′(0)
exp[−V (0)]

(9.26)
(in our case we have V (0) = 0). The overall expres-
sion for τ the reads

τ ' πkBT

D
√

U ′′(x0)U ′′(0)
exp







U(x0)

kBT





 : (9.27)

the mean first passage time depends exponentially
on the height of the barrier relative to the thermal
energy of particles. This exponential growth is often
termed as the Arrhenius law.

9.3.3 Diffusion in a double-well

As the next example let us consider the behavior of
a particle in a double-well potential consisting of two
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Fig. 9.3 A symmetric double-well potential U(x) = x4 − 2x2 + 1

wells of depths U1 and U2 measured with respect to
the top of potential barrier. Then the mean first pas-
sage time from one well to another one is determined
by the corresponding well’s depths. Fig.9.3 shows a
symmetric potential well U(x) = x4 − 2x2 + 1 (hav-
ing two minima at x = ±1 separated by a barrier
of height 1 with the maximum at x = 1. A trajec-
tory of the diffusive process x(t) for µ = 1 and for
T = 0.15 is shown in Fig.9.4. Note that the behavior
of the trajectory shown in Fig.9.4 suggests its pos-
sible description as a sequence transitions between
the two well-defined states, in which the particle is
localized either in the left well (around x = −1) or
in the right one (around x = 1). Let us now identify
the position of the particle to the left from the top of
the barrier with the L-state of the system, and the
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Fig. 9.4 A realization of diffusion in a double-well potential shown in Fig.9.3 for µ = 1 and for
T = 0.15.

position to the right from the top with the R-state.
The average life-time in either state is 2τ (since after
reaching the top of the potential barrier the particle
can either change the well or return to the initial one,
with equal probability), which defines the transition
rate between the wells, k, which corresponds to the
mean number of transitions in either direction per
unit time. For the wells of different depth, two dif-
ferent rates, k+ for the transition in positive direction
and k− for the transition in negative direction; each
of them being equal to a half of the inverse of the
corresponding mean first passage time to the top of
the barrier.

The transition between the L- and the R states of
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the system can be considered as a simplest reversible
isomerization reaction,

L ⇀↽ R. (9.28)

and the probabilities PL and PR to find a system
in either state are given by the system of ordinary
differential equations,

dPL
dt

= −k−PL + k−PR

dPR
dt

= −k+PR + k+PL. (9.29)

This coarse-grained approximation corresponds to the
approach known as formal kinetics. If we consider the
ensemble of such two-level systems, than the number
of systems being in statesR and L are proportional to
the corresponding probabilities, and their sum equals
to the overall number of systems N .

The equilibrium probabilities following from Eq.(9.29)
are PL = k−/(k+ + k−) and PL = k+/(k+ + k−) so
that

PL
PR

=
k−
k+
. (9.30)

Expressing the transition rates through the first pas-
sage times and using the expression for the first pas-
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sage time derived above we get

PL
PR

=

√

√

√

√

√

√

U ′′(xL)

U ′′(xR)
exp







U(xR) − U(xL)

kBT





 . (9.31)

Note that this is exactly the result which one would
obtain if one simply uses the equilibrium Boltzmann
distribution p(x) = A exp(−U(x)/kBT ) with A be-
ing the normalization constant and define PL =

∫ 0
−∞ p(x)dx

and PR =
∫∞
0 p(x)dx. The corresponding integrals

are exactly of the type of Eq.(9.26) so that

PL = A
√

πkBT/2U ′′(xL) exp[−U(xL)/kBT ]
(9.32)

and

PR = A
√

πkBT/2U ′′(xR) exp[−U(xR)/kBT ],
(9.33)

and their quotient is exactly given by Eq.(9.31). This
connection between the rates and the equilibrium
populations is rather universal and holds whenever
rates exist. It is closely related to the mass action
law of equilibrium thermodynamics, see Chapter 10.

9.4 Moments of the first passage time

In the previous section we have seen how much in-
formation is contained even in the first moment of
the first passage time distribution, i.e. in the mean
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first passage time. Sometimes one also needs higher
moments of the distribution. The trivial way of ob-
taining ψ(t, x0) and then integrating it to obtain

〈tn〉 =
∫ ∞
0
tnψ(t, x0)dt (9.34)

might be too complicated, so that it is reasonable to
derive equations which give us these moments imme-
diately. Here we first return to the potential shown
in Fig.9.1 where the particle leaves the potential well
through the point x0. Let us consider now a gen-
eral initial condition, i.e. let the particle start at
some point y within the well and obtain the first
passage time probability density φ(t, y) = ψ(t, x0|y)
as a function of y. We have

φ(t, y) = − ∂

∂t

∫ x0

−∞ p(x, t|y, 0)dx. (9.35)

We now can interchange the sequence of temporal dif-
ferentiation and integration over x. Moreover, if the
coefficients in the Fokker-Planck equation are time-
independent, the probability density p(x, t|y, t′) de-
pends only on the difference t − t′ and thus as a
function of y is given by the backward Kolmogorov
equation

∂

∂t
p(x, t|y, 0) =





µf(y)
∂

∂y
+D

∂2

∂y2





 p(x, t|y, 0),

(9.36)



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

Moments of the first passage time 97

so that

φ(t, y) = −




µf(y)
∂

∂y
+D(x)

∂2

∂y2







∫ x0

−∞G(x, t|y, 0)dx.

(9.37)
where we have interchanged the sequence of integra-
tion over x and differentiation over y. Taking the
temporal derivative from both parts of this equation
and using the definition of φ(t, y), Eq.(9.35) we get
the closed equation for φ(t, y) in form of a backward
equation

∂

∂t
φ(t, y) = −





µf(y)
∂

∂y
+D

∂2

∂y2





φ(t, y). (9.38)

The corresponding initial and boundary conditions
follow from those for the backward Kolmogorov equa-
tion, but can be easily put down also from the purely
physical considerations: φ(0, y) = 0 for y 6= x0 (the
particle needs finite time to reach the boundary from
any point inside the well) and φ(t, x0) = δ(t), since
the particle needs zero time to rich the boundary in
the case it was there from the very beginning. Now,
we use the definition of the moments, i.e. multiply
both sides of Eq.(9.38) by tn and perform the inte-
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gration over t to get




µ(y)f(y)
d

dy
+D

d2

dy2





 〈tn(y)〉 = −n〈tn−1(y)〉φ(t, y)

(9.39)
giving the recursive hierarchy of equations for mo-
ments. The boundary condition 〈tn(x0)〉 = 0 (n <
0) follows from those for the δ-functional form of
φ(t, x0). Note that 〈t0〉 = 1 due to normalization.
For the mean first-passage time we thus get





µ(y)f(y)
d

dy
+D(y)

d2

dy2





 〈t(y)〉 = −1. (9.40)

This equation was first derived by Pontryagin, An-
dronov and Witt (1933). The splitting probabilities
can be, of course, discussed by introducing the cor-
responding boundary conditions at two ends of the
interval.

Note that Eq.(9.40) can be easily integrated (by

introducing first z(y) = d〈t(y)〉
dy and assuming that

this function vanishes for y → −∞) and leads to
the same results as the flow over population method:
The general solution of the equation reads

τ = 〈t(y)〉 =
∫ x0

y
dy′

∫ y′

−∞ dy′′
exp[V (y′) − V (y′′)]

D(y′′)
(9.41)
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where

V (x) = −
∫ x

−∞
µ(z)f(z)

D(z)
dz =

U(x)

kBT
(9.42)

is the same as in section 9.3.1. The overall scheme
however allows for obtaining the higher moments as
well.

The corresponding results may also be obtained
from the immediate discussion of the trajectories of
the process, see van Kampen, 1992, which approach
is a bit less formal, but needs starting again from the
general Master equation for the whole process.

9.5 An underdamped situation

This is only the overdamped motion in 1d (described
by the Smoluchowski equation) for which many beau-
tiful exact solutions are readily available. For more
general cases, say the ones described by the Klein-
Kramers equation, exact expressions are not known
(in the sense that you have first to solve equation to
get the result). Here a lot of nice numerical work
is done, and several approximations based on special
properties of the process are known, see Risken, 1988;
Hänggi, Talkner and Borkovec, 1990.

However, the limiting case of extremely low friction
is also amenable for theoretical investigation. The
treatment here might be based on the idea of energy
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diffusion discussed in Chapter 8. For µ→ ∞ (small
friction) the Klein-Kramers equation is reduced to
the Liouville equation: We have now to do with
the microcanonical ensemble with conserved energy
E = mv2/2+U(x), defining the states of the system.
The external noise causes the transitions between the
different states. In this case we can approximately re-
duce the two-dimensional Klein-Kramers equation to
a one-dimensional one. From formal reasons it is bet-
ter to characterize the states not by the energy itself
but by the action I(E) being the function of energy.

The relation between the energy and the action

I =
∮

pdx = 2
∫ xmax

xmin

√

2m [E − U(x)]dx (9.43)

follows from the Hamiltonian dynamics of the sys-
tem; xmin and xmax are the turning points of the
corresponding trajectory.

The instantaneous probability of transitions be-
tween the two states depends on where the phase
point is situated during the transition. The next
step is then averaging over all such transitions to get
the corresponding second moment giving the diffu-
sion coefficient in the corresponding Smoluchowski
equation. This procedure, introduced by Kramers
(see Kramers, 1940 and Zwanzig, 1959) leads to the
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following expression for the probability density in I :

∂p(I, t)

∂t
= γ

∂

∂I
I





1 +
2πkBT

ω(I)

∂

∂I





 p(I, t) (9.44)

where ω(I) is the frequency corresponding to the ac-
tion I :

ω(I) = 2π
∂E

∂I
. (9.45)

Eq.(9.44) is a one-dimensional equation for which the
discussions of our previous section hold. Using the
method based on the backward equation, Eqs.(9.40),
we can get an explicit result for the mean life time in
a well.

The main difference between the over- and the un-
derdamped situation can, however, be grasped with-
out really solving Eq.(9.44). Let us consider, for ex-
ample, the motion in a harmonic potential with a cut-
off at E = Emax. For this case ω(I) = ω0 =

√

k/m,
where k is the elasticity constant of the spring, and
I(E) = 2πE/ω0. Eq.(9.44) now reads ∗:

∂p(I, t)

∂t
= γ

2π

ω0

∂

∂I





ω0

2π
I + kBT

∂

∂I



 p(I, t) (9.46)

∗The simplification consisting the assumption that the maximum of the potential corresponds to
a cusp at Emax, is not always realistic. Typically, the escape escape takes place through a saddle
point of the potential (quadratic maximum). The frequency on the trajectory passing through
this saddle point vanishes, so that the diffusion coefficient 2πkBTγI/ω(I) formally diverges.
Thus, in the underdamped problem the behavior close to the separatrix is much less important
than for the overdamped case. Estimates show that our simple result is not too far from the
reality, see van Kampen, 1988
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Comparing this equation with a typical overdamped
form
∂

∂t
p(x, t) = µ

∂

∂x



−f(x) + kBT
∂

∂x



 p(x, t) (9.47)

we see that the situation is equivalent to the over-
damped case with µ changed for 2πγ/ω0 and the
force being −ω0I/2π. Therefore we can immediately
say that the corresponding rate (proportional to µ)
will linearly grow with friction coefficient γ, a situa-
tion opposite to the overdamped case, where it decays
as γ−1. Thus, the overall situation corresponds to
a nonmonotonous γ-dependence: For initial energies
belowEmax the rate, as a function of γ first grows and
then starts to decay. The crossover between these
two types of behavior at moderate damping was dis-
cussed almost half a century later, in the works by
Melnikov and Meshkov, 1986, and by Pollak, Grabert
and Hänggi, 1989, see Hänggi, Talkner and Borkovec,
1990 for a review.
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Reaction kinetics

One of the typical and important cases pertinent
to the domain of nonequilibrium thermodynamics or
statistical physics corresponds to the reaction kinet-
ics. One has to stress that what we call the ”reac-
tions” has a much broader meaning than a real chem-

ical reaction in a gas or liquid phase, but includes
many ”physical” phenomena such as recombination
of ions and electrons in plasma, the recombination
of electrons and holes in semiconductors, different
classes of processes leading to luminescence in solids
and liquids, to creation and healing of the radiation
defects, etc. Some special examples of these reactions
will be discussed in the following chapters. Here we
start from what is called the classical kinetic theory,
the approach based on the assumption that there ex-
ist well defined reaction rates, i.e. the probabilities
of reaction per particle per unit time. Before going
into details of kinetics, let us say a few words about

103
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the thermodynamics of reactions.

10.1 The mass action law

The typical chemical reaction

adducts ⇀↽ products (10.1)

eventually leads to establishing equilibrium between
the adducts and the products of the reaction; their
equilibrium concentrations depend on the thermody-
namical properties of adducts and products and on
the reaction heat, and is given by the mass action
law, being a law of equilibrium thermodynamics. For
example, if our reaction is a simple bimolecular one,

A + B ⇀↽ C (10.2)

(say, simple dissociation H + H ⇀↽ H2, or ioniza-
tion in plasma H+ + e− ⇀↽ H or in electrolytes,
or electron-hole recombination on a semiconductor,
or recombination of Frenkel defects in an irradiated
solid) the equilibrium concentration of the product
C and its dependence on temperature and pressure
are prescribed by thermodynamics, Landau and Lif-
shitz, 1990. The concentration of the reactant A will
throughout this chapter be denoted by the italic A.
Each reaction equation of the type above can be put
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down in a form

n1R1 +n2R2 + ...+nnRn ⇀↽ nn+1Rn+1 + ...+nMRM

(10.3)
where Ri with i = 1, ..., n are the adducts and Ri

with i > n are the products of the reaction. In our
example above we had ν1 = ν2 = ν3 = 1. Eq.(10.3)
can be rewritten as

ν1R1+ν2R2+...+νnRn+νn+1Rn+1+...+νMRM = 0,
(10.4)

where the numbers νi are the stoichiometric coeffi-
cients. Here we have νi = ni for the adducts and
νi = −ni for the products of the reaction. Let us
concentrate on the case when only one reaction is
possible in the system. The reaction equation dic-
tates then that the changes in the numbers of cor-
responding species are not independent: the reac-
tion equation, Eq.(10.4) represents a conservation
law for a given combination of the particle numbers
N1, N2, ..., NM . Thus, if the number of particles of
the sort R1 changed by δN1, then the number of par-
ticles R2 has to change by δN2 = (ν2/ν1)δN1, etc.
The changes in the numbers of the corresponding par-
ticles N1, N2, ..., NM are connected via

δN1

ν1
=
δN1

ν1
= ... =

δNM

νM
= δα. (10.5)
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The equilibrium state of the system is then charac-
terized by the minimum of Gibbs potential G being
the function ofN1, N2, ..., NM , of the pressure p, and
of the temperature T . The change in this potential
is

δG =
M
∑

i=1

∂G

∂Ni
δNi = δα

M
∑

i=1
νi
∂G

∂Ni
(10.6)

In equilibrium, the Gibbs potential is minimal, so
that

M
∑

i=1
νi
∂G

∂Ni
= 0. (10.7)

Let us now turn to the simplest situation which emerges
when the reaction takes place in well-mixed gaseous
phase or in dilute solutions. In this case the overall
value of G can be put into the form

G =
M
∑

i=1



Niµi − kBTNi ln
Ni

N



 , (10.8)

where µi is the chemical potential of the pure compo-
nent, and the second term corresponds to the mixing
entropy. This last one is taken in a form it has in
ideal gases or in dilute solutions. Here N denotes the
overall number of particles N = N1 +N2 + ...+NM .
Using Eqs.(10.7) and (10.8) we get:

M
∑

i=1
νi



µi − kBT



ln
Ni

N
+ 1







 = 0, (10.9)
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which equation can be rewritten in the form

M
∑

i=1
νi ln

Ni

N
=

M
∑

i=1
νi





µi
kBT

− 1



 . (10.10)

Introducing the relative concentrations ci = Ni/N
we get

cν11 · ... · cνMM = Kc (10.11)

where Kc is the reaction equilibrium constant,

Kc = exp





M
∑

i=1
νi





µi
kBT

− 1







 . (10.12)

Note thatKc is the function of the pressure p and the
temperature T being the natural variables of chem-
ical potentials. This is the mass action law, for-
mulated by Guldenberg and Waage in 1867. This
law connects the relative equilibrium concentrations
of the particles with chemical potentials of reacting
components. The dependence of the equilibrium con-
stant dependence on the temperature and pressure
was examined by van’t Hoff, whose investigations
brought him the (very first!) Nobel prize in chemistry
in 1901. The volume concentrations Ri = ciN/V =
cip/(kBT ) of the products satisfy the similar equa-
tion,

Rν1
1 · ... ·RνM

M = Kc(T, p)





p

kBT





ν

(10.13)
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with ν = ν1 + ... + νM . In our simple bimolecu-
lar reaction taken as an example the combination in
the l.h.s. would correspond to AB/C. The mass
action law and the corresponding van’t Hoff’s equa-
tions are the consequences of thermodynamics, and
do not depend on the exact dynamical mechanism of
the reaction. Note however, that here the condition
of ”well-mixedness” is explicitly assumed. The Gibbs
potential (the free enthalpy) of the system depends,
through the entropic contribution, on the correlations
between the particle’s positions, which might appear
either through interactions or dynamically, through
the reaction itself. Thus, the mass action law might
be violated, which doesn’t mean the violation of any
thermodynamical principles. Note that some corre-
lations might be destroyed by effective mixing: this is
how mixing procedures may influence chemical equi-
libria.

10.2 Classical kinetics

Let us now turn to the kinetics of the reaction. In
many cases both the forward and the backward re-
action can be described by the rates k+ and k−:

A + B
k+

⇀↽
k−

C (10.14)
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so that the kinetic equations for the corresponding
concentrations (denoted by the same symbols, now in
italic) follows a system of ordinary differential equa-
tions:

d

dt
A =

d

dt
B = −k+AB + k−C

d

dt
C = k+AB − k−C. (10.15)

Here we assume that the two adduct molecules A and
B have a well-defined probability to meet and to react
per unit time, and that the product molecule C has
a well-defined probability to dissociate per unit time.
The first probability is assumed to be proportional to
the product of concentrations A and B (which means
that for a given one A-molecule the number of reac-
tive encounters with B is proportional to the actual
B-concentration in the system; this probability per
unit time is exactly k+); the second probability is
assumed to be constant and is exactly k−.

The system of equations of classical reaction kinet-
ics can be easily solved, and shows a relaxation to
an equilibrium state given by the situation when the
time-derivatives in the left hand sides vanish. In this
case

AB

C
=
k−
k+
. (10.16)
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We note that AB
C is exactly the combination whose

value is prescribed by the mass action law. Thus, if
the reaction rate coefficients k+ and k− exist, they
are not independent, but connected to each other
via the constant of the mass action law. However,
as we hasten to note, the existence of well-defined,
time-independent reaction rates is essentially an ad-
ditional hypothesis which is often violated, so that
the real kinetics of the reaction hardly resembles the
one prescribed by the system of first-order ordinary
equations of the formal kinetics, or even the reaction-
diffusion equations.

Van Kampen summarizes typical conditions under
which the reaction rate approach applies (see van
Kapmen, 1992):

(1) The mixture must be homogeneous, so that the
density at each point is the same. If the reaction
is sufficiently slow, such homogeneity might be
achieved by stirring.

(2) The non-reactive elastic collisions must be suffi-
ciently frequent to ensure the Maxwell velocity
distribution at temperature T . Otherwise the
collision frequency could not be proportional to
the product of densities. This assumption is
typically satisfied in the presence of a solvent
or inert gas. It is, of course, always the case if
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the transport process can be approximated by
diffusion.

(3) The internal degrees of freedom of the molecules
are supposed to be in thermal equilibrium, at
the same temperature T .

(4) The temperature must be constant is space and
time so that one may treat the reaction rates as
constants even though they depend strongly on
temperature.

In many cases, the homogeneity of the system as
a whole might be violated. However, just in spirit
of non-equilibrium thermodynamics, in many cases
one can still assume local equilibrium, so that the
reaction can be described by concentrations, temper-
atures, etc., which are coordinate-dependent. This
approach assumes that the characteristic size of inho-
mogeneities is large compared with the interparticle
distance and with their mean free path. Moreover,
the approach assumes that some ”microscopic” re-
action rate constants exist, which govern the local
course of the reaction, so that all inhomogeneities
may be considered on the ”mesoscopic” level, i.e.
assuming that the reaction takes place in a locally
homogeneous medium, however, the local concentra-
tions or temperatures may differ from place to place.
This assumption leads to the reaction-diffusion or
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reaction-diffusion-advection equations, being meso-
scopic approximations. The corresponding continuous-
medium approximations (e.g. reaction-diffusion equa-
tions) describe a large variety of effects. However,
these approaches fail whenever the clear-cut scale
separation gets impossible.

10.3 The Smoluchowski approximation

It is important to stress that real kinetics of chemi-
cal reactions depends both on the properties of the
elementary act of the reaction (through the proba-
bility of forwards / backwards reactions) and on the
transport process, bringing the reacting particles to-
gether. The last one depends strongly on the proper-
ties of the reaction medium, and may be different for
example for the cases when this medium is stirred or
not. Note that the chemical equilibrium, depending
essentially on the thermodynamic (i.e. static) prop-
erties of products and adducts is typically determined
solely by the nature of the products and adducts, but
not by transport.

The first theory taking into account the properties
of the transport process stems again from Smolu-
chowski, whose model was the coagulation of dif-
fusing particles in absence and in presence of flows
(Smoluchowski, 1917).
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The approach of Smoluchowski was rather simple
but effective. Let us consider a bimolecular reaction
of particles A and B in a quiescent medium. Let at
the beginning imagine that only particles A diffuse,
and the B-particles are immobile (fixed). The phys-
ical picture exactly corresponding to this situation
will be discussed in the next paragraph.

Let us first consider the reaction taking place with
probability 1 on contact between A and B particles.
The reaction rate k of the forward reaction can then
be interpreted as a current (Berg 1994, Rice, 1985)
of A-particles onto the surface of a B one: This is
a number of encounters of A’s and a chosen B pro
unit time. Imagine, the motion of A’s is pure diffu-
sion, and the reaction takes place when the A particle
approaches the B one at a distance a, called the re-
action radius. The overall situation is assumed to
be spherically symmetric. The reaction rate of such
purely diffusion-controlled reaction can be obtained
through the solution of the diffusion equation for the
concentration n of the A-particles surrounding the
chosen B. To get the number of such encounters per
unit time it is the enough to calculate the overall cur-
rent of A’s onto the surface of the chosen B. This is a
diffusion current, which in three dimensions is given
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by

Jdiff = −4πa2D∇n(r → a+, t); (10.17)

the reaction rate is nothing else as k = Jdiff/A. Here
the concentration n(r, t) is a solution of the diffusion
equation

∂

∂t
n(r, t) = D∆n(r, t). (10.18)

There are no A-particle within the reaction sphere,
so that the boundary condition n(a, t) = 0 applies.
The initial condition corresponds to a well-premixed
system, in which the A-concentration is constant, so
that n(r, 0) = Aθ(r − a).

This equation is not too hard to solve. Applying
the Laplace-transform in time (changing to n(r, u) =
∫∞
0 n(r, t)e−utdt) and using the spherical symmetry
of the problem we get:

un(r, u) −Aθ(r − a) = D
1

r2

∂

∂r





r2∂n(r, u)

∂r







(10.19)
with boundary conditions n(a, u) = 0, n(r, u) → A
for r → ∞. The change of variables n(r, u) =
ψ(r, u)/r reduces this equation to one with constant
coefficients, which is readily solved. The inverse Laplace
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transform then gives

n(r, t) = A



1 − a

r
erfc





r − a

2
√
Dt







 . (10.20)

Note that for t→ ∞ the solution tends to a station-
ary one,

n(r, u) = A
(

1 − a

r

)

, (10.21)

i.e. to the solution of the three-dimensional Laplace
equation fulfilling the boundary conditions. Equa-
tion (10.20) gives us the current onto the reaction
surface

Jdiff = A4πDa



1 +
a

2
√
Dt



 (10.22)

which after a transient tends to a constant giving the
famous result

kdiff = 4πDa (10.23)

for the reaction rate constant (Smoluchowski, 1917).
If both reactants are mobile, the diffusion coefficient
D is changed for the mutual diffusion coefficient D̃ =
DA + DB being the sum of the diffusion coefficients
of reactants. The same approach was used by Debye
(Debye, 1942) to get the effective rates of recombina-
tion in electrolytes, see also Falkenhagen, 1971, Rice,
1985.
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The fact that the reaction takes place not with the
probability 1 on encounter can be taken into account
by using a partially reflecting (von Neuman) bound-
ary condition and leads to a simple result

k−1 = (kdiff + kr)
−1 (10.24)

where kr is the reaction-controlled contribution, con-
nected with the reaction probability (see Rice, 1985,
Ovchinnikov, Timashev and Belyi, 1986). Since many
real chemical reactions in fluid or solid phases are
not ”fast” (i.e. purely diffusion-controlled) so that
the probabilities of the reactions on a contact are
small, the effective rate is mostly governed by the
reaction probability (Kramers rate), and therefore
the deficiencies of the Smoluchowski’s approach are
not relevant. However, in the cases with slow dif-
fusion and rather fast reaction these deficiencies get
evident. Such cases are often pertinent to lumines-
cent energy transport or to interactions of radiation
defects in solids. Interestingly enough, here the the-
orists were first to discuss the situation; the results
were then experimentally proved. The reason why
the effects were not paid much attention are typi-
cally as follows: The systems are anyhow complex.
The exact reaction schemes may include intermediate
stages about which nothing is known. Including such
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stages allows to fit whatever experimental curve. On
the other hand, theoretical approaches starting from
simple models have clearly shown that the deviations
might be strong and that they might persist asymp-
totically.

Considering the physical meaning of n(r, t) in Eq.(10.18),
it is easy to understand that it is proportional to
cAB(r, t), the two-point correlation function of the
positions of A and B-particles, so that the equation
of formal kinetics,

∂

∂t
cA = −kcAcB (10.25)

with

k = −4πa2D∇cAB(r, t) (10.26)

for the one-point concentrations cA = A and cB = B
and the Smoluchowski’s diffusion equation

∂

∂t
cAB(r, t) = D∆cAB(r, t) (10.27)

with boundary condition cAB(a, t) = 0, and initial
condition cAB(r, 0) = θ(r−a) are essentially the first
and the second equation in the BBGKY-hierarchy,
with a truncation of the second one. (The correct
second equation should also contain a functional of
the three-point correlation function in its r.h.s., Ku-
zovkov and Kotomin, 1988; 1996. This means, that
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the Smoluchowski equation is clearly a two-particle
approximation, fully disregarding higher correlations.
So are also many of the reaction-diffusion schemes in
use. The relative importance of many-particles ef-
fects in nonequilibrium dynamics of such reactions
may be assessed by means of more accurate theories,
or by numerical simulations. Note that although the
characteristic scale of the change in A-concentration,
which might be considered as the effective range of
the ”interaction” caused by chemical reaction, given
by Eq.(10.21) is the reaction radius a, i.e. is mi-
croscopic, the ”interaction” itself is long-range. This
indicates that the situations might occur in which
the two-particle picture by Smoluchowski, as well as
other two-particle approximations lose their validity.
By now, several classes of reactions are known, in
which the approximations dramatically fail to pre-
dict kinetics; three ones will be considered in what
follows.

We note that, as it is often the case, the BBGKY-
hierarchy itself, although being formally the universal
theoretical instrument, does not provide a comfort-
able base for practical calculations, so that only few
effects (like Ovchinnikov-Zeldovich slowing-down, vide
infra) can be reasonably described within these schemes;
moreover even here the description relies on uncon-
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trolled approximations like Kirkwood decomposition
or equivalent. On the other hand, several special
cases can be discussed with high degree of rigor us-
ing alternative (probabilistic or field-theoretical) ap-
proaches, see e.g. Mattis and Glasser, 1998. We
would like to stress that for the quantitative descrip-
tion of such cases the random-walks approaches based
on the picture put forward by Elliot Montroll and
Georges Weiss were proved superior to Langevin schemes
or continuous approximations. However, it is not our
aim here to discuss the modern theory of diffusion-
controlled reactions in full depth: For us it is only
valuable as an example of how surprising non-equilibrium
effects emerge from in the situations, in which the
equilibrium behavior is clear and boring. The in-
terested reader finds a lot of material in a book by
Kuzovkov and Kotomin, 1996.

These are not only the multiparticle effects that
may lead to failure of the reaction rate approxima-
tion. The notion of the constant reaction rates is
intrinsically inappropriate in lower dimensions (cap-
illaries, surfaces, involved fractal geometries of porous
media, see Kopelman 1988, Blumen, Klafter and Zu-
mofen, 1986).

Let us consider as an example a purely one-dimensional
situation (the coordinate is now denoted by x, the B-
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particle is placed in the origin). Once again the con-
centration of A is given by Eqs.(10.25-10.27). In one
dimension, however, Eq.(10.27) does not possess any
stationary solution, to which the actual solution of
the initial-value problem would tend at longer times.
The solution of Eq.(10.27) in one dimension is given
by

cAB(x, t) = erfc





−|x| − a

2
√
Dt





 (10.28)

and is not a stationary, but a self-similar one. The
corresponding reaction rate k(t) is a function of time
and continuously decays, indicating the ineffective-
ness of the one-dimensional transport:

k(t) = −2D
d

dx
cAB(x, t)|x=a =

2
√
D√
πt

(10.29)

(note that the dimension of the reaction rate in d di-
mensions is

[

Ld/T
]

, so that in 1d it has the dimension
of velocity).

In two-dimensions situation the reaction rate also
decays, and goes as 1/ ln t. The behavior is 1d and
2d is intrinsically connected with the recurrence of
random walks in these dimensions, which leads to
a compact exploration of the reaction volume. We
return to this discussion in Chapter 11, devoted to
the random walk approaches to nonequilibrium pro-



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

Fluctuation effects in chemical kinetics 121

cesses.

10.4 Fluctuation effects in chemical kinetics

In many cases considered in thermodynamics fluctu-
ations play a subordinated role, and are typically ne-
glected. One of such cases is pertinent to the theory
of chemical reactions, where one often uses classical
reaction schemes as if they were immediately follow-
ing from the mass action law. However, one has to
be aware that such schemes may be very week and
crude approximations, which are valid only for re-
stricted values of parameters (say, homeopathic con-
centrations or high temperatures) or under special
additional conditions (say, vigorous mixing).

Let us consider a few simple examples illustrating
the deficiencies of the classical concept of reaction
rates. We consider a few classes of reactions which
are especially ”popular” due to their relevance for
physics. Thus we consider

A + B → B

with B immobile (”trapping”), showing strongly non-
classical kinetics, as compared to

A + B → B

with A immobile (”scavenging”), whose kinetics fol-
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low a classical pattern,

A + B → 0

(”annihilation”, nonclassical) as compared to

A + A → 0

(”quenching”, classical, at least at small concentra-
tions), as well as

A + B → 2B,

being the simplest autocatalytic reaction. Some ef-
fects considered here are discussed in much more de-
tail in in the review article Mikhailov, 1989 and in
the book by Kotomin and Kuzovkov, 1996.

FOR ADDITIONAL MATERIAL READ THE ORIG-
INAL BOOK
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Random Walk Approaches

The diffusion behavior governing fluctuations close to
equilibrium and the time evolution of many nonequi-
librium systems is ubiquitous, and the description of
this diffusive behavior within the Langevin or Fokker-
Planck schemes is a commonplace. However, as al-
ready said, these approaches are based on extrapolat-
ing mesoscopic type of behavior to microscopic scales,
which is not always advantageous. It might be rea-
sonable to start from a simple microscopic kinematic
model (the one very close to the multiple scattering
picture proposed by P. Drude in his electronic the-
ory of metals), and to build the theory along slightly
different lines. Although the approaches considered
in this chapter are very close in idea to the ones
proposed by Einstein and Smoluchowski, they are
not always even mentioned in books on nonequilib-
rium thermodynamics. However, random walks ap-
proaches are one of the methods of the widest use

123
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at least in the discussion of simplified nonequilib-
rium models, and give clues to understanding of such
complex phenomena as dispersive transport in amor-
phous solids or aging in glass-like materials. Thus,
up to the time these lines were written, the origi-
nal work by Harvey Scher and Elliot Montroll ex-
plaining the dispersive transport in amorphous semi-
conductors within the continuous-time random walk
model was referred to more than 1000 times (Scher
and Montroll, 1975)! The versatility of random walk
models and the possibility to adapt them to a variety
of essentially non-Markovian situations make them
an extremely valuable tool in the investigation of ki-
netic phenomena in the cases when the approaches
based on the Markovian dynamics fail. The weakness
of the approach in its classical form, put forwards by
Elliot Montroll and George Weiss, is that it strongly
relies on the homogeneity of the system: It is not
always easy to adapt this approach to the case of
motion in the external fields; however, this is some-
times possible and leads to beautiful mathematics
(fractional Fokker-Planck equations). General infor-
mation about the random walk approaches to differ-
ent physical problems can be bound in the review
articles by Haus and Kehr (1987), by Bouchaud and
Georges (1990) and by Isichenko (1992).
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11.1 The random walk approach to transport processes.

Parallel to the Einstein’s treatment of the Brownian
motion, let us considers the motion of a particle as
a sequence of independent steps. Each of these steps
takes some time τ and brings a particle some distance
s away from its initial position. The step’s duration
τ and length smay be correlated or uncorrelated and
are taken from some probability distribution ψ(τ, s).
At the beginning we assume the step lengths and
times to be independent on the particle’s position
and on the actual time: As one can anticipate, the
random walk approach reduces our transport prob-
lem to the mathematical problem of the distributions
of the sums of independent, equally distributed incre-
ments. For example, the situation discussed in the
Einstein’s work on Brownian motion is really very
close to a genuine random walk picture put forward
by Bachelier, Rayleigh and Pearson, see Chapter 1.

To stress the connection of random walks with our
previous approaches let us return to the Einstein’s
discussion of the Brownian motion as following from
the independence of the particles’ motion and from
the two additional postulates, namely the ones that
the displacements of a particle during two subsequent
intervals of the duration τ are independent and that
the distribution of these displacements, φ(s), pos-
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sesses the finite dispersion. The displacement of the
particle can be considered as a result of many small,
independent, equally distributed steps. The displace-
ment of the particle after n such steps is:

Xn = s1 + s2 + ... + sn. (11.1)

In order to find the distribution of the sum of in-
dependent random variables, a useful instrument is
provided by characteristic functions : A characteris-
tic function of a probability distribution given by the
probability density p(x) is defined as the mathemat-
ical expectation of eikx, i.e. it is simply the Fourier-
transform of p(x). Note that the Fourier-transform
can be inverted, so that the density of a probability
distribution can be found through its characteristic
function via the inverse Fourier-transform (under the
well-known conditions and restrictions). Note also
that since

dn

dkn
f(k) =

∫ ∞
−∞ (−ix)n eikxp(x)dx, (11.2)

the characteristic function of a distribution is a gener-
ating function of its moments: if the n-the derivative
of the characteristic function exists then

Mn =
∫

xnp(x)dx = (−i)n dn

dkn
f(k)

∣

∣

∣

∣

∣

∣

k=0
. (11.3)

Now let us consider the characteristic function of
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the sum of n independent random variables. Let us
start from n = 2. The probability p(y) that the
sum of two independent random variables x1 and x2

having the probability densities p1(x1) and p2(x2) is
equal to y is given by

p(y) =
∫

dx1p1(x1)p2(y − x1) (11.4)

(i.e. is a convolution of the probability distributions
p1 and p2). To see this it is enough to note that for
any value of x1 the value of the sum y = x1 + x2 is
attained for the well-prescribed value of x2 = y−x1,
with the probability p2(y − x1)dx1, which has to
weighted over all possible values of x1. A charac-
teristic function of p(y) is, of course, the Fourier-
transform of this convolution, i.e. the product of the
corresponding characteristic functions:

f(y) =
∫

eikyp(y)dy = f1(k) · f2(k). (11.5)

For the sum of n independent, equally distributed
variables we can proceed recursively and show that
the characteristic function of the distribution of a
random variable X given by Eq.(11.1) will be

fX(k) = f1(k) · f2(k) · ... · fn(k). (11.6)

If all fi(k) = f(k) are the same, we simply have

fX(k) = [f(k)]n . (11.7)
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Thus, the characteristic function of the distribution
of the sum of n identically distributed, independent
variables is the n-th power of the characteristic func-
tion of the distribution of each of them. We also note
that if the corresponding variable s is nonnegative,
the Laplace-transform of the the probability density,
L{p(X)} will have the same property, namely,

L̂{pX(X)} =
[

L̂{ps(s)}
]n
. (11.8)

Let us remind that the Laplace transform is defined
as

f̂ (u) ≡ L̂{f(y)} ≡
∫ ∞
0
e−uyf(y)dy. (11.9)

Let us first discuss the genuine Einstein’s (or Pear-
son’s) problem. The random walk approach allows
us for finding the probability distribution of the par-
ticle’s position p(x) immediately through φ(s), with-
out the intermediate step of putting down the corre-
sponding differential equation for it. Let us assume
that φ(s) possesses at least two finite moments. Then
one has

φ̂(k) = 1 +M1k +
1

2
M2k

2 + o(k2). (11.10)

After n steps we then have

f̂ (k) = φ̂(k)n =



1 + iM1k −
1

2
M2k

2 + o(k2)





n

.

(11.11)
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Let us now concentrate on the case n→ ∞ and use
the well-known limiting relation

(1 + x)1/x → e (11.12)

for x→ 0. One thus has for k small:

f(k) '
{

[1 + (φ(k) − 1)]1/(φ(k)−1)
}(φ(k)−1)n → en(φ(k)−1).

(11.13)
Thus, for k small enough we have

f(k) ' exp



n



iM1k −
1

2
M2k

2






 (11.14)

which is a characteristic function of a Gaussian dis-
tribution

p(x) =
1√

2πnσ
exp









−(x− nM1)
2

2nσ2









(11.15)

with σ = M2−M 2
1 . Since in the Einstein’s treatment

the distribution φ(s) was supposed to be symmetric,
M1 = 0 and

p(x) =
1√

2πnσ
exp





− x2

2nσ2





 . (11.16)

Again, as in the Einstein’s approach we can take
n = [t/τ ], where [...] denotes the whole part of the
number. For t large enough we can simply take
n = t/τ . Inserting this expression in Eq.(11.16) we
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get

p(x, t) =
1√

4πDt
exp





− x2

4Dt





 (11.17)

with D = σ2/2τ , as already discussed. Due to the
assumed homogeneity in space and time we can also
immediately put down the transition probability (the
Green’s function)

p(x, t|x0, t0) =
1

√

4πD(t− t0)
exp









− (x− x0)
2

4D(t− t0)









.

(11.18)
Of course, what we did up to now, is nothing else

than a hand waving derivation of the Central Limit
Theorem first stated by Gauss and Laplace; its full
mathematical formulation is due to Lévy and Cramér;
the criteria of convergence and the possibility to drop
out an o(k2)-term in Eq.(11.11) are given by the
Berry-Esseen theorem and its generalizations (see Feller,
1991).

11.1.1 Random walks on lattices

Let us discuss random walks on lattices, which are
often considered as the random walk model. A vast
mathematical literature is devoted to precisely this
subject; the already mentioned books by Spitzer (1976),
by Feller (1991) as well as one by Georges Weiss
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(1994) are the examples. However, also physically
the model is quite reasonable for description of, say,
energy transfer in crystals (say luminescent reactions
in molecular crystals as exemplified by trapping, see
Montroll and Weiss (1965), Montroll (1969)). The
model follows by allowing the particle to jump only
to next-neighboring lattice sites, i.e. to fixing the
function φ(x) = C−1 ∑

j δ(x−rj), where j = 1, ..., C
numbers the nearest neighbors of the corresponding
site and C is the coordination number of the lattice.

Of course, using the general scheme of a Master
equation one can immediately describe the particles’
displacements either exactly or within the Fokker-
Planck approximation. However, there are other ap-
proaches which might be more suitable for calcula-
tion of some special properties. We concentrate here
first on random walks with discrete time (fixed time
needed to perform a step). The continuous-time re-
sults follow then by the subordination procedure, as
discussed in the next section.

Let PN(r) be the probability for a particle starting
at 0, to be at the point r after N steps. Many useful
results for random walks are obtained using the gen-
eration function formalism. The idea here is as fol-
lows: The values of PN(r) for given r and given initial
conditions form a number sequence. Let us represent
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this sequence as a sequence of Taylor-coefficients of
a function

P (r; z) =
∞
∑

N=0
PN(r)zN (11.19)

which is said to be a generating function for the se-
quence PN(r). If the generation function exists, it
contains the whole information about PN(r), and al-
lows for obtaining many results in a closed, analytical
form.

Let us first consider a general situation. Imagine
that f(z) =

∑∞
N=0 fNz

N is a generating function of a
sequence fN (here we assume that the series converge
at least in some range of z). The z-transformation
leading from the sequence fN to its generating func-
tion is a discrete analogue of the Laplace-transform:
taking z = exp(u), one recognizes in Eq.(11.19) an
integral sum for the corresponding Laplace integral.
The z-transformation shears with the Laplace trans-
form some important properties: thus, it is linear,
Z({fn} + {gn}) = Z {fn} + Z {gn}, and the Z-
transform of a discrete convolution of two sequences
{fn} and {gn}, i.e. of a sequence {hn} = {fn}∗{gn}
with the elements hn =

∑n
i=0 fign−i is a product

of the corresponding generating functions: h(z) =
f(z)g(z). Moreover, under some regularity condi-
tions the generating function can even be approxi-
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mated by a Laplace transform.
Now let us say a few words about the back trans-

formation. Of course we can use the tables, or ap-
proximate the back z-transform by a back Laplace
transform. However, for a special class of functions
we meet in what follows (i.e. those which asymp-
totically behave as power-laws), we will not need it.
The back transform is essentially given by so-called
Tauberian theorems, Feller (1991), vol.2 Chap. XIII,
§5.

Imagine g(y) =
∑∞
N=0 gne

−yn with gn > 0 (note
that y = ln z). Let us consider the functions which
behave essentially as power laws, so that for y small
g(y) = y−γL(1/y) and L(x) is a slowly changing

function of x, i.e. limx→∞
L(Cx)
L(x) = 1 for any positive

constant C. An example of a slowly changing func-
tion are not only functions tending to a finite limit
when x→ ∞, but also, say, log(x) or any powers of
the logarithm. Let us introduce now a new function
ϕ(y) so that g(y) = ϕ(1/y). Then that the partial
sum of the series can be approximated as

g1 + g2 + ... + gn '
ϕ(n)

Γ(γ + 1)
. (11.20)
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If the sequence {gn} is monotonous,

gn '
ϕ′(n)

Γ(γ + 1)
. (11.21)

The quality of approximation is typically very good.
Having the instrument, we can start discussing some

important results connected with the first passage
probabilities and with the overall number of visited
sites.

Let us discuss for example the probability FN(r)
of visiting the site r for the first time at step N .
We can use here the discrete analogue of the renewal
approach based on the relation between PN(r) and
FN(r). Let us consider a random walk starting at
0. The probability to be at step N at site r is then
given by:

PN(r) = δN,0δr,0 +
N
∑

j=0
PN−j(0)Fj(r). (11.22)

The particle starting from 0 and being at r after N
steps might have first visited the site r for the first
time at step j and then returned to it. The prob-
ability of such return after N − j steps is PN−j(0)
due to the homogeneity of the lattice. Applying the
z-transformation to this equation we get: P (r, z) =
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δr,0 + P (0, z)F (r, z), from which

F (r; z) =
P (r; z) − δr,0
P (0; z)

. (11.23)

The overall probability to visit the site r is thus
F (r) =

∑∞
n=0 F (r, N). Let us calculate for exam-

ple the overall return probability F (0). Note that
F (r) = F (r; 1), and thus

F (0) = 1 − 1

P (0; 1)
. (11.24)

Thus, the random walk returns to the origin with
probability 1 if P (0; 1) diverges, and the return prob-
ability is finite if P (0; 1) is finite. Now, using the
characteristic function of the random walk, fN(k) =
λn(k), PN(0) can be easily found by back Fourier-

transform: PN(0) =
(

1
2π

)d
∫

Ω fN(k)dk (integration
over the Wigner-Seitz cell of the lattice), so that
P (0; z) may be obtained by integration the geometric
series. Interchanging integration and summation we

obtain P (0; z) =
(

1
2π

)d
∫

Ω
∑∞
i=0 fN(k)dk =

(

1
2π

)d
∫

Ω
∑∞
i=0 [f(k)]N dk,

i.e. arrive at

P (0; z) =





1

2π





d
∫

Ω

dk

1 − zf(k)
. (11.25)

The integral for P (0; 1) can only diverge if for some
k-vectors one has f(k) = 1. For example, for hy-
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percubic lattices f(k) = 1
d

∑d
j=1 cos(kja) and diver-

gence can take place only for k = 0. For small k,
f(k) ≈ 1 − 1

2
a2k2 + ..., so that

P (0; 1) '




1

2π





d
∫

Ω

k2dk

1 − (1 − 1
2
a2k2)

' 2





1

2π





d

a−2
∫

Ω
kd−3dk.

(11.26)
The corresponding integral diverges for d = 1 and 2:
the simple random walks in one and two dimensions
are recurrent. In d = 3 the integral converges, so that
the random walk does not necessarily return to the
origin (is transient). Some known return probabilities
are:

F (0) =























0.3405 for SC lattice
0.2822 for BCC lattice
0.2563 for FCC lattice

(11.27)

(Here SC denotes the simple cubic lattice, and BCC
and FCC the body-centered and the face-centered
cubic lattices, respectively). A more important prop-
erty of the lattice random walk is the number of dif-
ferent sites visited. Indeed, it is a property which
is intimately connected with the rates of diffusion-
controlled reactions on such lattices. Let 〈SN〉 be the
mean number of different sites visited by a particle A.
Let moreover consider a scavenging reaction where
single mobile A-particle removes immobile B’s met
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on its way. The mean number of B removed during
N steps is connected with 〈SN〉 via NB = cB 〈SN〉
where cB is the concentration of B (a probability
that a lattice site is occupied by B). Thus, the rate
of scavenging reaction on a lattice is proportional to
the increase in SN per unit time. Of course, the corre-
sponding picture can be translated to the continuous
limit and gives rise to the visited-volume approach
to chemical reactions (stemming from Montroll and
Weiss) as opposed to the Smoluchowski approach.

Let us now calculate 〈SN〉 following Dvoretzky and
Erdös (1951). One first notes that

〈SN〉 = 1 +
N
∑

j=1
∆j (11.28)

where ∆j is the mean number of the sites visited for
the first time on step j: ∆j =

∑

r F (r, j). For ∆(z),
the generating function of ∆j, we thus have

∆(z) =
z

(1 − z)P (0; z)
(11.29)

(Note that F (r; z) = P (r; z)/P (0; z)− δr,0/P (0; z)
and that

∑

r P (r; z) = 1 + z + z2 + ... = 1/(1 − z)
since

∑

r P (r, N) = 1). The generating function of
〈SN〉 − 1 thus equals to

z

(1 − z)2P (0; z)
. (11.30)
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The back transform gives (for N � 1):

〈SN〉 '



























√

8
πN in d = 1

πN/ lnN in d = 2
N/P (0; 1) in d = 3

. (11.31)

In d = 1 and 2 the number of different visited places
grows slower than N , which is a consequence of the
fact that each of them is visited repeatedly. On the
other hand, in d = 3 the number of different visited
places grows as N : the sites visited are visited only
once or a few times.

These results are also of great importance for the
continuous-time lattice random walks, since the sub-
ordination transformation, see §11.1.2 makes it pos-
sible to translate physical time t into N , see the next
section.

The Vaks-Balagurov slowing down in trapping can
also be reproduced in the approach and has to do
with fluctuations in SN , which are mirrored by the
higher moments of this quantity. We refrain here
from the detailed discussion of the mathematical ap-
proach to the problem.

11.1.2 The continuous-time random walks (CTRW)

The situation of the fixed step time τ corresponds to
the so-called simple random walks. This time may
however be itself a random variable. For example, the
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random walk may result from a series of scattering
events (in which case the time τ and the displacement
s will be strongly correlated). Another situation is
exactly the one we discuss in this paragraph: the par-
ticle is trapped in some bounded state. From time
to time it is released (due to the thermal excitation)
and makes a random motion until it gets trapped
again. This is exactly the situation Scher and Mon-
troll confronted with when describing the transport
in disordered semiconductors. Having this situation
in mind, we shall consider s and τ as independent
random variables∗.

Thus, let us consider ψ(τ, s) as a product of the
two functions, ψ(τ, s) = ψ(τ )φ(s). The spatial as-
pect of the problem corresponds to a simple random
walk, however, the number of steps now fluctuates:
the number of steps performed up to the time τ is no
more the whole part of t/τ , but may in principle take
any value from 0 to ∞. We note that such a situation
corresponds to the case of subordinated Markovian
processes: A discrete-time Markovian process Xn, a
simple random walk, depends on its number of steps
n, which may be called the operational time of the

∗Although we use the one-dimensional notation here, this decoupling is not exactly what happens
in a real one-dimensional system. One may much more consider the situation as a projection
of a three-dimensional motion on the x-axis. The genuine one-dimensional situation with its
additional correlations introduced by geometrical restrictions is considered e.g. by Bouchaud and
Georges (1990)
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process. The operational time itself is a random pro-
cess with positive increments which depends on the
physical time t. A resulting process may be Marko-
vian or not, depending on the properties of ψ(τ ).

Now, let us suppose that the probability to arrive
at point x after n steps is known and is given by
a probability density pn(x). In order to obtain the
probability to be at x at time t we have to average
pn(x) over the probability distribution χn(t) to make
exactly n steps up to the time t:

p(x, t) =
∞
∑

n=0
pn(x)χn(t). (11.32)

The probability density pn(x) is known and is given
by its characteristic function

f(k) = φ̃(k)n. (11.33)

Our task is now to find the distribution χn(t) of mak-
ing exactly n steps up to t. We note that the step
times τ are assumed to be independent and identi-
cally distributed. The probability to make no steps
after beginning is

χ0(t) = 1 − F1(t) = 1 −
∫ t

0
ψ1(τ )dτ, (11.34)

where ψ1(τ ) is the probability density to make the
first step during the time τ , and F1(t) is the corre-
sponding cumulative distribution function. We have
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to reserve the possibility that the waiting time distri-
bution for the first step may differ from ones of the
subsequent steps, Tunaley (1974); this gives us a clue
for understanding some aging phenomena in systems
showing the glass-like dynamics (vide infta). The
probability to make no steps during time t after a
step was made is

χ(t) = 1 − F (t) = 1 −
∫ t

0
ψ(τ )dτ. (11.35)

Now, the probability that exactly one step was made
up to the time t is the one that the first step followed
at some time τ and afterwards no steps followed:

χ1(t) =
∫ t

0
ψ1(τ )χ(t− τ )dτ. (11.36)

The probability to make exactly 2 steps is

χ2(t) =
∫ t

0

∫ t

0
ψ1(τ1)ψ(τ2)χ(t− τ1 − τ2)dτ1dτ2,

(11.37)
etc., so that

χn(t) =
∫ t

0
...

∫ t

0
ψ1(τ1)ψ(τ2)...ψ(τn)χ(t−τ1−...τn)dτ1...dτn.

(11.38)
A multiple convolution structure of these expressions
leads to simple structures under the Laplace trans-
form:

χ̂0(u) =
1 − ψ̂1(u)

u
...
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χ̂n(u) = ψ̂1(u)ψ̂n−1(u)
1 − ψ̂(u)

u
. (11.39)

The Fourier-Laplace-transform of Eq.(11.32) thus reads:

f̂ (k, u) =
∞
∑

n=0
φ(k)nχ̂n(u) (11.40)

=
1 − ψ̂1(u)

u
+

1 − ψ̂(u)

u

ψ̂1(u)

ψ̂(u)

∞
∑

n=1

[

φ(k)ψ̂(u)
]n
.(11.41)

In the second term one easily recognizes the geomet-
ric series, so that the closed form for the Fourier-
Laplace transform follows:

f̂ (k, u) =
1 − ψ̂1(u)

u
+

1 − ψ̂(u)

u

φ(k)ψ̂1(u)

1 − φ(k)ψ̂(u)
.

(11.42)
In the case when ψ1(τ ) = ψ(τ ) (Markovian situa-
tion, as well as non-Markovian situations when the
time count starts together with the first step, corre-
sponding to the so-called ordinary renewal processes,
see Cox (1967)) the result, Eq.(11.42) is further sim-
plified:

f̂ (k, u) =
1

u

1 − ψ̂(u)

1 − φ(k)ψ̂(u)
. (11.43)

The corresponding p(x, t) follows by an inverse Fourier
and Laplace-transforms.
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Let us now discuss the overall behavior of this prob-
ability density and concentrate first on the situation
when φ(s) is symmetric and possesses the finite sec-
ond moment, as it was the case in the Einstein’s dis-
cussion. Differentiating Eq.(11.43) twice with respect
to k we get (assuming that φ(k) = 1− 1

2σ
2k2 +o(k2)

)

〈

x2(u)
〉

=
ψ̂(u)

u
[

1 − ψ̂(u)
]σ2, (11.44)

and
〈

x2(t)
〉

is given by the inverse Laplace transform
of this expression. We note now that the behavior of
〈

x2(t)
〉

for t large is governed by one of
〈

x2(u)
〉

for
small values of u and that, just parallel to Eq.(11.3),
we have

ψ̂(u) = 1 − 〈τ〉 u +
〈

τ 2
〉

u2 + ... (11.45)

(provided the corresponding moments exist) so that
for u→ ∞ we have

〈

x2(u)
〉

' σ2

〈τ〉u
−2. (11.46)

The inverse Laplace transform immediately gives:
〈

x2(t)
〉

=
σ2

〈τ〉t. (11.47)

The prefactor can be associated with the diffusion
coefficient: D = σ2/2 〈τ〉 and is finite as long as the
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first moment of the waiting time exists. A simple
random walk is just one of the situations when this
is the case.

11.1.3 CTRW and the master equation

Let us consider an important situationψ(τ ) = 〈τ〉−1 exp(−t/ 〈τ〉)
corresponding to the Markovian case. As we pro-
ceed to show, on this case the CTRW exactly corre-
sponds to a master-equation scheme with the tran-
sition rates w(x′|x) = φ(x′ − x)/τ0 with τ0 = 〈τ〉.
Let us consider the situation when the particle ini-
tially starts at x = 0 at time t = 0, i.e. for the
initial condition p(x, 0) = δ(x). We moreover denote
p(x, t) = p(x, t|0, 0). The Master equation for the
case of homogeneous transition rates reads

∂

∂t
p(x, t) =

1

τ0

∫

dx′ φ(x−x′)p(x′, t)− 1

τ0

∫

dx′ φ(x′−x)p(x, t).

(11.48)
Note that the second integral in the r.h.s. simpli-
fies due to the homogeneity and to the normaliza-
tion condition for the step-length distribution φ(s),
∫

dx′ φ(x′ − x)p(x, t) = p(x, t), so that

∂

∂t
p(x, t) =

1

τ0

∫

dx′ φ(x− x′)p(x′, t) − 1

τ0
p(x, t).

(11.49)
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Let us now first make Fourier-transform in the spatial
variable x and note that the first integral in the right-
hand side has a form of the convolution, so that

∂

∂t
f(k, t) =

1

τ0
φ(k)f(k, t) − 1

τ0
f(k, t). (11.50)

Now, we take the Laplace transform in the temporal
variable: we know that ∂

∂tf(k, t) = uf̂−f(k, 0). The
initial condition is f(k, 0) = 1, which is a Fourier-
transform of the δ-function. Thus,

uf̂(k, u)− 1 =
1

τ0

[

φ(k)f̂(k, u) − f̂ (k, u)
]

. (11.51)

so that

f̂ (k, u) =
1

u− 1
τ0

[φ(k) − 1]
. (11.52)

Now we compare this result with the one of the CTRW
approach,

f̂ (k, u) =
1

u

1 − ψ̂(u)

1 − φ(k)ψ̂(u)
. (11.53)

The expressions, Eq.(11.51) and Eq.11.52) are equiv-
alent if we take

ψ̂(u) =
1

uτ0 + 1
, (11.54)

i.e. for the exponential waiting-time probability den-
sity ψ(τ ) = τ−1

0 exp (−τ/τ0). This is the only situ-
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ation in which the approaches are equivalent †. The
exponential waiting time distribution corresponds to
a Markovian process in time in which the probability
to make a jump during the time interval δt equals to
δt/τ0. In this case the probability to make a jump
to the state x depends only on the actual state of
the system, and not on the time, when the previous
step was made. In all other cases the probability of
the jump depends also on the time of the previous
one. However, the CTRW process can be consid-
ered as discrete Markovian process in the following
sense: At the moment a step is made, the length
and the time of the next jump is taken at random,
from given probability distributions, independent on
the previous history. Such processes are sometimes
called semi-Markovian. However, being considered
at arbitrary time, the process exhibits memory about
the instant of the last jump. In this sense the pro-
cess is non-Markovian. As we proceed to show, many
CTRWs are even non-stationary and exhibit aging.

†In general, decoupled continuous-time random walks can be described by generalized Master
equations with a memory kernel introduced by Kenkre and Knox (1974), see Klafter and Silbey
(1980). We shall not discuss this approach here, but we shall consider continuous limits of a class
of such equations later in §11.3
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11.2 Power-law waiting-time distributions

We first stay stuck to the case of uncorrelated spa-
tial and temporal parts (i.e. decoupling ψ(x, t) =
φ(x)ψ(t)) and discuss the situation under which ψ(t)
lacks the first moment, i.e. when the integral

∫∞
0 τψ(τ )dτ

diverges. Such an absence of means is not a too-
seldom situation in statistical physics, and it is defi-
nitely a one, under which usual, close-to-equilibrium
thermodynamics fails. However, the situation is ex-
perimentally a wide-spread one, so that we first turn
to a short discussion of the experimental results which
lead Scher and Montroll to the formulation of the
CTRW approach.

By mid seventies several experiments on photoef-
fect in disordered semiconductors showed a very pe-
culiar time-dependence of the transient photocurrent.
A typical experimental setup consists of a slab or a
film of material of thickness L kept under voltage
between one massive and one thin, semi-transparent
electrode. A typical current through the system (at
low temperatures) is extremely small, since the ther-
mal activation is not too strong to considerably pop-
ulate the conduction zone. A strong light flash from
the side at which the electrode is semi-transparent
produces free charge carriers (electrons), which are
then moving towards the massive electrode, giving
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a pulse of a current. Essentially we have here to do
with a kind of a time-of-flight experiment. One could
anticipate (and it is really the case for the tempera-
tures high enough) that a Gaussian pulse of electrons
moves with a more or less constant velocity v = µeE
where µ is the mobility and E is the electric field,
and broadens according to the diffusive law. Thus,
the form of the charge pulse en(x, t) (with n being
the electron density) can be calculated via the so-
lution of the corresponding Fokker-Planck equation
(under constant field and an absorbing boundary con-
dition at the position of the massive electrode). The
instantaneous value of the photocurrent, being the
time derivative of the dipole moment of the charge
distribution, is I = e ddt

∫L
0 xn(x, t)dx. This would

give us a current which is practically constant before
a considerable part of electrons reaches the electrode,
and then decays fast, over the time connected with
the width of the Gaussian.

However, experiments at lower temperatures done
with a variety of non-organic and organic materials
showed a very different picture: The ”almost con-
stant” part of the photocurrent and a fast subse-
quent decay are absent. Instead, one encounters a
continuous and very slow decay; a current plotted
on the double logarithmic scales shows a crossover
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between the two linear regimes, denoting the power-
laws. Moreover, if the slope of the line at the short-
time domain is γ, the slope of one for the long-time
domain is 2 − γ; this simple connection was clearly
seen in all corresponding experiments. The explana-
tion of the effect was connected with multiple trap-
ping phenomena.

In a disordered semiconductor (compared to an
ideal crystal) the density of states in the conduction
band has a tail protruding into the energy gap of
the ideal one. One can envisage this tail as con-
nected with the local density fluctuations in a dis-
ordered solid. Such states are localized, and do not
contribute to the electric conductivity. The typical
decay of this tail of the density of states into the gap
goes as ρ(E) ∝ E−1

0 exp(−E/E0), where E is the
energy calculated, say from the localization thresh-
old, and E0 is the energetic scale characterizing the
”fatness” of the tail, and depending on the degree of
disorder (the prefactor E0 is introduced to keep the
correct dimension of the density of states). The over-
all transport process (called ”dispersive transport”,
to stress the difference with the normal diffusive one)
can be considered as a sequence of periods during
which the particle is trapped and does not move,
and ones when it is thermally activated to higher
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energies, and moves. Neglecting the possibility of
multiple trapping in the same state (which does not
change anything in the three-dimensional case con-
sidered here but is of importance in lower dimensions,
see Bouchaud and Georges (1990)) we can obtain the
qualitative behavior of the waiting-time in a trap us-
ing the following ”hand waiving” argument:

A typical life-time of an electron in a trap of depth
E follows the Arrhenius law,

τ ' τ0 exp(−E/kT ). (11.55)

To get the probability distribution of τ we note that
the probability distribution of the trap’s depth is
proportional to the corresponding density of states,
p(E) ∝ ρ(E) ∝ E−1

0 exp(−E/E0). The probabil-
ity density of the waiting time τ can then be ob-
tained by the change of variables in this expression:
ψ(τ ) = p(E(τ ))dE

dτ
, where E(τ ) ' kT ln(τ/τ0) ac-

cording to Eq.(11.55). Using this expression we get

ψ(τ ) ∝ exp(−kT ln(τ/τ0)/E0)
kT

E0τ
∝ τ γ0 τ

−1−γ

(11.56)
with γ = kT/E0. Of course, such arguments only
give the asymptotic behavior of ψ(τ ) for very large
τ , however, as we proceed to show, the exact form
of this distribution is of minor importance for what
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follows. It is clear that the presence or the absence
of the higher moments of such distribution depends
only on the value of γ: in the low temperature regime
(for T < E0/k) the mean value of τ diverges, so
that the change of transport regime from diffusion
to something else may take place. One of the forms
typically used in calculation examples is

ψ(τ ) =
γ

τ0
[

1 + τ
τ0

]1+γ . (11.57)

The waiting-time distributions with power-law asymp-
totics are wide-spread also in other applications, see
the review article by Bouchaud and Georges for a
detailed discussion. The motion of the particle be-
tween the two trapping events is characterized by
some displacement probability density φ(x), and can
be adequately modeled through a random walk. In
the absence of the external field this walk is unbiased,
so that the first moment of φ(x) vanishes. The field
introduces a nonzero bias, which can be taken to be
proportional to E.

Let us first consider the free diffusion, without ex-
ternal field, in such a system. In this case the mean
squared displacement can be obtained from Eq.(11.43)
by noting that the second moment of the distribution
is given by the second k-derivative of f̂(k, u) (whose
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first k-derivative vanishes). Noting that for small k
one has φ̃(k) ' 1 − 2λ2k2 one arrives at

f̂(k, u) =
1

u

1 − ψ̂(u)

1 − (1 − 2σ2k2)ψ̂(u)
(11.58)

from. In the case of a power-law, Eq.(11.57) one has

ψ(u) ≈ 1 −Auα (11.59)

with A = Γ(1 − α)τα0 so that

f̂ (k, u) =
Auα−1

1 − (1 − λ2

2 k
2)(1 −Auα)

' 1

Bk2u1−α + u

(11.60)
with B = λ2/2A. From this form the scaling of the
distribution is evident: The whole is a function of
ξ = x/tα/2. We note that the inverse Fourier-Laplace
transforms of such forms can be expressed within
the class of special functions known as Meijer G-
Functions (Prudnikov et al, 1990) or even more gen-
eral Fox’s H-Functions (Fox, 1961), see also a Math-
Word entry on http://mathworld.wolfram.com/MeijerG-
Function.html. In some situations these functions
can be reduced to something simpler, however this is
typically not the case.

Comparing this situation with the one for the expo-
nential waiting-time distribution, ψ(t) = τ−1 exp(−t/τ ),
whose Laplace-transform is ψ̂(u) = 1/(1 + uτ ) ≈
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Fig. 11.1 The limiting form of the probability density of a particle performing CTRW (as the
inverse Fourier-Laplace transform of Eq.(11.60) (for B = 1 and α = 0.5). For comparison the
Gaussian distribution with the same dispersion is shown as a dashed line.

1 − uτ we get

f̂ (k, u) ' 1

(λ2/2τ ) k2 + u
(11.61)

where we easily recognize a Fourier-Laplace-transform
of the Gaussian Green’s function of the diffusion equa-
tion,

P (x, t) =
1√

4πDt
exp





− x2

4Dt





 (11.62)

with D = λ2/2τ . This distribution scales as a func-
tion of ξ = x/

√
t. In Fig.11.1 we compare this Gaus-

sian distribution with D = 1 with the one following
from Eq.(11.60) with B = 1 and α = 1/2. Note the
overall tent-like form of the function corresponding
to the anomalous diffusion with the cusp at x = 0,
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which mirrors the fact that the initial conditions in
such a system never get forgotten.

For biased diffusion (say, in an external field) one
has to take φ(k) = 1 + ibk + λ2k2/2 + ..., where b
characterizes the strengths if external bias. In this
case the characteristic function reads

f̂(k, u) ' 1

(ibk/A +Bk2)u1−α + u
. (11.63)

Using the fact that the characteristic function of a
probability distribution is a generating function of
its moments, we can calculate for example the mean
displacement M1(t) of particles, through its Laplace-
transform:

M1(u) = i
d

dk
f̂ (k, u)|k=0 =

b

A
u−1−α, (11.64)

which corresponds asymptotically to M1(t) ' tα.
This finding allows us to explain the basic features of
photoconductivity experiments discussed at the be-
ginning of the paragraph:

At short time after irradiation the charge carri-
ers do not ”feel” the absorbing boundary, so that
the mean displacement 〈X(t)〉 = M1(t) ∝ tα, and
I(t) ∝ dX(t)/dt ∝ tα−1: The slope of the initial
part of the curve is α1 = −α + 1. This regime (due
to the ”typical” motion) ends when 〈X(t)〉 ∼ l, i.e.
at time τ (l) ∝ lα. At even longer times the parti-
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cles still present within the sample are mostly those
which were trapped all the time before. The current
due to these particles is proportional to their num-
ber, I ∝ d

dtN(t) ∝ ψ(t) and goes as t−1−α (the tail
of the first passage distribution), so that α2 = 1 +α,
and thus, α1 + α2 = 2 in full agreement with the
experimental findings.

11.2.1 Aging behavior of CTRW systems

The subdiffusive CTRW is an intrinsically nonsta-
tionary process, and exhibits many effects typical
for nonstationarity. It was first considered as a toy
model for aging in glasses by Feigelman and Vinokur
(1988), and got to be a popular quantitative model
for the description of such phenomena afterwards,
see Bouchaud and Montus (1996), Laloux and P. Le
Doussal (1998). Here we present some simple con-
siderations elucidating the nature of aging due to
Sokolov et al (2001). We concentrate on the linear
response of the system to a time-dependent exter-
nal field, and assume the following: We consider an
ensemble of random walkers performing the CTRW.
During the trapping period the particle does not move,
independently on the strength of the external field.
However, when the particle jumps, the field biases
the direction of the step, so that the mean displace-
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ment per step is proportional to the strength of the
external field. We again use the one-dimensional no-
tation.

Let us discuss the linear response of an ensemble
of the random walkers performing the CTRW to the
changing external field and consider some physically
short time interval dt. Let dN be the mean num-
ber of steps performed during dt. Now, the mean
displacement during dt is dX = xdN (note that for
very short times dt the value of dN can be considered
as a proportion of the realizations in which a particle
has performed just one step) where x is the mean
displacement per step depending on the actual value
of the external field E: x = κE with κ ' λ/kBT .
We thus get:

dX = κE(t)dN. (11.65)

where dN = N(t + dt) − N(t) ≈ dt
∑∞
i=0 n

d
dtχn(t).

Thus, the typical particles’ velocity at time t (which
is proportional to the particles’ current) is given by:

V (t) =
dX

dt
= κf(t)E(t). (11.66)

where

f(t) =
∞
∑

i=0
n
d

dt
χn(t). (11.67)

Now, using Eq.(11.39) and Eq.(11.67) we arrive at
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the Laplace-transform of f(t), which reads:

f(λ) =
ψ(λ)

1 − ψ(λ)
(11.68)

Using Eq.(11.59) and applying the inverse Laplace
transform we get the behavior of f(t) for longer times:

f(t) =
sinπα

πτα0
tα−1. (11.69)

Thus at longer times one has

V (t) = κ
sinπα

πτα0
tα−1E(t). (11.70)

Note that the current or velocity response of a CTRW-
system to the external field is local in time and is
explicitly dependent on the time elapsed after the
system was prepared. To obtain the particle’s posi-
tion (or the polarization of the medium) we simply
have to integrate Eq.(11.70) over time:

X(t) = κ
sinπα

πτα0

∫ t

0
tα−1
1 E(t1)dt1. (11.71)

Thus, the response of the CTRW-system to a time-
dependent field dies out, and its polarization tends
to a constant value. Note that the CTRW-system
not only ages, but shows a kind of ”Freudistic” re-
sponse: the polarization at time t is mostly due to
the early history of the system, immediately after it
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Fig. 11.2 The response of the CTRW system to an external field. The upper panel shows the
mean velocity as a response to two pulses of unit height and duration following at t = 1 and at
t = 4. Note that the response to the second pulse is considerably weaker: The system shows aging.
The lower panel shows the response to the sinusoidal field. Here the mean velocity and the mean
displacement are shown by a dashed and by a solid line, respectively.

was prepared in a state corresponding to CTRW. The
response of the CTRW system to a pulsed and to the
sinusoidal external field is shown in Fig. 11.2.

The behavior for a θ-functional field unveils a very
important property of the linear response in such sys-
tems. This response depends on the time elapsed
since the system was prepared (a time of the 1st
step): The system displays aging. The response to
a constant field E switched at tw behaves as V (t) ∝
(tw + ∆t)α−1E ∝ tα−1

w (1 + ∆t/tw)α−1E, where ∆t is
the time elapsed after switching the field. Thus, the
overall strength of response is proportional to tα−1

w



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

Power-law waiting-time distributions 159

Fig. 11.3 The forward waiting time for the first step of the aging process.

and the characteristic time of this response is ex-
actly tw. One says, that the situation corresponds
to simple or normal aging. It can happen that the
characteristic time of relaxation goes as tµw with some
µ 6= 1. The situations with µ < 1 are known and a
said to correspond to subaging.

Let us discuss the reason for aging in a CTRW
model in some depth. This reason is exactly the dif-
ference between the first step forward waiting time
distribution ψ1(t) and the distribution of all other
waiting times.

Let τ1 be the waiting time for the first renewal
of the process after starting observation at time tw,
see Fig.11.3. The jump immediately preceding tw
(numbered i− 1), took place at time ti−1 = s. The
forward waiting time distribution ψ1(t) is

ψ1(τ | tw) =
∫ tw

0
p(x)ψ(tw − x + τ1)ds, (11.72)

where p(s) is the probability density to make a jump
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exactly at time s:

p(s) =
∞
∑

n=0
pn(s). (11.73)

Here pn(t) is the probability density that it is exactly
n-th jump that takes place at time t. This one is
given by an n-fold convolution of the waiting time
probability density ψ(t) with itself. Under Laplace-
transform Eq.(11.73) reads:

p̂(u) = 1 + ψ̂(u) + ψ̂2(u) + ... =
1

1 − ψ̂(u)
. (11.74)

The Laplace-transform of ψ1(τ1, tw) as a function of
tw is then:

ψ̂1(τ ; u) =
euτ

[

ψ̂(u) − ∫ τ
0 e

−utψ(t)dt
]

1 − ψ(u)
. (11.75)

The inverse transform of this expression gives for
both tw and τ1 large

ψ1(τ | tw) ' C





tw
τ





α 1

tw + τ
. (11.76)

The longer tw, the longer is typically τ (which is an
extreme form of the inspection paradox, see Feller
(1991)).

Note that our expression, Eq.(11.76), is only valid
for 0 < α < 1. For α > 1, when the mean waiting
time 〈t〉 exists, the distribution of the forward waiting
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times is given by

ψ1(τ1) =
1

〈t〉 [1 − F (τ1)] , (11.77)

where F is the cumulative distribution function of the
ψ-distribution. Note that for power-law distributions
〈t〉, if it exists, is the only relevant timescale of the
problem, i.e. ψ(t) ' 〈t〉α t−1−α (in order to have a
correct dimension of the probability density), so that
at longer times

ψ1(τ ) ' 1

〈t〉1−ατ
−α (11.78)

Thus, for tw > 〈t〉 ψ1(τ ) is independent on tw (and
shows no aging!).

Comparing Eq.(11.76) and Eq.(11.78) one readily
infers that for τ < tw

ψ1(τ | tw) ' 1

t1−αw

τ−α, (11.79)

i.e. in this case tw is only typical timescale, so that
we take here tw instead of 〈t〉! For τ � tw, on the
other hand, ψ1(τ | tw) follows the behavior similar
to one of ψ(t) i.e.

ψ1(τ | tw) ' Ctαwτ
−1−α (11.80)

but again with the typical timescale of tw. We note
that this type of nonstationarity is typical for three-
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dimensional systems for which CTRW is a valid model
describing their asymptotic behavior. In the low-
dimensional systems, the situation is more complex
and may lead to subaging, see Rinn, Maass and Bouchaud,
2000, 2001.

One more note is here at place. CTRW is a pow-
erful scheme, which describes several kinds of phys-
ical processes. One of the important applications of
CTRW is connected with intermittent dynamics, as
generated, for example by maps. As an example one
can consider a map

xn+1 ≡ F (xn, z, a) = xn + axzn, 0 < x̃n <
1

2
,

(11.81)
where x̃n is a fractional part of xn. For 1

2
< x̃n < 1

the map is defined by the mirror symmetry. Param-
eter z > 1 in Eq. (11.81) stands for a degree of non-
linearity and a is a control parameter, a > 1. If
1 < z < 2 the diffusion generated by the map is nor-
mal, whereas for z > 2 the diffusion is anomalous.
In this anomalous case, the behavior of the system
is excellently described by CTRW, as first shown by
Geisel and Thomae (1984), see also the discussion by
Zumofen and Klafter (1993). The behavior of such
maps shows aging effects typical for CTRW models,
which fact was first discussed by Barkai (2003).
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11.3 CTRW and fractional Fokker-Planck equations.

The description of transport processes within a frame-
work of deterministic Fokker-Planck equations has
considerable analytical advantages compared to stochas-
tic approaches. Is it possible to formulate a Fokker-
Planck-like approach to processes more complex than
normal, Fickian diffusion? The answer to this ques-
tion is positive, however the corresponding Fokker-
Planck equations are somewhat unusual, since they
often involve the derivatives of non-integer order with
respect to their temporal or spatial variable. Such
equations where first postulated on the basis of purely
phenomenological considerations (Balakrishnan, 1985,
Schneider und Wyss 1987, 1989); their close relation
with CTRW schemes was understood much later, see
Metzler and Klafter (2000), Sokolov, Klafter and Blu-
men (2002). The phenomenological introduction of
such equation is based on the following considera-
tion. A usual Fick’s diffusion equation is a partial
differential equation of a parabolic type, i.e. has a
first-order time derivative on its left-hand side and
the second-order derivative in coordinate (or a Lapla-
cian, in a multidimensional case) on its right-hand
side. It’s Green’s function solution scales as a func-
tion of time: The form of the equation does not
change when simultaneously changing the time-scale
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by a factor of λ and the length-scale by a factor of λ2.
Therefore, such an equation possesses a scaling solu-
tion, P (x, t) = f(t)P (x/

√
t), where f(t) is simply

a time-dependent normalization factor of the proba-
bility density. The Green’s function of the equation
is exactly such a solution: P (x, t) = G(x, t; 0, 0) =
(4πDt)−1/2 exp

[

− 1
4D(x/

√
t)2

]

. From the scaling form
of the solution it follows that the characteristic length
of the problem scales as a square root of the time,
and a characteristic length squared (e.g. the mean
squared displacement) grows as the first power of
time. Reverting this consideration one can say that
the fact that the mean squared displacement scales
linearly in time would propose to look for the gov-
erning equation being first-order in time and second-
order in spatial coordinate, i.e. for a parabolic one.
The process, in which the mean squared displace-
ment grows as tα with 0 < α < 1 could probably be
described by an equation being still of second-order
in spatial coordinate but of a fractional α-th order in
time. Before we discuss the meaning of such equa-
tions, we have to be sure that such an operator as
a fractional α-th derivative can be mathematically
reasonably defined and possesses a correct physical
interpretation, see Miller and Ross (1993), Oldham
and Spanier (1974).
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The definition of a fractional derivative is a gen-
eralization of a definition of ”normal” derivative. As
already stated, there are several ways of such general-
ization. We start here from a definition of a Rieman-

Liouville derivative (1832) which starts from the gen-
eralization of the repeated integration formula:

d−n

dx−n
f(x) =

∫ x

a

∫ y1

a
...

∫ yn−1

a
f(yn)dyn...dy1 =

=
1

(n− a)!

∫ x

a
(x− y)n−1f(y)dy (x > a).(11.82)

This allows to define a fractional integral:

(Iαa+f)(x) =
1

Γ(α)

∫ x

a
(x− y)α−1f(y)dy (x > a)

(11.83)
with 0 < α < 1, which restriction guarantees the
convergence of the integral for nonsingular integrable
functions f(y). The α-th fractional derivative is then
defined through

aD
α
x =

d

dx
I1−α
a+ =

d

dx

1

Γ(α)

∫ x

a
(x− y)α−1f(y)dy.

(11.84)
The higher derivatives are defined by repeating ad-
ditional differentiation. We note that the Riemann-
Loiuville integrals or derivatives behave under Laplace
transform behave in the same way as the whole-
number repeated integrals or derivatives. For the
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integrals we have

L{Ia0+f(t)} = u−αf(t). (11.85)

For the fractional derivatives we have correspond-
ingly

L{0D
α
t f(t)} = uαf(t) −

n
∑

j=0
ujcj (11.86)

where n = [α] and cj are the ”quasi-initial values”,

cj = limt→0 0D
α−1−j
t f(t).

Note also that the Riemann-Liouville definition leads
to a trivial generalization of the standard rule for the
differentiation of a power: dn

dxnx
m = m!

(m−n)!
xm−n, so

that 0D
α
xx

β = Γ(β+1)
Γ(β−α+1)

xβ−α.
Interchanging integration and differentiation in Eq.(11.84)

introduces a slightly different operator, called a Ca-
puto derivative, (Caputo, 1969). The Riemann-Liouville
and Caputo definitions are the most important ones
for the description of subdiffusive CTRW behavior.

Several other definitions are common, for example
the Weyl definition (1917) starting from

(Iα+f)(x) =
1

Γ(α)

∫ x

−∞(x−y)α−1f(y)dy −∞D
α
x =

d

dx
I1−α
+

(11.87)
so that −∞Dα

x = d
dx
I1−α
+ and the Riesz definition
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(1949) leading to a symmetric form:

(Iαf)(x) =
1

2 cos απ2

(

Iα+ + Iα−
)

; Dα =
d

dx
I1−α.

(11.88)
These ones are often used in fractional equations de-
scribing superdiffusion. The Weyl operator preserves
the usual rule for the differentiating of the exponen-
tial −∞Dα

xe
x = ex. The Weyl and Riesz operators

are those which reproduce the properties of usual in-
tegrals or derivatives under Fourier-transform:

F {−∞D
α
t f(t)} = (iω)αf(ω) (11.89)

for a Weyl operator and

F {−∞D
α
t f(t)} = −ωαf(ω) (11.90)

for a Riesz one. This one is a very special form gen-
eralizing the behavior of the second derivative, and
is exactly the one appearing on its place in fractional
equations for superdiffusion.

Let us now turn to the fractional generalization of
the diffusion or of the Fokker-Planck equation of the
form

∂

∂t
P (x, t) = 0D

1−α
t [∇ (−µ∗fP +K∗∇P )] ,

(11.91)
with the additional Rieman-Liouville fractional deriva-
tive operator acting on the ”normal” right-hand side
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of a Fokker-Planck equation, see Metzler and Klafter
2000, Sokolov, Klafter and Blumen, 2002. Here µ∗

denotes the (generalized) mobility and K∗ denotes
the (generalized) diffusion coefficient; the change of
notation for the diffusion coefficient from D to K
is necessary in order not to mix it up with the dif-
ferential operator. Eq.(11.91) represents a by far
the most widely used form of the fractional Fokker-
Planck equation. We note that the equation dis-
cussed belongs therefore to the class of non-Markovian
Fokker-Planck equations, and the additional fractional
derivative plays the role of the memory kernel. The
corresponding non-Markovian Fokker-Planck equa-
tions are often considered as a dangerous theoretical
instrument, since they in general do nor guarantee
for the possibility of the solutions which therefore
cannot be interpreted as probability density. How-
ever, as we proceed to show, the solution of the frac-
tional Fokker-Planck equation, Eq.(11.91) is proba-
bility density, and moreover they correspond to the
continuous limit of a CTRW scheme with power-law
waiting-time distribution.

Let us first assume the external force to be constant
and the initial condition to be δ-functional. Apply-
ing the Laplace-transform in temporal variable to the
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both parts of the equation Eq.(11.91) we get:

uP̂ (k, u)−P (k, 0) = u1−α [−ikµfP̂ (k, u) −Kk2∇P̂ (k, u)
]

(11.92)
with P (k, 0) = 1. The solution of Eq.(11.92) then
reads:

P̂ (k, u) =
1

u1−α(ikµf +Kk2) + u
, (11.93)

exactly the form which immediately follows from the
CTRW model, see Eq.(11.63).

Fractional Fokker-Planck equations are however a
more versatile tool, giving solutions in many cases
when the Fourier transform in spatial coordinate would
not simplify the situation due to spatial inhomogene-
ity.

To see this let us consider a general non-Markovian
Fokker-Planck equation with memory operator on
the right-hand side:

∂

∂t
P (x, t) = M [∇ (−µ∗fP +K∗∇P )] , (11.94)

where M̂ is an operator of the convolution type act-
ing on the right-hand side of the equation; it is either

Mf(t) =
∫ t

t0
g(t− t′)f(t′)dt′ (11.95)
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or

Mf(t) =
d

dt

∫ t

t0
g(t− t′)f(t′)dt′. (11.96)

The corresponding integral is assumed to tend to zero
for t→ t0, i.e. the kernel of the transformation may
posers only a weak singularity like one of the frac-
tional integral with 0 < p < 1, so that under the
Laplace-transform the action of the operator M̂ on
the function f can be described by a mononomial
L̂Mf(t) = M̂(u)f̂(u) with L̂ denoting the opera-
tor of the Laplace transform, i.e. does not introduce
additional initial conditions. Note that a fractional
derivative is just an operator of the type needed. Let
us show now that the formal solution of the non-
Markovian Fokker-Planck equation Eq.(11.94) has a
following form:

P (x, t) =
∫ ∞
0
F (x, τ )T (τ, t)dτ, (11.97)

where F (x, τ ) is a solution of a Markovian Fokker-
Planck equation with the same Fokker-Planck oper-
ator,

∂

∂t
F = ∇ (−µ∗fF +K∗∇F ) , (11.98)

and for the same initial and boundary conditions, and
the function T (τ, t) is connected with the memory
kernel M̂ by the following relation: The Laplace-
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transform of T in its second variable t, T̃ (τ, u) =
∫∞
0 T (τ, t)e−utdt reads:

T̂ (τ, u) =
1

M̂(u)
exp





−τ u

M̂(u)





 , (11.99)

see Barkai, 2001, Sokolov 2001, 2003. To show this
let us consider the Laplace-transform of P (x, t) given
by Eq.(11.97) with respect to its temporal variable:

P̂ (x, u) =
∫ ∞
0
dte−ut

∫ ∞
0
dτF (x, τ )T (τ, t) =

=
∫ ∞
0
dτF (x, τ )T̂ (τ, u) =

=
∫ ∞
0
dτF (x, τ )

1

M̂(u)
exp





−τ u

M̂(u)





 =

=
1

M̂(u)
F̂





x,
u

M̂(u)





 , (11.100)

where F̂ (x, u) is a Laplace-transform of F (x, τ ) in its
second (temporal) variable τ . Let us now note that
the Laplace-transform of the non-Markovian FPE,
Eq.(11.94) reads:

uP̂ (x, u) − P (x, 0) = M(u)LP̂ (x, u), (11.101)

where L denotes the Fokker-Planck operator acting
on the probability density P and where P (x, 0) is
the initial condition. Inserting the form, Eq.(11.100),
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into Eq.(11.101) one gets:

u

K(u)
F̂





x,
u

K(u)





− P (x, 0) = LF̂




x,
u

K(u)





 .

(11.102)
Introducing a new variable s = u/M(u) we rewrite
Eq.(11.102) in a form

sF̂ (x, s) − P (x, 0) = LF̂ (x, s) , (11.103)

in which one readily recognizes the Laplace-transform
of an ordinary, Markovian FPE, Eq.(11.98), with the
same initial condition P (x, 0). This completes our
proof. Thus, the solution of a non-Markovian Fokker-
Planck equation of the type of Eq.(11.94) in the Laplace
domain is connected with the solution of the regular
Fokker-Planck equation through

P̂ (x, u) =
1

M̂(u)
F̂





x,
u

M̂(u)





 . (11.104)

In time domain the solution of Eqs.(11.91) and (11.98)
are connected via Eq.(11.97) where T (τ, t) is given by
Eq.(11.99). Now, if the function T can be interpreted
as the probability density of the number of steps τ of
the random walk (in continuous limit) as a function
of the ”physical” time t, Eq.(11.97) describes exactly
the continuous-time version of the Eq.(11.32), i.e de-
scribes CTRW. For the memory kernel corresponding
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to the fractional derivative of the order between zero
and one, i.e. for Eq.(11.91), the Laplace-transform
of the memory kernel is M(u) = u1−α, so that

T̂ (τ, u) =
1

M̂(u)
exp





−τ u

M̂(u)





 = uα−1 exp(−τu−α),
(11.105)

Barkai, 2001, Sokolov, 2001. This function is a prob-
ability density, which can be expressed through the
one-sided Lévy probability density,

T (τ, t) =
t

(ατ 1+1/α)
L





t

τ 1/α
, α,−α



 (11.106)

(where the standard notation of Feller (1991) is used).
This special case corresponds to the limiting distri-
bution of χn(t) for both n and t large, where a con-
tinuous variable τ is introduced instead of a discrete
n. This special case was mentioned in Metzler and
Klafter 2000 and is discussed in detail in a work of
Barkai, 2001. We also note here that the procedure
showing the connection between the continuous limit
of CTRW schemes with power-law waiting-time dis-
tributions and fractional Fokker-Planck equation is
not the only way to obtain them from the stochas-
tic random walk schemes. Another approach based
on the generalization of Kramers-Moyal expansion is
discussed by Barkai, Metzler and Klafter, 2000.
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Fig. 11.4 The time evolution of the probability density in a fractional Ornstein-Uhlenbeck process.
The initial condition corresponds to P (x, t) = δ(x). The parameters are K = µ = 1 and α = 1/2.
For comparison, the results for the simple diffusion are shown as a dashed line.

The physical picture described by the equation closely
corresponds to random traps model: The external
force biases the direction of jumps but does not in-
fluence the waiting-time distribution. This force now
can be inhomogeneous in space, moreover, complex
boundary condition problems can be discussed.

As an example we show in Fig. 11.4 the time-
development of the corresponding probability den-
sity of the particle’s position for a δ-functional ini-
tial condition in a fractional generalization of the
Ornstein-Uhlenbeck process, described by Eq.(11.91)
with f(x) = −κx. Note the persisting cusp at the
initial position of particles. This cusp is a conse-
quence of the long-time memory typical for CTRW
with power-law waiting time distributions.

Although the integral transformation, Eq.(11.97),
essentially solves the equation, the expression is not
always the best starting point for the further theo-
retical analysis. Thus, the eigenfunction decomposi-
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tion, as used in our second discussion of the Ornstein-
Uhlenbeck process may be a better approach. From
the form of fractional Fokker-Planck equation it fol-
lows that its spatial eigenfunctions are the same as
for a normal, Markovian one, so that only the tem-
poral parts differ. The temporal functions are now
governed by ordinary fractional differential equations
of the type

dΦn(t)

dt
= −λn 0D

1−α
t Φn(t); (11.107)

λn are the eigenvalues of the corresponding Fokker-
Planck operator, see §8.2.1. The solution of an ordi-
nary fractional differential equation

dΦ(t)

dt
= −τ−α 0D

1−α
x Φ(t) (11.108)

is given by a known special function, a Mittag-Leffler
function Eα (− (t/τ )α) which is defined through the
inverse Laplace transform

Eα (− (t/τ )α) = L−1







1

u + τ−αu1−α







. (11.109)

Its asymptotic behavior is a stretched exponential
Eα (− (t/τ )α) ' exp [− (t/τ )α /Γ(1 + α)] for small
t and a power-law Eα (− (t/τ )α) ' − (t/τ )α /Γ(1−
α) for large t. The Mittag-Leffler function is a natural
generalization of an exponential function, which cor-
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Fig. 11.5 The Mittag-Leffler function as the solution of Eq.(11.108). The dashed lines denote the
short- and the long-time asymptotic forms.

responds to E1 (−t/τ ). Note that the solutions Φ(t),
except one for α = 1, being an exponential, show
at long times slow, power-law decay. The Mittag-
Leffler functions are ubiquitous in the relaxation pat-
terns governed by subdiffusion. The behavior of the
Mittag-Leffler function E1/2

(

− (t/τ )1/2
)

is shown in
Fig.11.5.

11.4 Superdiffusion: Lévy flights and Lévy walks.

In what follows we shortly discuss what happens if
the third Einstein’s postulate of the ”normal” diffu-
sion is abandoned, namely the one of finite mean free
path (i.e. of the finite mean square displacement per
step). Here several different models can be discussed.

The simplest one is the uncorrelated simple or continuous-
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time random walk with the step lengths distributed
according, say, to a power-law, p(x) ' x−1−α with
0 < α < 2. According to the generalized central
limit theorem due to P. Lévy, after many steps the
distribution of the particle’s coordinate converges to
a one characterized by a probability density corre-
sponding to one of the so-called infinitely divisible
stable laws. Apart from trivial translation, these
laws are characterized by a family of the probabil-
ity densities, whose characteristic functions all have
very simple form:

f(k) = exp
(

−A |k|α eiπγ/2
)

(11.110)

(for k > 0), Feller (1991). Since the Fourier-transform
of this function represents a probability density, which
is a real function, the behavior for negative k is given
by f(−k) = f ∗(k). The parameter γ describes the
asymmetry of the distribution; the distributions with
γ = 0 are symmetric. The values of γ change be-
tween −α and α for 0 < α ≤ 1 and between −(2−α)
and (2 − α) for 1 < α ≤ 2. The distributions with
γ at either boundaries of the corresponding intervals
are called extreme laws. For 0 < α ≤ 1 the corre-
sponding densities vanish identically for all negative
(positive) values of x. The Gaussian distribution (the
one with α = 2) is always symmetric. The parame-
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ter A is connected with the width of the distribution,
which is proportional to A1/α. This can be immedi-
ately seen from the overall scaling behavior or from
the dimensional arguments. Since all Lévy distri-
butions except for a Gaussian have power-law tails
decaying as x−1−α, they all have infinite variance, so
that the width must be understood either as their
interquartile distance or as some fractional moment,

Wq = 〈|x|q〉1/q with q < α. A simple scaling ar-
gument shows, that the parameter A is proportional
to the number of steps of the Lévy flight n. Indeed,
let us compare a flight of n steps with the one of 2n
steps. The probability density of positions after 2n
steps is a convolution of the corresponding identi-
cal probability densities after n steps, i.e. its char-
acteristic function is a square of the corresponding
function for n steps. This, it is given by a function
Eq.(11.110) with twice the corresponding coefficient
A. In general, the function after λn steps is given by
the characteristic function

f(k) = exp
(

−λAn |k|α eiπγ/2
)

, (11.111)

i.e. A ∝ n. The width of the corresponding distri-
bution thus grows as W ∝ n1/α, i.e. superdiffusively.

Note that the Lévy flight is a Markovian jump pro-
cess. When passing to the continuous time variable,
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the corresponding Chapmen-Kolmogorov equation of
the process can be put down in a form of a frac-
tional Fokker-Planck (diffusion) equation. For sym-
metric Lévy distribution the form of this equation is
extremely simple,

∂p(x, t)

∂t
= Kα

∂α

∂ |x|αp(x, t), (11.112)

where the corresponding fractional differential oper-
ator has to be considered as a symmetrized Riesz-
Weyl derivative, and Kα is the fractional diffusion
coefficient having the dimension [Lα/T ], 0 < α < 2.
Noting that under the Fourier-transform this opera-
tor corresponds to multiplication by − |k|α, we see
that Eq.(11.112) corresponds to

∂f(k, t)

∂t
= −Kα |k|α f(k, t) (11.113)

so that the Green’s function solution of Eq.(11.112)
corresponding to the initial condition f(k, t) = 1,
reads

f(k, t) = exp (−Kα |k|α t) , (11.114)

i.e. is a characteristic function of a symmetric Lévy
distribution of type Eq.(11.110) with γ = 0.

The genuine Lévy flight model might seem unphys-
ical since it allows for indefinitely large jumps, i.e. the
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model does not possesses a limiting velocity. How-
ever, as long as x is not a Euclidean coordinate, this
is not a real problem. As an example let us consider
the following system. Imagine a (quasi)particle (say
an exciton) jumping between the monomers of a long
polymer chain. The monomers of the chain are num-
bered consecutively starting from the chain’s begin-
ning, the number n of the monomer is considered as
a coordinate in the one-dimensional chemical space.
The jumps of the particle might take place along the
chain or between the monomers which are far away in
the chemical sequence of the chain, but are by chance
close to each other in the Euclidean space under a
chain’s particular conformation (Sokolov, 1996). If
the conformational changes in a chain are fast enough
compared with the typical time between the parti-
cle’s jumps, the corresponding process in the chem-
ical space is the genuine Lévy flight. The behavior
of such a process in the force-free case is governed
by Eq.(11.112). Incorporation of the external forces
into a problem was considered by Brockmann and
Sokolov, 2002. the corresponding equations was used
by Brockmann and Geisel, 2003 for the description
of flights in different potential fields. We also note
that the theory of the equations like Eq.(11.112) is
not fully developed. Thus it is not jet clear how the
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boundary condition problems for them have to be
uniquely formulated (Chechkin et al., 2003).

Another important model is a Lévy walk, intro-
duced by Shlesinger, West and Klafter (1987). A
simplest realization of the Lévy walk is a process in
which the particle moves with a constant velocity ~v
during a period of time ti. After time ti the direction
of the velocity is chosen anew (a Drude-like model).
The duration periods ti in given by the waiting-time
probability density ψ(t). If ψ(t) ' τ α0 t

−1−α (τ0 is the
characteristic time of a step) and the second moment
of the waiting-time t is absent (α < 2) the mean
free path diverges, so that departure from the simple
diffusion can be anticipated. The initial model was
formulated as a toy model of diffusion in turbulent
flows; however in this case the approach seems to
be oversimplified. The behavior closely described by
this model arises in several physical situations. One
of the experimental realizations (a particles’ trans-
port in a flow between two rotating cylinders) and
some simulation results can be found on the web-
page http://chaos.ph.utexas.edu/research.html. An-
other realization corresponds to a Hamiltonian sys-
tem in which a particle moves in a two-dimensional
egg-crate potential

V (x, y) = B(cosx+cos y)+C cos x cos y, (11.115)
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at energies above the one at which infinite motion
gets possible, Klafter and Zumofen (1993). The dif-
ference between the Lévy walk model and the random
walk models considered so far is that in the present
case the temporal and spatial aspects are coupled: a
single motion event is described by a probability den-
sity ψ(r, t) to make a step of length r and of duration
t. In our simple one dimensional case where between
the scattering events the particle moves with the con-
stant velocity either to the left or to the right we have,
for example ψ(r, t) = 1

2
ψ(t) [δ(r − vt) + δ(r − vt)].

Let η(r, t) be the probability density of just ar-

riving at r in time t, i.e. the probability density of
the particle’s position just after completing the step.
This probability density fulfills the following recur-
sion equation

η(r, t) =
∫

dr′
∫ t

0
dτ η(r′, τ )ψ(r−r′, t−τ )+δ(t)δr,0,

(11.116)
where the last term introduces the initial condition.
Here we use the fact that our process is semi-Markovian:
the probability density of the random walker’s po-
sition after completing the next step depends only
on its position at the beginning of the step. In the
Fourier-Laplace representation ψ(r, t) → ψ(k, u), we
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have:

η(k, u) = η(k, u)ψ(k, u) + 1 (11.117)

i.e.

η(k, u) =
1

1 − ψ(k, u)

(

= ψ0 + ψ1 + ... + ψn + ...
)

.

(11.118)
We have also to include the possibility that a walker
didn’t complete a full step up to time t. Let us con-
sider the position of a random walker which com-
pleted n steps up to time t− τ and is moving freely
with a constant velocity during the rest time τ . The
probability density of positions at time t is given by

P (r, t) =
∫

dr′
∫ t

0
dτ η(r − r′, t− τ )Ψ(r′, τ )

(11.119)
where Ψ(r′, τ ) the probability to move exactly at the
distance r′ at time τ . For a Lévy walk it reads

Ψ(r, t) =
1

2
δ (|r| − vt)

∫ ∞
t
ψ(t′)dt′ (11.120)

since it corresponds to the motion with a constant
velocity under the condition that no scattering events
took place before time t. The Fourier-Laplace-transform
of P (r, t) is thus

P (k, u) =
Ψ(k, u)

1 − ψ(k, u)
. (11.121)
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From here on we take for simplicity v = 1. The back
transforms are made with use of Tauberian theorems.

Let us first concentrate of the behavior of the sec-
ond moment of the displacement. The calculations
show that the behavior depends on the range of the
parameter α of the distribution of the times of free
motion and are summarized as follows

for α < 1 one has
〈

R2(t)
〉 ∝ t2 (a ballistic regime)

for 1 < α < 2
〈

R2(t)
〉 ∝ t3−α (a subballistic superdiffusion)

for α > 2
〈

R2(t)
〉 ∝ t1 (a normal diffusion).

The asymptotic form of a Lévy-walk-propagator
(v = 1) for α > 1 is

P (r, t) '











































t−β exp
[

−c
(

r
tβ

)2
]

for |r| < tβ

t/ |r|1+α for tβ < |r| < t
t1−αδ(|r| − t) a δ-function at |r| = t
0 for |r| > t

(11.122)
with β = 1/α for 1 < α < 2 and β = 1/2 for α > 2
(in this case the middle part is a normal Gaussian;
it (very) slowly overweighs a still heavy tail). Here
the characteristic time τ0 is taken as a unit time and
vτ0 as a unit length. One can thus distinguish four
characteristic domains in such a distribution:
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(1) - a Gaussian middle part due to multiple scattering
(2) - a power-law (Lévy) tail
(3) - δ-”horns” due to particles which never got scattered
(4) - cutoff due to the finite velocity

Note that the overall distribution does not scale as

a whole.
For 0 < α < 1 only one exemplary analytical form

(namely the arcsine-law for α = 1/2) is known, which
is exactly

P (x, t) = p(x, t) =
1

π
√

(vt + x)(vt− x)
. (11.123)

Numerical simulations show that all distributions look
more or less the same (with flat middle part and sin-
gularities at ±vt). The corresponding distributions
scale as a whole, see Zumofen and Klafter (1993).

Lévy walks can also be described within the frame-
work of fractional kinetic equations. The correspond-
ing equation was derived by Sokolov and Metzler
(2003), see also discussion in Uchaikin (2003), Becker-
Kern, Meerschaert and Scheffler (2004). The equa-
tion (reducing to a telegrapher’s equation for the case
of normal diffusion) does not have a form of a Fokker-
Planck equation. Other physical situations lead to
many other different problems, being combinations
or variants of ones considered here. The classifica-
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tion of all of them might be a topic of a separate
review so that we refrain from giving full details in
our introductory discussion.
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Active Brownian Motion

12.1 Self–propelling of Brownian particles

When the British botanist Robert Brown discovered
in 1827 the erratic motion of small particles immersed
in a liquid, he considered them first as living entities.
He addressed even a letter to Charles Darwin, ask-
ing him about his opinion concerning these creatures.
A legend is saying that Darwin, wise by long expe-
rience, answered in a rather indefinite way. Indeed,
only after the turn of the century, Einstein, Smolu-
chowski, Langevin and others have shown that the
behaviour of Brownian particles are due to physical
effects only. As we have demonstrated in the previous
chapters, the behavior of usual Brownian particles is
completely due to the (passive) stochastic collisions,
the particles suffer from the surrounding medium.
There is no active transfer of energy to the parti-
cles. The energetic equilibrium between particles and
surrounding medium is expressed by the fluctuation–

187
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dissipation theorems.
In this Chapter, we want to generalize the idea of

Brownian particles including an energy input from
the surrounding. This way we will be able to derive a
simplified model of active biological motion. There-
fore, we introduce active Brownian particles which
are Brownian particles with the ability to take up en-
ergy from the environment, Simple models of active
Brownian particles were studied already in Chapter 5
of this book and in in many earlier works (Schienbein
and Gruler,1993; Steuernagel et al., 1994; Klimon-
tovich, 1995; Derenyi and Viscek,1995; Bier and As-
tumian, 1996; Mikhailov & Calenbuhr, 2002; Schweitzer,
2003). Here we will study in a more systematic way
models of many Brownian particles with negative
friction and will investigate in more details the depot
model for particles which are able to store the inflow
of energy in an internal depot and to convert inter-
nal energy to perform different activities (Schweitzer,
Ebeling & Tilch, 1998; Ebeling, Schweitzer & Tilch,
1999). Other previous versions of active Brownian
particle models (Schimansky-Geier et al., 1995, 1997;
Schweitzer et al., 1997; Schweitzer, 2003) consider
more specific activities, such as environmental changes
and signal–response behavior. In these models, the
active Brownian particles (or active walkers, within
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a discrete approximation) are able to generate a self-
consistent field, which in turn influences their fur-
ther movement and physical or chemical behavior.
This non-linear feedback between the particles and
the field generated by themselves results in an in-
teractive structure formation process on the macro-
scopic level. Hence, these models have been used
to simulate a broad variety of pattern formations in
complex systems, ranging from physical to biologi-
cal and social systems (Schweitzer and Schimansky-
Geier, 1994; Schimansky-Geier et al., 1995, 1997;
Schweitzer et al., 1997; Helbing, 1997, 2001, Mikhailov
& Cahlenbuhr, 2002; Schweitzer, 2003).

The plan of the Chapter is in brief as follows: At
first we will develop several models of systems of ac-
tive Brownian particles in 2d-systems including en-
ergy input and noise. The energy input is modeled
(i) by Rayleigh-Helmholtz-type velocity–dependent
friction,
(ii) by models of self-propelling based on internal en-
ergy depots,
(iii) by more general partially negative space–dependent
friction laws.
The Rayleigh-Helmholtz was originally developed to
model the complex energy input in musical instru-
ments. In the framework of depot models, the Brow-
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nian particles have explicitly the ability to take up
energy from the environment, to store it in an inter-
nal depot and to convert internal energy into kinetic
energy. Considering also internal dissipation, we con-
sider this as a simplified model of active biological
motion. For the take-up of energy several examples
we will discuss here only a spatially homogeneous
supply of energy. The case of supply of energy at
spatially localized sources (food centers) generates a
more complicated dynamics (Ebeling et al., 1999).

The motion of the particles is described here by
a Langevin equation which includes an acceleration
term resulting from the pumping. The correspond-
ing Fokker-Planck equations are derived. Simulations
of the Brownian particles are compared with analyt-
ical solutions of the Fokker-Planck equation. The
velocity distributions show a crater-like shape which
strongly deviate from Maxwell distributions. In the
presence of external parabolic forces, the system de-
velops a limit cycle in the 4d phase space, the cor-
responding distribution has the form of a hoop or a
tire in the 4d-space.

Summarizing, our basic assumption is to add to
the dynamics of simple physical Brownian particles
the new mechanism of pumping with free energy,
which may be realized in several steps as by energy
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take-up, storage and conversion of energy, and en-
ergy consuming motion. This way, the particles be-
come more complex, which result in new dynamical
features that may resemble active biological motion.
Hence, the basic idea can be formulated as follows:
how much of physics is needed to achieve a degree
of complexity which gives us the impression of mo-
tion phenomena found in biological systems? How-
ever, we will study here only the physical aspects of
the problem. In particular we are interested in the
question how known types of Hamiltonian motion or
Brownian motion could be extended by mechanisms
of energy take-up, storage and conversion. These new
elements should contribute to the development of a
microscopic theory of active biological motion. In
the present model we restrict ourselves to take into
account specific aspects of energy balances that are
related to the mechanisms of energy pumping and
energy dissipation.
We will show, that in comparison with simple Brown-
ian particles, the active particles become much more
complex, which result in new dynamical features as
e.g.:
(i) New diffusive properties with with large mean
square displacement,
(ii) Unusual velocity distributions with craterlike shape,
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(iii) Formation of limit cycles corresponding to the
motion on circles in space.
Some of these features may resemble active biological
motion. Hence, the basic idea can be formulated as
follows: how much of physics is needed to achieve a
degree of complexity which gives us the impression
of motion phenomena found in biological systems?

In order to avoid misunderstandings we underline
again, that we do not intend here to model any partic-
ular biological or social object but instead to analyze
particular physical nonequilibrium systems which show
new types of dynamics which might be interest for a
later more concrete approach.

12.2 Equations of motions and depot models

The motion of Brownian particles with general velocity-
and space-dependent friction in a space-dependent
potential U(r) can be described by the Langevin
equation:

dr

dt
= v ; m

dv

dt
= F −∇U(r) + F(t) (12.1)

Here F is a dissipative force which is in the simplest
case given by a friction law

F = −mγ(r,v)v (12.2)
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where γ(r,v) is the friction function of the particle
with mass m at position r, moving with velocity v.
The friction γ(r,v) may depend on space and time.
F(t) is a stochastic force with strength S and a δ-
correlated time dependence

〈F(t)〉 = 0 ; 〈F(t)F(t′)〉 = 2S δ(t− t′) (12.3)

The noise strength S for the momentum is connected
with the previously used noise strength for the veloc-
ities Dv by the simple relation S = m2Dv. In the
case of thermal equilibrium systems, with γ(r,v) =
γ0 = const., we may assume that the loss of energy
resulting from friction, and the gain of energy result-
ing from the stochastic force, are compensated in the
average. In this case the fluctuation-dissipation the-
orem (Einstein relation) is saying:

S = Dvm
2 = mkBTγ0 (12.4)

T is the temperature and kB is the Boltzmann con-
stant, and Dv is a scaled expression for the strength
of the stochastic force in the velocity space. In the
following we will choose units in which m ≡ 1 what
leads to S = Dv. We are interested mainly in statis-
tical descriptions, i.e. in the probability P (r,v, t)
to find the particle at location r with velocity v

at time t. As shown earlier the distribution func-
tion, P (r,v, t), which corresponds to the Langevin
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equation (12.1), can be described by a Fokker-Planck
equation of the form:

∂P (r,v, t)

∂t
+ v

∂P (r,v, t)

∂r
+ ∇U(r)

∂P (r,v, t)

∂v
(12.5)

=
∂

∂v





γ(r,v) v P (r,v, t) +Dv
∂P (r,v, t)

∂v





(12.6)

As discussed already previously (see Chapter 5, sec-
tion 5.1), in the special case γ(r,v) = γ0 the sta-
tionary solution of eqn.(12.6), P0(r,v), is known to
be the Boltzmann distribution:

P0(r,v) = N exp







− 1

kBT

[m

2
v

2 + U(r)
]







(12.7)

The major question discussed throughout this Chap-
ter is, how this known picture changes if we add a new
activity to the model by considering that Brownian
particles can be also pumped with energy from the
environment. While for usual Brownian motion the
dissipation of energy caused by friction is compen-
sated by the stochastic force, we now discuss the case
of an additional influx of energy, which may be used
to accelerate the particle’s motion. In our model,
this will be considered by a more complex friction
function which now can be a space- and/or velocity-
dependent function, γ(r,v). To gain more insight,
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in the following section we restrict the discussion to
cases where the friction depends either on v or in r.

Let us consider now several models of the self–
propelling mechanism, in part repeating and gener-
alizing the results from Chapter 5. First we consider
velocity-dependent friction as a mechanism acceler-
ating the Brownian motion. Velocity-dependent fric-
tion plays an important role e.g. in certain models
of the theory of sound developed by Rayleigh and
Helmholtz. In the simplest case we may assume the
following friction force of the individual Brownian
particle:

γ(r, v) = −γ1 + γ2v
2 = γ1(

v2

v2
0

− 1) = γ2(v
2 − v2

0)

(12.8)
This Rayleigh-Helmholtz- model is a standard model
studied in many papers on Brownian dynamics (Klimon-
tovich, 1995; Erdmann et al., 2000). We note that
v2

0 = γ1/γ2 defines a special value of the velocities
where the friction is zero. Another standard model
for active friction with a zero point v0 was detected
empirically in experiments with moving cells and an-
alyzed by Schienbein and Gruler (1973)

γ(v) = γ0





1 − v0

|v|





 (12.9)
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It was shown by the mentioned authors that this
model allows to describe the active motion of sev-
eral cell types as e.g. granulocytes (Schienbein &
Gruler, 1993; Erdmann et al., 2000). A disadvantage
of this model is the singularity of the friction func-
tion at v = 0. On the other hand we may consider
as an advantage that the friction function converges
at large v to the constant of passive friction.

Now we will consider the so-called depot model
(see also Chapter 5) for the friction function which is
well behaved in the full velocity range. This friction
function is based on the idea of an energy depot of the
particles (Schweitzer et al., 1998; Ebeling et al., 1999;
Schweitzer, 2003). We assume that the Brownian
particle itself should be capable of taking up external
energy storing some of this additional energy into an
internal energy depot, e(t). This energy depot may
be may be altered by three different processes:

(1) take-up of energy from the environment; where
q(r) is the space-dependent pump rate of energy

(2) internal dissipation, which is assumed to be pro-
portional to the internal energy. Here the rate
of energy loss, c, is assumed to be constant.

(3) conversion of internal energy into motion, where
d(v) is the rate of conversion of internal to ki-
netic degrees of freedom. This means that the
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depot energy may be used to accelerate motion
on the plane.

This extension of the model is motivated by inves-
tigations of active biological motion, which relies on
the supply of energy, which is dissipated by metabolic
processes, but can be also converted into kinetic en-
ergy. The resulting balance equation for the internal
energy depot, e, of a pumped Brownian particle is
then given by:

d

dt
e(t) = q(r) − c e(t) − d(v) e(t) (12.10)

A simple ansatz for q(r) and d(v) reads:

q(r) ≡ q0 d(v) = dv2 (12.11)

where d > 0 is the conversion rate of internal into
kinetic energy. Under the condition of stationary de-
pots we get

e0 =
q0

c + dv2
(12.12)

The energy conversion may result in an additional
acceleration of the Brownian particle in the direction
of movement. This way we get for the dissipative
force including the usual passive friction and the ac-
celeration on the cost of the depot

F = −mγv +me(t)v. (12.13)
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Correspondingly we find a Langevin equation, which
contains an additional driving force, de(t)v:

mv̇ +mγ0v + ∇U(r) = mde(t)v + F(t) (12.14)

Hence, the Langevin eq.(12.14) is now coupled with
the equation for the energy depot, eq.(12.10). The
energy loss of the depot is fully converted into kinetic
energy of motion of the Brownian particle. In most
cases we will assume in the following that the energy
bag is stationary ė(t) = 0. This allows the adiabatic
elimination of the energy and leads to an effective
dissipative force (see Fig. 12.1):

F (v) = −m


γ0 −
q

c + dv2



v (12.15)

The corresponding friction function is

γ(v) = γ0 −
q

c + dv2
. (12.16)

The behavior of the force and the friction changes
qualitatively in dependence on the bifurcation pa-
rameter (Erdmann et al., 2000; Erdmann & Ebeling,
2003)

ζ =
qd

cγ0
− 1 (12.17)

For positive ζ− values we observe that the force dis-
appears for 3 values of the velocity. Let us now con-
sider several special cases in more detail: In the case



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

Equations of motions and depot models 199

that the velocities are rather small we get for the
friction law

γ(v) =
(

γ0 −
q0
c

)

− q0 d

c2
v

2 + O
(

v
4
)

(12.18)

which corresponds with

γ1 =
q0
γ0

− γ0; γ2 =
q0d

c2
(12.19)

to the Rayleigh-Helmholtz model discussed above.
Due to the pumping slow particles are accelerated

and fast particles are damped. At definite condi-
tions our active friction functions have a a zero cor-
responding to stationary velocities v0, where the fric-
tion function and the friction force disappear. The
deterministic trajectory of our system moving on a
plane is in both cases attracted by a cylinder in the
4d-space given by

v2
1 + v2

2 = v2
0 (12.20)

where v0 is the value of the stationary velocity which
is for the Rayleigh-model or the depot model respec-
tively

v2
0 =

γ1

γ2
; v2

0 =
q0
γ0

− c

d
. (12.21)

Before we conclude this section let us discuss briefly
several other closely related depot models. We may
define a second variant of the depot model by the
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Fig. 12.1 Friction force driving active particles corresponding to the depot model (SET-model):
(i) Passive friction force q = 0, ζ = −1(dash-dotted straight line crossing the center). (ii) Depot
model for positive values of the strength of driving: ζ = 0.5 (dashed line); ζ = 2 full line; ζ = ∞

(dash-dotted line with a step at zero).

assumptions:

F (v) = m
[

v

v
de− γ0v

]

(12.22)

where again e is the energy content of a depot and
d a conversion parameter. In difference to the stan-
dard depot model (SET-model) the first term which
expresses an acceleration in the direction of v is not
dependent on the modulus |v|. The acceleration de-
pends only on the energy content e. The correspond-
ing balance of the depot energy reads

de

dt
= q − ce− d|v|e (12.23)

Within the new second variant of the depot model we
get assuming q > 0 and requiring that the internal
energy depot relaxes fast compared to the motion of



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

Equations of motions and depot models 201

the particle in adiabatic approximation

F = mv





dq

cv + dv2
− γ0



 (12.24)

Now for any q > 0 a root v0 > 0 exists and the
Schienbein-Gruler law follows with the correct deriva-
tive in the limit |v| � v0. On the other hand
the Rayleigh law cannot be obtained from the depot
model type B in a simple way. There is one point
which seems to be unrealistic in both depot models
discussed so far: The dissipative force increases lin-
early with the energy content. For real systems one
would expect a saturation with increasing e. This
leads us to a third variant of the depot model:

F (v) = m





v

v

de

1 + ge
− γ0v



 (12.25)

The parameter g leads to the wanted saturation for
ge � 1. The corresponding balance of the depot
energy reads

de

dt
= q − ce− d|v| de

1 + ge
(12.26)

Within this third variant of the depot model we get
assuming q > 0 and requiring that the internal en-
ergy depot relaxes fast compared to the motion of



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

202 Active Brownian Motion

the particle in adiabatic approximation

F = −mv







G(v)

2gv2
− γ0





 (12.27)

where the function G(v) is defined by

G(v) = dv + c + gq −
√

(dv + c− gq)2 + 4qgc(12.28)

The behavior of this third variant of depot mod-
els introduced here is not essentially different from
the standard depot model (SET-model) or from the
Schienbein-Gruler law.

12.3 Force-free motion of active particles and mean square dis-

placement

Let us study first the stationary solutions of the equa-
tion. For the -model of active friction. For the case of
free motion (no external forces) we get the stationary
solution

P0(v) = N exp
[ γ1

2D
v

2 − γ2

4D
v

4
]

(12.29)

The shape of this distribution (eq. 12.29) can be seen
in Fig.12.2. With γ2 = 1 the normalization constant
is (Erdmann et al., 2000):

N−1 = π
√
πD exp







γ2
1

4D









1 + erf





γ1

2
√
D









(12.30)
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For the Schienbein-Gruler model the solution is of
particular simplicity (Schienbein & Gruler, 1993)

P0(v) = N exp
[ γ0

2D
(|v| − v0)

2
]

(12.31)

For the depot-model (SET-model) the stationary so-
lution reads

P0(v) = N


1 +
d

c
v

2




q0
2D

exp
[

− γ0

2D
v

2
]

(12.32)

The Fig.12.2 shows a cross section of the probability
distribution for Rayleigh-Helmholtz and Schienbein-
Gruler friction function For strong noise correspond-
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Fig. 12.2 Velocity distribution function of active Brownian particles for the depot model with
undercritical values of the parameters (passive regime d = 1).

ing to high temperatures D ∼ T → ∞ we get by
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Fig. 12.3 Velocity distribution function of active Brownian particles for the depot model with
overcritical parameter values (active regime d = 10).

using equ.(12.4) the Maxwell distribution

P0(v) =





m

2πkBT



 exp





− mv
2

2kBT





 (12.33)

This limit case is well known, it corresponds to the
standard Brownian motion. Many characteristic quan-
tities are explicitly known and were given already in
earlier Chapters, as e.g. the dispersion of the veloci-
ties

〈v2〉 = 2
kBT

m
, (12.34)
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and the most probable value of the modulus of the
velocity

ṽ =

√

√

√

√

√

kBT

m
. (12.35)

Further we know the autocorrelation functions

〈vi(t)vj(0)〉 = δij
kBT

m
(12.36)

and the mean square displacement

〈(r(t) − r(0))2〉 =
4kT

mγ0

[

t + γ−1
0 (exp(−γ0t) − 1)

]

.

(12.37)
which gives in the limit t→ ∞ the Einstein formula

〈(r(t) − r(0))2〉 = 2Drt. (12.38)

Here

Dr =
2kT

mγ0
(12.39)

is the coefficient of spatial diffusion. In the opposite
case of weak noise we get a hat-like distribution, see
fig.12.3, and in the limit Dv ∼ T → 0 and strong
pumping we find a δ-distribution of the velocities

P0(v) = N δ
(

v
2 − v

2
0

)

(12.40)

In this case of strong pumping the distribution func-
tion is maximal on the cylinder discussed above. The
cross-section with the v1 − v2− plane has the shape
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of a hat. Following Schienbein and Gruler (1993) or
Mikhailov and Meinköhn (1997) we get in this case
the following formula for the mean-square displace-
ment

〈(r(t) − r(0))2〉 =
2v4

0

Dv
t +

v6
0

D2
v



exp



−2Dvt

v2
0



− 1



 .

(12.41)
In the following we restrict ourselves to the depot
model and will give a formula for the mean square
displacement which contains the two limit cases dis-
cussed above. Let us consider the mean-square dis-
placement on the plane d = 2 for a dynamics ac-
cording to the depot model. We will apply a pro-
cedure which is a generalization of the methods de-
veloped by Klimontovich (1982, 1986) and Mikhailov
& Meinköhn (1997). A particle starting at t = 0 in
r(0) will at time t at the coordinate vector

r(t) =
∫ t

0
dt1v(t1) (12.42)

The general expression for the mean square displace-
ment reads

〈(r(t)−r(0))2〉 =
∫ t

0
dt1

∫ t

0
dt2〈v(t1)v(t2)〉, (12.43)

The correlation function of the velocities may be cal-
culated exactly if the velocities are Maxwell distributed
or δ−distributed (see above). We will apply here the
here more general assumption that the velocities have
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a rather narrow distribution around the most proba-
ble value ṽ. For the depot model the the most prob-
able velocity ṽ is the positive root of the bi-quadratic
equation

Dv

ṽ2
+

qd

c + dṽ2
= γ0 (12.44)

Following Klimontovich (1982, 1984) we introduce
now radial and angle variables for the velocities

v1(t) = ρ(t) cosφ(t); v2(t) = ρ(t) sinφ(t).
(12.45)

We consider ρ(t) as a slow variable which is decoupled
from the fast dynamics of the angle φ(t). For the
correlation function we find

K(t) = 〈v(t1)v(t2)〉 = 〈ρ(t1)ρ(t2) cos(φ(t1 − t2)〉
(12.46)

Assuming that the dynamics is decoupled we derive

K(t) ' 〈ρ(t1)ρ(t2)〉〈cos(φ(t1−t2)〉 ' ṽ2〈cos(φ(t1−t2)〉
(12.47)

Here we assumed that the absolute values of the ve-
locities are always near to the value of maximal prob-
ability. Let us now study the correlation of the an-
gles. Following again Klimontovich (1982, 1986) we
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have to study the Fokker-Planck equation

∂f(φ, t)

∂t
= Dφ

∂2f

∂φ2
(12.48)

with the diffusion coefficient Dφ = Dv/(2ρ
2). Re-

placing here ρ2 by its mean value we get

Dφ =
D0

2〈v2〉 =
1

t0
(12.49)

The characteristic time t0 determines the relaxation
of the angle-angle correlations. Using the distribu-
tion

f(φ, τ |0, 0) =
1

√

(4πt/t0
exp





−t0φ
2

4τ





 (12.50)

we get finally after carrying out the time integration

〈(r(t) − r(0))2〉 = ṽ2
[

tt0 − t20 + t20 exp(−t/t0)
]

(12.51)
In the limit of passive Brownian motion with Maxwell-
distributed velocities q = 0 with ṽ2 = kT/m and
〈v2〉 = 2kT/m this leads us back to the classical for-
mula eq.(12.37). In the opposite case of strong driv-
ing q → ∞ and δ− distributed velocities we come
back to the Mikhailov-Meinköhn formula eq.(12.41).

This way we have shown that our approximate ex-
pression eq.(12.51) is correct in the limits q → 0 and
q → ∞. For intermediate values of the driving pa-



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

Force-free motion of active particles and mean square displacement 209

rameter q our result eq.(12.51) is at least a useful
approximation. Going to the limit of infinite time
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Fig. 12.4 Mean square displacement as a function of time for the parameters γ0 = 0.5, c = d = 1
and several values of the driving parameter q. The given curves give the mean square displacement
for q = 1.0; 2.0; 3.0 as a function of time.

.

t� t0 we find the mean-square displacement

〈(r(t) − r(0))2〉 = 2ṽ2t0t (12.52)

In the case of strong noise or weak driving we find in
agreement with the Einstein-formula

Deff =
2kT

mγ0
(12.53)

and accordingly for weak noise or strong driving the
effective spatial diffusion coefficient of Mikhailov and
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Meinköhn

Deff =
v4

0

Dv
. (12.54)

We have carried out several simulations for the de-
pot model. Then introducing the expression for v2

0

the theory provides for large values of the bifurcation
parameter ζ

Deff =
1

Dv





q

γ0
− c

d





2

(12.55)

As we see from Fig. 12.5 the points found from nu-
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Fig. 12.5 Effective diffusion coefficient (Deff ) in dependence on the driving parameter q. The
calculated points correspond to q = 0.0; 0.4; 0.6; 0.8; 1.0; 1.5; 2.0; 3.0. For comparison the asymp-
totic estimate for large driving corresponding to eq. (12.55) is represented (lower curve given by
crosses).

.

merical experiments correspond in a reasonable way
to the asymptotic theory for large q-values.
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12.4 Deterministic motion in parabolic external Potentials

In the following, we continue to discuss the particle’s
motion in a two-dimensional space, r = {x1, x2}.
The case of constant external forces was already treated
by Schienbein and Gruler (Schienbein & Gruler, 1993).
Here we specify the potential U(r) as a symmetric
parabolic potential:

U(x1, x2) =
1

2
a (x2

1 + x2
2) (12.56)

First, we restrict the discussion to a deterministic
motion, which then is described by four coupled first-
order differential equations:

ẋ1 = v1, mv̇1 = −γ (v1, v2) v1 − ax1

ẋ2 = v2, mv̇2 = −γ (v1, v2) v2 − ax2

(12.57)
For the one-dimensional Rayleigh-model it is well
known that this system processes a limit cycle cor-
responding to sustained oscillations with the energy
E0 = γ1

γ2
. For the 2d case we can show by simula-

tion and theoretical considerations that a limit cycle
in the 4d-space is developed (Ebeling et al., 1999).
The projection of this periodic motion to the {v1, v2}
plane is the circle

v2
1 + v2

2 = v2
0 = const. (12.58)
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The projection to the {x1, x2} plane also corresponds
to a circle

x2
1 + x2

2 = r2
0 = const. (12.59)

Due to the condition of equilibrium between cen-
tripetal and centrifugal forces on the limit cycle we
have

mv2
0

r0
= mr0. (12.60)

Therefore the radius of the limit cycle is given by

r0 =
v0

ω0
(12.61)

The energy for motions on the limit cycle is

E0 =
m

2
(v2

1 + v2
2) +

a

2
(x2

1 + x2
2). (12.62)

=
m

2
v2

0 +
a

2
r2
0 (12.63)

From eq.(12.60) follows

m

2
v2

0 =
m

2
r2
0 (12.64)

This means we have equal distribution of potential
and kinetic energy on the limit cycle (Ebeling et al.,
1999). As for the harmonic oscillator in 1-d, both
parts of energy contribute the same amount to the
full energy. Therefore the energy of motions on the
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limit cycle, which is asymptotically reached, is double
the kinetic energy

H −→ E0 = mv2
0. (12.65)

The energy is a slow (adiabatic) variable which allows
a phase average with respect to the phases of the
rotation (Ebeling et al., 1999).

In explicit form we may represent one exact so-
lution representing a cycle in the 4d-space by the 4
equations

x1 = r0 cos(ωt + Φ) v1 = −r0ω sin(ωt + Φ)
x2 = r0 sin(ωt + Φ) v2 = r0ω cos(ωt + Φ)

(12.66)
By insertion into the dynamic equations we can prove
easily, that this is an exact solution (for zero noise)
if ω = ω0. The frequency is given by the time the
particle needs for one period moving on the circle
with radius r0 with constant speed v0. This leads to
the relation

ω =
r0
v0

=
(m

a

)1/2
= ω0. (12.67)

This means, the particle rotates even at strong pump-
ing with the frequency given by the linear oscillator
frequency ω0. The trajectory defined by the above
4 equations looks like a hoop in the 4d-space. Most
projections to the 2d-subspaces are circles or ellipses
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however there are to subspaces namely x1 − v2 and
x2 − v1 where the projection is like a rod.

A second limit cycle is obtained by time reversal

t− > −t; v1− > −v1; v2− > −v2 (12.68)

This leads to the solution

x1 = r0 cos(ωt− Φ) v1 = −r0ω sin(ωt− Φ)
x2 = −r0 sin(ωt− Φ) v2 = −r0ω cos(ωt− Φ)

(12.69)
This second cycle forms also a hula hoop which is dif-
ferent from the first one, however both l.c. have the
same projections to the x1−x2− and to the v1−v2−
plane. The projection to the x1 − x2− plane has
the opposite direction of rotation in comparision with
the first limit cycle. The projections of the two hula
hoops on the x1−x2− plane or on the v1−v2−plane
are 2d-rings (Fig. 12.6) The hula hoops distribution
intersect perpendicular the x1 − v2−plane and the
x2 − v1−plane (see Fig. 12.6. The projections to
these planes are rod-like and the intersection mani-
fold with these planes consists of two ellipses located
in the diagonals of the planes (see Fig. 12.6. In order
to construct later solutions for stochastic motions we
need beside H = mv2

0 other appropriate invariants
of motion. Looking at the first solution we see, that
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Fig. 12.6 Stroboscopic plot of the 2 limit cycles for driven Brownian motion. We show projections
of trajectories for the parameters v0 = v1 = 1 to the subspace x1 − x2 − v1.

the following relation is valid

v1 + ω0x2 = 0; v2 − ω0x1 = 0. (12.70)

In order to characterize the first l.c. we introduce in
accordance with Chapter 5 the invariant

J+ = H − ω0 =
m

2
(v1 + ω0x2)

2 +
m

2
(v2 − ω0x1)

2.

(12.71)
We see immediately that J+ = 0 holds on the first
limit cycle which correspond to positive angular mo-
mentum. In order to characterize the second l.c. we
use the invariant

J− = H + ω0L =
m

2
(v1 − ω0x2)

2 +
m

2
(v2 + ω0x1)

2.

(12.72)
Correspondingly on the second l.c., which corresponds
to negative angular momentum, holds J− = 0.
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As pointed out by Deng and Zhu (2004), there are
two other important and simple invariants of motion

H1− =
m

2
v2

1 +
m

2
ω0x

2
1, Hy− =

m

2
v2

2 +
m

2
ω0x

2
2

(12.73)
As shown by the above mentioned authors, these in-
variants may also be used for deriving explicit solu-
tions for problems of the dynamics in parabolic fields.

12.5 Perturbed and transient limit cycles

The most important result obtained so far, is the
existence of limit cycles, corresponding to stable ro-
tational excitations. In the present section we will
discuss briefly several extensions of the theory devel-
oped in the previous section:

• effects of anharmonicity of the potential,
• effects of rotational asymmetry of the potential,
• effects due to transients to the stationary energy

state.

At first we will discuss how anharmonic potentials
influence. For the general case of radially symmetric
but anharmonic potentials U(r), the equal distribu-
tion between potential and kinetic energy mv2

0 = ar2
0

does not hold. Therefore the relation for the frequen-
cies ω0 = v0/r0 = ω is no more valid. It has to be
replaced by the more general condition that on the
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limit cycle the attracting radial forces are in equilib-
rium with the centrifugal forces. This condition leads
to

mv2
0

r0
= |U ′(r0)| (12.74)

If v0 is given, the equilibrium radius may be found
from the implicit relation

v2
0 =

r0
m
|U ′(r0)| (12.75)

Then the frequency of the limit cycle oscillations is
given by

ω2
0 =

v2
0

r2
0

=
|U ′(r0)|
mr0

(12.76)

In the case of linear oscillators this leads again to
ω0 =

√

(a/m). For the case of quartic oscillators

U(r) =
k

4
r4 (12.77)

we get the limit cycle frequency

ω0 =
k1/4

v
1/2
0

(12.78)

If the equation (12.75) has several solutions, the dy-
namics might be much more complicated, e.g. we
could find Kepler-like orbits oscillating between the
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solutions for r0. In other words we may find then be-
side driven rotations also driven oscillations between
the multiple solutions of eq.(12.75).

An interesting application of the theoretical results
given above, is the following: Let us imagine a system
of Brownian particles which are pairwise bound by
a Lennard-Jones-like potential U(r1 − r2) to dumb-
bell-like configurations. Then the motion consists of
two independent parts, the free motion of the center
of mass, and the relative motion under the influence
of the potential. The motion of the center of mass
is described by the equations for free motion and the
relative motion is described by the equations given in
this section. As a consequence, the center of mass of
the dumb-bell will make a driven Brownian motion
but in addition the dumb-bells are driven to rotate
around there center of mass. What we observe then
is a system of pumped Brownian molecules which
show driven translations with respect to their cen-
ter of mass. On the other side the internal degrees
of freedom are also excited and we observe driven
rotations and in general (if eq.(12.75) has several so-
lutions) also driven oscillations. In this way we have
shown that the mechanisms described here may be
used also to excite the internal degrees of freedom of
Brownian molecules (Erdmann et al., 2000).
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Another possible application is to the motion of
clusters of active molecules. Similar as in the case
of the dumb-bells the clusters will be driven to make
spontaneous rotations. Finally a stationary state will
be reached which is a mixture of rotating clusters or
droplets similar as described by Mikhailov and Calen-
buhr (2002) in the framework of a different model.
We will come back to the dynamics of clusters in
Chapter 13.

Let us study now another interesting effect, con-
nected with broken rotational symmetry of the po-
tential. So far we studied only external potentials
depending on the radius r. In reality this symme-
try might be broken and we should study the more
general case of asymmetric external potentials (Erd-
mann et al. 2000). Let us assume that the former
symmetric parabolic potential is a bit stretched, ellip-
tically. Concerning to develop a model what ought to
describe natural systems, we introduce a small asym-
metry. In nature, exact symmetric systems cannot
be found. In the general case of elliptic symmetry we
find after turning to the main axis:

U(x1, x2) =
1

2

(

a1x
2
1 + a2x

2
2

)

, (12.79)

We introduce the parameter of asymmetry

a1 − a2 = ∆ = ω2
1 − ω2

2 (12.80)
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what can be understood as small detuning of the fre-
quencies of two oscillators. The deterministic dynam-
ics is then given by the equations

ẋ1 = v1 v̇1 =
[

α− β
(

v2
1 + v2

2

)]

v1 − ω2
1x1(12.81)

ẋ2 = v2 v̇1 =
[

α− β
(

v2
1 + v2

2

)]

v2 − ω2
2x2(12.82)

We now investigate the stability of the existing limit
cycles in the parameter space {∆, α}. Apart from
the limit cycles described above there exist a infinite
number of limit cycles if one starts with symmet-
ric initial conditions. This can be understood if one
looks at the system eq.(12.81) in complex represen-
tation (z = x1 + ix2 and ω1 = ω2 = ω0):

z̈ − β





α

β
− ż2



 + ω2
0z = 0 (12.83)

Assuming

z(t) = z eiΩ0t = |z| eiΦeiΩ0t (12.84)

one can see that for angles Φ between zero and 2π,
stable oscillations are possible. As far as one increases
the detuning parameter ∆, the symmetric cycle will
be destroyed. For asymmetric initial conditions one
can observe two limit cycles as in the case of the
parabolic potential. Compared to the parabolic case,
for a detuned potential the two limit cycles are just
stable within a region of finite size. In simulations
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one can observe a region within the existing limit cy-
cles stay stable even with a relatively high amount
of the detuning ∆. Outside that region the limit cy-
cle can go trough certain bifurcation scenarios like
period doubling of the cycle (Neimark-Sacker bifur-
cations). More details on the bifurcation scenario
may be found in (Erdmann et al., 2002).

Finally we want to discuss the role of transient
processes. We studied so far the dynamics in the
4-dimensional space x1 − x2 − v1 − v2 and neglected
the dynamics of the depot variable. This however, is
already a simplification and sometimes the dynamics
of the additional 5th variable e(t) might be compli-
cated (Tilch et al., 1999). As a rule however, this
dynamics is smooth, exponentially approaching the
limit values. In order to show this we will study here
the transition of the energy of the depot to its sta-
tionary state. Including the full depot dynamics, we
have in addition to the previous 4 dynamic variables
an additional variable e(t) which is the content of
the depot at time t. This variable has of course its
own dynamics (Ebeling et al, 1999; Ebeling, 2003).
In order to study this dynamics let us assume at first
that the depot is full at the initial time t = 0 and
that there is no feeding q = 0. A numerical solution
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of the simplified depot equation

d

dt
e(t) = q0 − c e(t) − dv2 e(t) (12.85)

together with the dynamic equations for the coordi-
nates and momenta (for D = 0) gives transient limit
cycles corresponding to left/right rotations. One of
them is shown in Fig. 12.7. We see that in the first
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Fig. 12.7 Projection of the 5-d trajectory of the SET depot model corresponding to a transient
limit cycle to the 3-d space. We show a numerical solution of Eqs. (1),(3) and(4) for the parameters:
e(0) = 20; q0 = 0; c = .05; d = .1; γ0 = 1).

period a transient limit cycle is formed which then
decays since the depot energy is exhausted. There-
fore stationary or quasistationary processes need a
permanent energy support. In later applications of
the theory we will study for simplicity only an adia-
batic approximation for the depot dynamics.
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12.6 Stochastic motion in symmetric external potentials

Since the main effect of noise is the spreading of the
deterministic attractors we may expect that the two
hoop-like limit cycles are converted into a distribu-
tion looking like two embracing hoops with finite size,
which for strong noise converts into two embracing
tires in the 4d-space. In order to get the explicit form
of the distribution we may introduce the amplitude–
phase representation

x1 = ρ(t) cos(ω0t + φ(t)) v1 = −ρ(t)ω0 sin(±ω0t + φ(t))
x2 = ρ(t) sin(ω0t + φ(t)) v2 = ρ(t)ω0 sin(±ω0t + φ(t))

(12.86)
where the radius ρ(t) is now a slow and the phase
φ(t) is a fast stochastic variable (Erdmann et al.,
2000). Again the row signs ±ωt correspond to the
two directions of the angular momentum (right or
left rotations). On the basis of this ’ansatz’ we get
for the Hamiltonian

H = ω2
0 · ρ(t)2 (12.87)

The angular momenta L = xvy− yvx corresponding
to the two limit cycles are

L = +L0; L = −L0; L0 = v2
0/ω0. (12.88)

Both limit cycles are located on the sphere H = v2
0

where H is the Hamiltonian. The dynamics may be
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treated by using the standard procedure of averag-
ing with respect to the fast phases (Erdmann et al.,
2000). A more easy approach is found based on the
procedure developed in Section 5.1. Considering har-
monic oscillators and using equipartition of potential
and kinetic energy (see eq.(12.65) we find for motions
on the limit cycle

v2 =
H

m
(12.89)

Assuming that v2 ' H/m holds also near to the limit
cycle, the dynamic system is converted to a canonical
dissipative system with

γ(v2) ' γ(H/m). (12.90)

This way we come to the following solution for the
Rayleigh-model

P0(x1, x2, v1, v2) = N exp







γ1H − γ2H
2/2

Dv







(12.91)
with the most probable value of the energy

H̃ = H0 =
γ1

γ2
= mv2

0. (12.92)

Here H0 is the energy on the limit cycle.
A different way to derive this distribution is to start
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from the relation
dH

dt
= −mγ(v2)v2 +

√
2Dvv · ξ(t) (12.93)

This leads for the Rayleigh model and near to the
limit cycle to the linearized Langevin equation

dδH

dt
= −γ2v

2
0δH +

√
2DHξ(t) (12.94)

with

δH = H −H0; DH = Dvmv
2
0. (12.95)

The stationary distribution of this linearized problem
reads

P0(H) = C exp



− γ2

2m2Dv
δH2



 (12.96)

We see that the Langevin method leads to the same
stationary distribution of the Hamiltonian, the prob-
ability is in fact distributed on the surface of a 4-
dimensional sphere.

By using eq.(12.87) we get for the Rayleigh- model
of pumping in our approximation the following dis-
tribution of the radii:

P0(ρ) ' exp







γ1ω
2
0

Dv
ρ2





1 − ρ2

2r2
0











, r2
0 = ω2v2

0 =
mγ1

aγ2

(12.97)
We see in Fig. 12.8 that the probability crater is lo-
cated above the deterministic limit cycles. This way



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

226 Active Brownian Motion

the maximal probability corresponds indeed to the
deterministic limit cycle. So far we represented only

-2
-1

0
1

2

x1

-2
-1

0
1

2

x2

Fig. 12.8 Probability density for the Rayleigh-model represented over the x1 − x2− plane.

a projection on the x1 − x2− plane. The full proba-
bility distribution in the 4d-space is not constant on
the 4d-sphere H = mv2

0 as suggested by eq.(12.91)
but should be concentrated around the limit cycles
which are closed curves on the 4−d sphereH = mv2

0.
This means, only a subspace of this sphere is filled
with probability. The correct stationary probabil-
ity has the form of two noisy distributions in the 4d
space, which look like hula hoops. This characteris-
tic form of the distributions was confirmed also by
simulations (see Fig. 12.9) The projections of the
distribution to the {x1, x2} plane and to the {v1, v2}
plane are noisy tori in the 4d-space (see Fig. 12.9).
The hula hoop distribution intersects perpendicular
the {x1, v2} plane and the {x2, v1} plane. The pro-
jections to these planes are rod-like and the inter-
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Fig. 12.9 Stroboscopic plot of the 2 limit cycles for driven Brownian motion in parabolic confine-
ment, including weak noise. We show projections of the l.c. to the subspace y − vx − vy .

section manifold with these planes consists of two
elipses located in the diagonals of the planes. In or-
der to find the distribution of the angular momenta
we start from the Langevin equation

dL

dt
= −γ(v2)L +

√
2DLξ(t) (12.98)

with

DL = m2r2
0Dv (12.99)

This leads for the Rayleigh model to the following
equation for the deviations δL = L±mr0v0:

dδL

dt
= −γ2v

2
0δL +

√
2DLξ(t) (12.100)

The stationary solution reads

P0(L) = C exp





−γ2 · ω2
0

m2Dv
(δL)2





 (12.101)
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The given method does not provide a complete solu-
tion in the 4d-space, but gives us a good idea about
the projections on different planes.

In order to find a distribution in the 4d-space we
try the following ’ansatz’.

P0(x1, x2, v1, v2) = C exp



− γ2

2m2Dv
(H −H0)

2




(12.102)

·




exp





−γ2ω
2
0

mD
v

(L−H/ω0)
2





 + exp





−γ2ω
2
0

mD
v

(L +H/ω0)
2











(12.103)

We may convince ourselves that this formula agrees
with all projections studied above. Furthermore, it
is in agreement with the general ’ansatz’ derived in
Chapter 5 from information theory. We note that in a
recent paper Deng and Zhu (2004) derived a different
approximative solution.
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W. Ebeling, G. Röpke (2004): “Statistical mechan-
ics of confined systems with rotational excitations”,
Physica D, in press.
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T. Pöschel, W. Ebeling, H. Rosé (1995): ”Guessing
probability distributions from small samples”, J. Stat. Phys
80, 1443-1452.



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

275

L.S. Pontryagin, A.A. Andronov and A.A. Vitt (1933):
”On the statistical treatment of dynamical systems”,
J. Eksp. Teor. Fiz. 3 165 [English translation in
”Noise in Nonlinear Dynamical Systems” ed. by F.
Moss, P.V.E. McClintock, Cambridge Univ. Press,
Cambridge, vol.1 p. 329].

I. Prigogine, R. Defay (1962): ”Chemische Thermo-
dynamik”, Leipzig.

I. Prigogine (1967): ”Introduction to Thermodynam-
ics of irreversible processes”, 3rd ed., Wiley, New
York.

I. Prigogine (1969): ”Structure, Dissipation and Life”.
In: Theoretical Physics and Biology (Ed. : M. Marois),
North Holland Publ., Amsterdam.

I. Prigogine, G. Nicolis, A. Babloyantz (1971): ”Ther-
modynamics and Evolution”, Physics Today 25, 23,
38.

I. Prigogine (1980): ”From being to becoming”, Free-
man, San Francisco.



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

276 References

I. Prigogine, I. Stengers (1984): ”Order out of chaos”,
Heinemann, London.

I. Prigogine (1989): ”The Microscopic Meaning of
Irreversible Processes”, Z. physik. Chem. (Leipzig)
270, 477 – 490.

I. Prigogine et al. (1991): ”Integrability and Chaos
in Classical and Quantum Mechanics”, Chaos, Soli-
tons and Fractals 1, 3.

A. Ordemann, F. Moss, G. Balaszi (2003): ”Motions
of daphnia in a light field: random walks with a zoo-
plankton”, in F. Beck, M.T. Hütt, U. Lüttge (eds.),
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”Stochastic Dynamics”, Springer, Berlin.

L. Schimansky-Geier, P. Talkner (2002): ”Tools of
stochastic dynamics”, in: W. Ebeling et al., eds.
”Stochastic dynamics of reacting biomolecules”, l.c. .

T. Schneider (1986): ”Classical statistical mechanics
of lattice dynamic model systems”, In: Trullinger et
al., eds., l.c. .



November 18, 2007 13:10 WorldScientific/ws-b9-75x6-50 LecKra7˙8

283

W.R. Schneider and W. Wyss (1987): ”Fractional
diffusion equation”, Helv. Phys. Acta 60 (2) 358-
358.

W.R. Schneider and W. Wyss (1989): ”Fractional
diffusion and wave-equations”, J. Math. Phys. 30

(1) 134-144.
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larbewegung unter Einwirkung äusserer Kräfte und
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