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Chapter 3

Reversibility and Irreversibility, Liouville

and Markov Equations

3.1 Boltzmann’s kinetic theory

As we stated in the introduction, Boltzmann is the
father of statistical physics. He formulated the ba-
sic tasks of this scientific discipline: How to derive
the macroscopic properties of matter and especially
thermodynamic potentials from atomistics and the
laws of mechanics. He introduced the new natural
constant kB which connects the basic macroscopic
quantity, the entropy S, with the probabilities of mi-
croscopic states. Boltzmann’s approach was in con-
tradiction to most contemporary views. His argu-
ments and the controversy with Loschmidt, Zermelo
and Poincare played a great role for the formation of
modern statistical physics.
In classical thermodynamics the entropy difference
between two states was defined by Clausius in terms

3
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of the exchanged heat d′Q and the temperature T :

dS =
d′Q

T
(3.1)

δS = S2 − S1 =
∫ 2

1

d′Q

T
(3.2)

Here the transition 1 → 2 should be carried out on
a reversible path and d′Q is the heat exchange along
this path. Boltzmann first formulated the basic link
between Clausius’ entropy and probability. In his
first work on kinetic theory he introduced the con-
cept of the phase space X of a macroscopic system
consisting of N molecules, each of them described by
a set of generalized coordinates and momenta:

[q,p] = [q1, q2, ..., qf , p1, p2, ..., pf ] (3.3)

The phase space X is the 2f -dimensional space of
the f coordinates and f momenta which describe the
state of one molecule. Here f has in the simplest case
of Cartesian coordinates of the molecule the value 3,
including further internal degrees of freedom it may
be of the order 5 − 6. Often this space is denoted
as the γ-space of statistical mechanics. The state of
one molecule in this space corresponds to a point and
the state of the ensemble of all molecules of the body,
which is under consideration, is a cloud of points (see
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Fig. 3.1).
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Fig. 3.1 A cloud of points in the phase space of molecules corresponding to the state of a macro-
scopic molecular system.

Let us define, as did already Boltzmann, the func-
tion f(q,p, t) as the density of the points in the γ-
space. Boltzmann concentrated on dilute gases and
in this case the molecules and their corresponding
points are independent. Due to this we may inter-
pret the density as a probability to find at time t,
some molecule represented by a point at q and p ;
more precise we have to consider not phase points
but volume elements dqdp in the phase space. We
consider f(q,p, t) as dimensionless and take into ac-
count that the volume element in the phase space
dqdp has the dimension of an action to the power
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of the space dimension. Therefore we have chosen
Plancks constant h3 as a normalization factor. Note,
that we we have chosen as the most natural unit of
action Planck’s constant, which was of course not yet
known to Boltzmann. With our choice f(q,p, t) is
dimensionless and

f(q,p, t)
dqdp

h3
(3.4)

can be interpreted as the density (probability) of find-
ing at time t a point in the interval dqdp. The nor-
malization is assumed to be

N =
∫ dqdp

h3
f(q,p, t) (3.5)

where N is the total number of molecules in the gas.
In 1866, Boltzmann was able to derive an expression
for the distribution function for the special case of
thermal equilibrium f eq(q,p). Instead of repeating
the derivation let us simply state the central ideas.
We consider two particles with the states q,p and
q1,p1 before a collision. Assuming that q′,p′ and
q′1, p

′
1 are the corresponding states after the collision,

we expect that the products of probabilities before
and after the collision are equal

f eq(q,p)f eq(q1,p1) = (3.6)

f eq(q′,p′)f eq(q′
1,p

′
1) (3.7)
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where both sets of states are connected by the equa-
tions of motion for the collisions. The products in
Eq. (3.6) express the independence of the molecules
far before and after the collision. Equation (3.6) may
be rewritten as

ln f eq(q,p) + ln f eq(q1,p
′
1) (3.8)

= ln f eq(q′,p′) + ln f eq(q′1, p
′
1) (3.9)

Equation (3.7) suggests that the function log f eq(q,p)
depends only on invariants of motion. Assuming that
the relevant invariant is the Hamiltonian and that the
dependence is linear, we arrive at

ln f eq(q,p) = −βH(q,p) (3.10)

where β is a constant. For the identification of β we
may use known relations from the thermodynamics
of ideal gases. From Eq. (3.8) we obtain for the mean
kinetic energy

〈Ekin〉 = 〈 p2

2m
〉 =

3

2β
(3.11)

Comparing this with the energy of ideal gases the
constant β can be identified with the reciprocal tem-
perature multiplied with a constant.

β =
1

kBT
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kB = 1.381 · 10−23J/K (3.12)

Boltzmann’s constant kB is a universal constant which
characterizes the connection between microphysics
and macrophysics. The fact that in statistical physics
a new universal constant appears, makes clear that
statistical physics is indeed a new physics in compar-
ison with microphysics. This situation corresponds
to the philosophical idea that the whole is more than
the sum of its parts. Boltzmann’s constant stands
for emergent properties of macrosystems.
This way we get finally for point particles in a po-
tential field the famous Maxwell-Boltzmann distri-
bution

f eq(q,p) = const exp





−p2/2m + U(q)

kBT





 (3.13)

By using the probabilistic concepts discussed above,
Boltzmann introduced also a new function of the
probabilities which possesses very interesting prop-
erties:

HB = −
∫ dqdp

h3
f(q,p, t) (3.14)

· ln f(q,p, t). (3.15)

In fact, he used the opposite sign for HB in his origi-
nal definition; we introduced the “minus” to be con-
sistent with the standard notation in mathematics
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and informatics. Indeed a similar function (with the
minus sign) was suggested already in the eighteenth
century by the mathematician DeMoivre for the char-
acterization of the mean uncertainty in the outcome
of games. In modern times Claude Shannon founded
the information theory on an H-function. In any
case, BoltzmannsHB measures the mean uncertainty
of the location of the molecules in the phase space.
Later we shall come back to this point several times.
Following the basic postulate of Boltzmann the HB-
function is connected with the thermodynamical en-
tropy by the relation

S = kBHB (3.16)

At least in equilibrium this assumption proves to be
correct since introducing Eq. (3.9) into Eqs. (3.12-
13) leads to

S = −kBN [ln(nΛ3) + const] (3.17)

Here Λ is the thermal De Broglie wave length defined
by

Λ =
h√

2πmkBT
.

The entropy obtained this way, corresponds up to a
constant to the standard expression from equilibrium
thermodynamics. In the phenomenological thermo-
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dynamics the expression for the entropy contains the
so-called Sacur-Tetrode constant, which is estimated
from experiments. In the statistical theory the new
constant is given explicitly in a natural way by the
normalization procedure; remarkably this constant
depends on h. Originally, Boltzmann’s hypothesis
was essentially based on a theorem on the time evo-
lution of HB. Indeed, he succeeded in deriving first
an equation for f(q,p, t) which has the form of an
integro-differential equation. For simplicity we re-
strict ourselves from now to the case that the distri-
bution does not depend on q, which is true for spa-
tially homogeneous systems. Then we get according
to Boltzmann

∂f(p, t)

∂t
= I [f(p, t)] (3.18)

with a certain nonlinear functional I of the distribu-
tion function:

I [f(p, t)] =
∫

σ [f(p′)f(p′
1) − f(p)f(p1)] dp

′dp′
1dp1(3.19)

where σ is the so-called cross section. We see im-
mediately that the equilibrium distribution (3.9) is a
stationary solution of Eq. (3.15). The concrete form
of this functional is not essential for our considera-
tion, for smaller deviations from equilibrium we may
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approximate it in the form

I [f(p, t)] ' −ν [f(p, t) − f eq(p, t)] (3.20)

The physics behind this expression is the plausible
assumption that the effect of collision occuring with
the frequency ν is proportional to the deviation from
equilibrium. By using this so-called relaxation time
approximation we immediately find a solution of the
form

f(p, t) = f eq(p)+exp(−νt)[f(p, 0)−f eq(p)]. (3.21)

This result means physically that there is an expo-
nential relaxation of all deviations from the Maxwell-
Boltzmann distribution. By introducing (3.18) into
the formula for the entropy

S = −kB
∫

(dqdp/h3)f(q,p, t) ln f(q,p, t),
(3.22)

we may show that

δS(t) = Seq − S(t) (3.23)

is non-negative and is a monotonously decreasing
function, giving

δS(t) ≥ 0 (3.24)

and
d

dt
δS(t) ≤ 0. (3.25)
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As shown by Boltzmann, one may prove this directly
from eq. (3.15-16) by using several tricks. There-
fore, δS(t) is a Lyapunov function; it follows that
S(t) always increases. This is in full agreement with
the second law of thermodynamics. It was exactly
this point, which Boltzmann considered as the main
success of his theory, that was later the target of
the heavy attacks from other experts as Poincare,
Loschmidt and Zermelo. Before we explain this point
in more detail, let us first discuss one essential gen-
eralization of Boltzmann’s approach, which is due to
Gibbs. The most essential restriction of Boltzmann’s
theory was the assumption of weak interactions be-
tween the particles. This assumption could be re-
moved by the great American theoretician Josiah
Willard Gibbs (1839-1903) who published in 1902 a
fundamental book ”Elementary Principles in Sta-
tistical Mechanics”. Gibbs considered a more gen-
eral class of macroscopic systems. He introduced a
high-dimensional phase space, the so-called Γ-space,
which is given by all the 3N (or fN respectively) co-
ordinates q1, ..., q3N and the 3N momenta p1, ..., p3N

of the macroscopic system. Gibbs’ generalization
of the entropy to interacting systems of point-like
molecules reads:

SG = −kB
∫

(dqdp/h3N)ρ(q,p) · ln ρ(q,p) (3.26)
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where ρ(q,p) is the normalized probability density
in the 6N -dimensional phase space. The Gibbs ex-
pression includes all interaction effects which in gen-
eral lead to a decrease of the value of the entropy in
comparison to the ideal gas. For the special case of
equilibrium systems with fixed energy E the prob-
ability density is assumed to be constant in a shell
around the surface

H(q1, ..., q3N , p1, ..., p3N) ' E. (3.27)

Gibbs calls this the microcanonical distribution or
the microcanonical ensemble. In principle Gibbs as-
sumption goes back to Boltzmann’s hypothesis, that
the trajectory fills the whole energy shell in a uniform
way. We will come back to this idea of ergodicity in
the next section.
Boltzmann assumed that in the case of equal prob-
abilities of the microstates the entropy of the corre-
sponding macrostate is the logarithm of the thermo-
dynamic probability

SBP = kB lnW. (3.28)

where W is defined as the total number of equally
probable microstates corresponding to the given macrostate.
Strictly speaking, the first explicit writing of formula
eq.(3.28) is due to Planck, therefore we will speak
sometimes about the Boltzmann-Planck entropy. As
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we see, the Gibbs’ expression for the entropy is for
a constant probability density (microcanonical distri-
bution) in full agreement with the Boltzmann-Planck
formula

SG(E, V ) = kB ln Ω∗(E, V ) : (3.29)

Ω∗(E, V ) = W = Ω(E, V )/h3N .

Here Ω(E) is the volume of the energy shell. We
assume as earlier, that Planck’s constant defines the
appropriate unit cell, in order to make the argument
of the log dimensionless. As above W is the number
of equally probable microstates in the energy shell.
All these arguments will be explained in much more
detail in Chapter 4. In principle, with expressions
for the entropy either in the Boltzmann-Planck or
in the Gibbs form, we reached already at our aim,
to derive thermodynamics from microphysics. How-
ever, the solution is not as simple, there remain open
problems.
Boltzmann’s first paper on the connection between
mechanics and thermodynamics appeared in 1871; it
had the remarkable title ”Analytical Proof of the
Second law...”. In a later (main) paper which ap-
peared in 1872, he worked out his arguments in more
detail and presented further results. However in 1876
Boltzmann’s teacher and colleague Loschmidt pub-



October 3, 2007 18:15 WorldScientific/ws-b9-75x6-50 LecKra3˙4

Boltzmann’s kinetic theory 15

lished a serious objection against Boltzmann’s theory,
which became known as the Loschmidt’s paradox.
Loschmidt considered a gas in a box with completely
plane elastic surfaces. During the time evolution of
this system Boltzmann’s H-function at subsequent
times should form a nondecreasing time series

HB(t1) ≤ HB(t2) ≤ ... ≤ HB(tn). (3.30)

Loschmidt then proposed the following “Gedanken-
experiment”. Consider at certain time tn an inversion
of all the velocities of the molecules. Corresponding
to the reversibility of the laws of mechanics we would
observe a backward trajectory leading to a decreasing
H-function.

HB(tn) ≥ HB(tn−1) ≥ ... ≥ HB(t1). (3.31)

However this is in clear contradiction to Boltzmann’s
H-Theorem and to the second law. The next critical
objection against Boltzmann’s theory was based on
the theorem of Poincare about the ”quasi-periodicity
of mechanical systems” published in 1890 in the fa-
mous paper ”Sur le probleme de trois corps les
equations de la dynamique”. Poincare was able
to prove under certain conditions, that a mechanical
system will come back to its initial state in a finite
time, the so-called recurrence time. Zermelo, a stu-
dent of Planck, showed in 1896 in a paper in the “An-
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nalen der Physik” that Boltzmann’s H-theorem and
Poincares recurrence theorem are contradictory. On
the basis of these arguments Chandrasekhar (1943)
concluded that ”a process would appear to be irre-
versible (or reversible) according as whether the
initial state is characterized by a long (short) av-
erage time of recurrence compared to the time
during which the system is under observation”.
Poincare himself was very critical about Boltzmann’s
work, which he believed to be completely wrong. At
that time, Poincare could not know that he had al-
ready created the tools for the solution to that deep
controversy. The clue was the concept of the insta-
bility of trajectories, developed by Poincare in 1890.
Recent results on chaotic dynamics lead us to revise
Poincare’s conception (Prigogine, 1980, 1989, Pet-
rosky & Prigogine, 1988; Gaspard, 1998; Dorfman,
1999, Hoover, 2001). Most systems of statistical me-
chanics such as systems of hard spheres are character-
ized by positive Lyapunov exponents, which implies
the existence of a finite time horizon. As a result,
the concept of classical trajectories is lost for long
times, and the existence of a Poincare’s recurrence
time becomes irrelevant for times much longer than
the Lyapunov time (Prigogine, 1989).
Other quite different, but indeed convincing argu-
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ments in favour of Boltzmann’s approach are based
on computer simulations. First in 1957 Alder and
Wainwright started to simulate the dynamics of molecules
(beginning with hard core models) on a computer.
Now this method is getting more and more a central
part of statistical physics with very fruitful implica-
tions (Hoover, 2001). This can be said also on the
closely related Monte Carlo method (Binder, 1987).
Computer simulations based on molecular dynam-
ics are most useful to clarify the relations between
the irreversibility and molecular dynamics, as well as
between probability and fluctuations (Marechal and
Kestemont, 1987; Hoover, 1988, 2001; Morosov et al.,
2001; Norman & Stegailov, 2002).

3.2 Probability measures and ergodic theorems

Boltzmann’s approach to introduce probabilities into
physics has proven to be one of the most fruitful ideas
of science and yet, in his day, Boltzmann was heav-
ily attacked by mathematicians and physicists. The
reasons for these attacks were, that Boltzmann was
forced to introduce some probabilistic assumptions
which were in contradiction to the principles of me-
chanics. In an effort to place his theory on on firm
ground, Boltzmann founded the subject of ergodic
theory. The aim of ergodic theory is to derive prob-
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abilities from the study of the flow of trajectories
(Balescu, 1963; Arnold & Avez, 1968; Sinai, 1977).
In order to explain the key point of Boltzmann’s idea,
let us first remind several notations and results ob-
tained in the framework of the classical mechanics
of Hamiltonian systems. We consider a Hamilton
dynamics which is defined by a scalar function H ,
called the Hamiltonian, which is defined on a space
of f coordinates q1, ..., qf and f momenta p1, ..., pf :

H(q1, ..., qf , p1, ..., pf). (3.32)

The equations of motions of our Hamiltonian dynam-
ics are

dqi
dt

=
∂H

∂pi
,

dpi
dt

(3.33)

= −∂H
∂qi

. (3.34)

By integration of the Hamiltonian equations at given
initial state q(t),p(t), i = 1, ..., f we may calculate
the future state at t+δt in a unique way. A Hamilto-
nian system given by (3.32-3.34) is either “integrable”
or “non-integrable” dependent on the behavior of the
integrals of motion

Ik(q1, ...qf , p1, ..., pf) = Ck (3.35)
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where the Ck are certain constants. The Hamilto-
nian system is called ”integrable” if there exist f con-
stants of motion which are single valued differentiable
(analytic) functions. These f functions must be in-
dependent of each other and exist globally, i.e. for
all allowed values of the coordinates and momenta.
As well known, a mechanical systems with f degrees
of freedom has in total 2f − 1 integrals of motion
(3.35). This expresses just the uniqueness of the tra-
jectory. Namely, if q1(t), ...qf(t), p1(t), ..., pf(t) are
given explicitly as functions of time and the initial
values, one may (in principle) exclude the time and
find this way f − 1 relations of type of eqs.(3.35).
For integrable systems exactly f of these integrals
are well defined smooth functions and each of them
defines a smooth surface in the phase space. The
f single-valued constants of motion restrict the 2f -
dimensional phase space to an f -dimensional surface
which one can prove to be an f -dimensional torus.
Therefore the solution of (3.30) can be expressed in
terms of f cyclic variables (angle variables) and f
action variables. The Hamilton-Jacobi equation cor-
responding to eq.(3.34) possesses a global solution.
As examples of “integrable” systems we may consider
for f = 1 the linear oscillator and for f = 2 the Ke-
pler problem. For the linear oscillator the constant of
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motion is the energy H(q, p) = E, correspondingly,
the motion is restricted to an ellipse. For the Kepler
problem the constants of motion are the Hamilto-
nian itself and the angular momentum. Other ex-
amples of integrable high-dimensional systems are
chains of coupled harmonic oscillators. In connec-
tion with the great importance of coupled oscillators
to many branches of physics as e.g. solid state theory,
these systems were carefully studied and we arrived
nearly at a full understanding. However linear cou-
pling is just a theoretical model and cannot be consid-
ered as a realistic model for the actual interactions in
many-body systems. Therefore the main interest of
statistical physics is devoted to systems with nonlin-
ear interactions as e.g. hard-core and Lennard-Jones
interactions. For such complicated systems, however,
theoretical results for f � 1 are very rare.
A well-studied nonlinear problem of high dimension
is the linear chain of Toda oscillators (Toda, 1981,
1983), a system of N = f equal masses moving in a
1-d phase space. In equilibrium all of the masses are
situated at their rest positions with mutual distances
fixed at certain equilibrium values. The interactions
are given by the strong anharmonic potentials:

V (r) =
a

b
[exp(−br) − 1 + ar] . (3.36)
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Here r is the deviation from the equilibrium distance
between two of the masses. The forces derived from
this potential tend to a constant for expansions much
larger than the equilibrium distance, and are expo-
nentially increasing for strong compressions with re-
spect to the equilibrium position. Closely related is
the exponential potential which is purely repulsive
exponential potential

V (r) = A exp(−br).

In the limit b → ∞, (ab = const) we get the well
known hard core forces which are zero for expansions
and infinitely strong for compressions. Let us men-
tion another potential, the Morse potential, which is
also closely related to the Toda potential. The Morse
potential, which is defined as the difference of two
exponential potentials (with different sign) shows an
attracting region similar as the Lennard-Jones poten-
tial. The Morse potential which possesses very inter-
esting properties was treated in several recent papers
(Dunkel et al., 2001, 2002; Chetverikov & Dunkel,
2003; Chetverikov et al., 2004, 2005). Here we con-
sider only the simpler Toda potential. In the static
equilibrium state of the chain, all the molecules are
at rest in equidistant positions and the total energy
is zero. By a collision we may accelerate a mass at
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the border of the system and introduce in this way
kinetic energy which will run in form of an excitation
through the system. In a thermal regime we may ex-
cite even a whole spectrum of excitations (Bolterauer
& Opper, 1981; Jenssen, 1991; Jenssen & Ebeling,
1991, 2000). In the case of a purely linear coupling
we know all about these excitations: We will observe
sinusoidal oscillations and waves, acoustical and op-
tical phonons etc.. Eventually local excitations i.e.
wave packets will be observed which however show
strong dispersion. In other words local excitations are
not stable in linear systems. In the case of Toda in-
teractions however these excitations are stable, there
exist soliton solutions which are based on the inte-
grability of the Toda system. The strong interest in
local excitations of soliton type is especially inspired
by the theory of reaction rates (Ebeling and Jenssen,
1988, 1991, Hänggi et al., 1990). In the context con-
sidered here, the Toda systems serve as an example
of integrable many-particle systems. It is just the
special type of the interactions which allows an ana-
lytical treatment of the equations of motion. Now we
are going to consider the dynamics and the integrals
of motion of this system. We study a uniform chain
of masses at the positions yn which are connected
to their nearest neighbors by Toda springs with the
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nonlinear spring constant b. The Hamiltonian reads

H =
∑

n

p2
n

2m
+
a

b
[exp (−b(yn+1 − yn) − 1 + a(yn+1 − yn)](3.37)

For an infinite uniform chain (−∞ < n < +∞)
Toda (1981, 1983) found the integrals of motion

exp [−b(yn+1 − yn)]−1 = sinh2 χsech2 cosh
(

χn−
√

ab/m sinhχt
)

,

(3.38)
corresponding to the soliton energy

Es =
2a

b
(sinhχ coshχ− χ) . (3.39)

The soliton corresponds to a wandering local com-
pression of the lattice with spatial ”width” χ−1. The
quantity

τ =
(

(ab/m)1/2 sinhχ
)−1

(3.40)

defines a characteristic excitation time of a spring
during soliton passage (Toda, 1983, Ebeling & Jenssen,
1988, 1991). The energy of a strongly localized soli-
ton satisfying the condition

sinh2 χ

χ
� 1 (3.41)

reads according to eq.(3.35)

Es ' 2a

b
sinh2 χ. (3.42)
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In this way we have demonstrated that there exists
indeed a class of many-particle systems which are in-
tegrable. However, integrability is connected always
with rather special interactions. In our example most
variations of the Toda law (as e.g. the Morse inter-
action law) destroy the integrability. An interesting
property of the Toda system is, that all statistical
functions according to the Gibbs theory may be ex-
actly calculated (Toda & Saitoh, 1983). The question
however, whether this completely integrable system
will assume a thermodynamic equilibrium in the limit
of long time, remains completely open. The situa-
tion changes drastically if we add a small coupling
to a thermal heat bath (Jenssen & Ebeling, 2000).
Then we have no problems with irreversibility since
the heat bath drives our system to an equilibrium
state with exactly known properties. We see that
the coupling to a heat bath is at least one possible
solution of the irreversibility problem.

We consider now more general many-particle sys-
tems in physical space obeying classical mechanics,
assuming nonlinear interactions of Lennard-Jones or
Morse type. Then the integrals of motion can be di-
vided into two kinds, isolating and nonisolating ones.
Isolating integrals define a connected smooth surface
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in the phase space, while nonisolating integrals are
not defining a smooth surface. The phase trajec-
tory is a cross-section of isolating integrals defining
a surface. In this way the cross section of isolat-
ing integrals defines that part of the phase space
which is filled by trajectories. Boltzmann’s hypothe-
sis stated that for statistical-mechanical systems the
energy surface

H(q1, ...qf , p1, ..., pf) = E (3.43)

is the only isolating integral of motion. Further Boltz-
mann stated that in the course of time the trajectory
will fill the whole energy surface and will come close
to any point on it. Further Boltzmann stated that in
thermodynamic equilibrium the time average of given
phase functions F (q1, ...qf , p1, ..., pf) exists which is
defined by

〈F (q1, ..qf , p1, ..., pf)〉 = limT→∞
1

T

∫ t+T

t
dt′(3.44)

F (q1(t
′), ..qf(t

′), p1(t
′), .., pf(t

′))(3.45)

For stationary processes, the time average will not
depend on the initial time t. However it may pos-
sibly depend on the initial state. The state space is
called connected (nondecomposable) if it cannot be
decomposed into two parts having different time av-
erages. This property guarantees the independence
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on the initial state of the averaging. The dynamics is
called mixing if the average of a product of two phase
function equals the product of the averages

〈F (q1, ...qf , p1, ..., pf)G(q1, ...qf , p1, ..., pf)〉(3.46)

= 〈F (q1, ...qf , p1, ..., pf)〉(3.47)

〈G(q1, ...qf , p1, ..., pf)〉.(3.48)

A system is expected to have this property if the
trajectories are well mixed. Boltzmann considered
the time average as a theoretical model for the result
of a measurement of the physical quantity F. Further
Boltzmann introduced an ensemble average as the
integral over the energy surface

〈F (q1, ..qf , p1, .., pf)〉 =
∫

E−∆/2≤H≤E+∆/2
dq1..dqfdp1..dpf(3.49)

F (q1, ..qf , p1, .., pf).(3.50)

Here the integral is to be extended over a thin sheet
around the energy surface. The finite width ∆ of
the surface was introduced for mathematical conve-
nience, physically it may be considered as an uncer-
tainty of the energy measurement. The final part
of Boltzmann’s so-called ergodic hypothesis (which
is formulated here in a more recent notation) states,
that time and ensemble averages may be identified,
i.e.

〈F (q1, ...qf , p1, ..., pf)〉t = (3.51)



October 3, 2007 18:15 WorldScientific/ws-b9-75x6-50 LecKra3˙4

Probability measures and ergodic theorems 27

〈F (q1, ...qf , p1, ..., pf)〉s (3.52)

In other words, the result of measurements of F (
the time average) may be predicted on the basis of
an ensemble averaging. So far there is no general
proof of this statement for the case of arbitrary in-
teractions. The modern theory has shown, however,
that there are indeed many-body systems, as Sinai’s
billiard which possess the properties stated hypothet-
ically by Boltzmann. We will see later that ergodic-
ity is related to the chaotic character of the motion
of complex Hamiltonian systems. This means, that
the practical predictability is limited, in spite of the
fact that the initial conditions (if there are known
exactly) fully determine the future states. Before we
go to a discussion of this fundamental relation, let us
first generalize the notation of ergodicity following
the work of Birkhoff and others (Ruelle, 1987; Steeb,
1991). A dynamical system is called ergodic if

• for phase functions F (q1, ...qf , p1, ..., pf) the time
average is well defined and,

• a probability measure ρ(q1, ...qf , p1, ..., pf) ex-
ists (called also invariant density) such that

〈F (q1, ...qf , p1, ..., pf)〉t = (3.53)

〈F (q1, ...qf , p1, ..., pf)〉s. (3.54)

The ensemble average used in this condition is de-
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fined as

〈F (q1, ...qf , p1, ..., pf)〉s =
∫

dq1..dqfdp1..dpf(3.55)

F (q1, .., qf , p1, .., pf)ρ(q1, .., qf , p1, .., pf).(3.56)

Let us conclude this section with a few general re-
marks about the ergodicity problem: The works of
Boltzmann, Gibbs and the Ehrenfests raised the er-
godicity problem: to find conditions under which
the result of measurements on many-body systems
may be expressed by probability measures. Since
Boltzmann, Gibbs and Ehrenfest, the subject of er-
godic theory was primarily the domain of mathe-
maticians. In 1931 Birkhoff proved an ergodic the-
orem showing the necessary and sufficient condition
for an ergodic behavior of dynamic systems. Nev-
ertheless Birkhoff’s result did not close the problem,
since for the complex time evolutions which occur
in many-body Hamiltonian systems, ergodicity re-
mains a property which is difficult to prove. How-
ever on the positive side of the ledger is, that ergodic
systems exist indeed, as Sinai’s billiard. Sinai has
shown in a remarkable paper, that systems consist-
ing of two or more hard spheres enclosed in a hard
box are ergodic. From this example as well as from
other investigations we know that ergodicity is closely
connected with the instability of complex mechani-
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cal systems, i.e. with the chaotic character of their
dynamics. Very important contributions to this field
of research we owe to the early work of Krylov and
Born. The main idea of the investigation pioneered
by their work is the following: Due to the instabil-
ity of the motion in phase space the trajectories are
becoming very complex. This leads to the mixing
character of the trajectories and to integrals of mo-
tion which are nonisolating. We mention also that
this view is supported by the simulations of the N -
particle dynamics by means of powerful computers.
So far a complete solution of the problem of ergod-
icity is still missing, but anyhow we may state that
our understanding of ergodicity has much increased
since the times of Boltzmann, Gibbs, Ehrenfest and
Birkhoff.

3.3 Dynamics and probability for one-dimensional maps

The most simple dynamical systems, which already
show a whole universe of beautiful phenomena in-
cluding statistical and thermodynamical aspects are
1-dimensional maps (Schuster, 1984, Lasota & Mackey,
1985; Anishchenko, 1989; Ebeling, Steuer & Titch-
ener, 2001). Let us first consider a 1-dimensional
map T defined by the iteration

T : x(t + 1) = f(x(t)). (3.57)



October 3, 2007 18:15 WorldScientific/ws-b9-75x6-50 LecKra3˙4

30 Reversibility and Irreversibility, Liouville and Markov Equations

The state x(t) is a point on the one-dimensional x-
axis or of certain interval on it. The time t is an
integer

t = 0, 1, 2, 3.....

The trajectory x(t) forms a set of points, one point
for each integer time. Let us consider for example
the famous logistic map (Fig. 3.2)

x(t + 1) = rx(t)[1 − x(t)] (3.58)

and the tent map (Fig. 3.2)

x(t + 1) = rx(t) if x ≤ 1/2

x(t + 1) = r(1 − x(t)) if x ≥ 1/2 (3.59)

Both these examples which map the interval [0, 1]
into itself depend on one parameter only. The care-
ful study of the dependence of the trajectories x(t)
on the value of these parameters, which was pio-
neered by Feigenbaum, Grossmann and Thomae in
the 1970’s led us to deep insights. One can get a
nice overview about the map by plotting the points
generated by 100 interactions in dependence on the r
- parameter. Let us give now an elementary consid-
eration of the bifurcation scenario of our nonlinear
map (3.49) (see e.g. Holden, 1986). In the region
0 < r < 1 the state x = 0 is stable and the formal
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Fig. 3.2 Representation of the logistic map for r = 4 (a solid line) and the tent-map for r = 2 (a
dashed line).

solution x = 1 − (1/r) makes no sense for r < 1.
At r = 1 we observe an exchange of stability. The
state x = 0 is getting unstable and a stable station-
ary state x = 1 − (1/r) appears. At r = r1 = 3 the
stable state x = 1− (1/r) loses stability and a stable
2-cycle flipping between the states x2 and x3 with

x3 = rx2(1 − x2), x2 = rx3(1 − x3) (3.60)

is born. At r = r2 = 1 +
√

6 = 3.449... the two
branches of the 2-cycle lose stability and a stable 4-
cycle is created. This procedure is continuing in an
infinite sequence of bifurcations occurring at the pa-
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rameter values

r3 = 3.544090, r4 = 3.564407 (3.61)

r5 = 3.568759, r6 = 3.569692, ... (3.62)

The sequence of period-doubling bifurcations appears
to converge to a limit

r∞ = 3.569946...

in geometric progression

rk = r∞ − cF−k if k → ∞ (3.63)

with

c = 2.6327..., F = 4.669202...

This behavior was already in 1975 noted by Feigen-
baum, who found also - what is most important - that
for a very large class of maps, the constant F has the
same value. Honoring Feigenbaums pioneering work,
the constant F is now named the universal Feigen-
baum constant. Let us continue now the bifurcation
analysis and proceed to the region r∞ < r < 4.
We find there a chaotic behavior of the orbits ex-
cept for an infinite number of small windows of r-
values for which there exist a stable m-cycle. The
first such cycles which appear beyond r∞ are of even
period. Next, odd cycles appear as e.g. a 3-cycle at
r = 3.828427 which stays stable up to r = 3.841499.
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Then a 6-cycle follows and one observes further pe-
riod doublings. Outside the window there are no
stable periodic orbits although there is an infinite
number of unstable cycles. The most chaotic case is
reached at r = 4. A quantitative way to describe the
chaotic behavior in the region r > r∞ is the Lya-
punov exponent defined in section 2.5. In our simple
case of 1-d maps the Lyapunov exponent is defined
as the time average of the logarithmic slope

λ = 〈φ(x(t))〉t (3.64)

where

φ(x) = log|df(x)/dx| (3.65)

Following an orbit of the system we may write

λ = limn→∞ · 1

n

n
∑

k=1

log |df/dx|x=xk
(3.66)

Except for a measure of value zero, λ is independent
of the starting point. According to the definition of
chaos in section 2.5 we say in the case λ > 0 that
the orbit is chaotic. Stable orbits as fixed points and
limit cycles are characterized by λ < 0. Lyapunov
exponents for the logistic map in dependence on the
r-parameter were calculated for the interval where
chaos is observed in several papers (see e.g. Ebeling,
Steuer & Titchener, 2001).
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There is no need here to discuss the bifurcation be-
havior of the tent map eq.(3.50) in the same detail.
Let us just mention that the interesting interval is
here 1 < r < 2. So far we have seen only an interest-
ing bifurcation picture but no connection to the prob-
lems of statistical thermodynamics and stochastics,
which are all connected with certain probabilities.
We shall show now, how probabilities and thermo-
dynamic quantities come into play. Let us consider
for example again the logistic map in the case that
all the orbits of the system are chaotic at the given
value of r (e.g. r = 4). We will show that in this
case probability may be introduced in a natural way
(Lauwerier, 1986). The invariant distribution p(x) is
defined by the normalized probability p(x)dx of find-
ing an image T : x in the interval (x, x + dx). The
normalization condition reads

∫

p(x)dx = 1. (3.67)

For simplicity we consider only unimodal maps on
the interval 0 ≤ x ≤ 1; then any x has at most two
pre-images y and z. The probability to find x in the
interval (x, x + dx) should equal the sum of finding
the pre-images y and z in the intervals (y, y + dy)
and (z, z + dz). In this way we find

p(x)dx = p(y)dy + p(z)dz (3.68)
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Introducing now

x = f(y), x = f(z) (3.69)

and

dx/dy = f ′(y), dx/dz = f ′(z) (3.70)

we get the functional relation

p(x) =
p(y)

f ′(y)
+
p(z)

f ′(z)
(3.71)

We call this the (stationary) Perron-Frobenius equa-
tion. In the general case the analytic solution of the
Perron-Frobenius relation is not known. However a
solvable case is just the logistic map with r = 4 and

y =
1

2
− 1

2

√
1 − x, z =

1

2
+

1

2

√
1 − x. (3.72)

|f ′(y)| = |f ′(z)| = 4
√

1 − x

In this case the Perron-Frobenius equation assumes
the form

p(x) =
p(1

2
− 1

2

√
1 − x)

4
√

1 − x
+
p(1

2
+ 1

2

√
1 − x)

4
√

1 − x
(3.73)

On can check that the normalized solution is given
by

p(x) =
1

π
√

x(1 − x)
if 0 ≤ x ≤ 1. (3.74)
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This probability distribution has integrable poles at
x = 0 and x = 1 and a minimum at x = 0.5. For
the tent map the Perron-Frobenius equation reads

p(x) =
1

r

[

p(
x

r
) + p(1 − x

r
)
]

(3.75)

This equation is solved analytically for r = 2 by the
homogeneous distribution

p(x) = 1 if 0 ≤ x ≤ 1. (3.76)

In the general case p(x) cannot be found analytically
however there is no problem in finding it by numeri-
cal procedures.
For example we can solve eq.(3.71) by successive it-
erations starting from certain guess, e.g. the equal
distribution which we introduce at the right hand
side, calculate the left side etc.. Following a theorem
of Lasota and Yorke, p(x) is continuous if f(x) is ev-
erywhere expanding. In other cases p(x) might be the
sum of a continuous function and Dirac δ-functions.
Having obtained the probability distribution we get
the Shannon entropy of the distribution by integra-
tion

H =
∫

dxp(x) · ln(1/p(x))
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This gives in the case of the logistic map at r = 4
the entropy

H = ln(
π

4
). (3.77)

Further we obtain for the tent map at r = 2 the
entropy

H = 0 (3.78)

The probability distributions given above are is the
stationary (invariant) distribution. They correspond
to the invariant probability measures introduced in
section 3.2 in connection with the term ergodicity.
We may also discuss the time evolution for the distri-
bution p(x) which is described by the time-dependent
Perron-Frobenius equation. In conclusion we unde-
line the remarkable result, that a purely determinis-
tic, but chaotic dynamics, may define a smooth prob-
ability distribution.

3.4 Hamiltonian dynamics: The Liouville equation

As a first elementary example we consider a mechan-
ical system with the linear Hamiltonian (p, q are the
action and the angle)

H = βp− αq. (3.79)

We assume periodic boundary conditions on the sur-
face of the two-dimensional unit square 0 < q <
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1, 0 < p < 1 . The equations of motion are given by

ṗ = α; q̇ = β (3.80)

The solutions are are easily given

p(t) = p(0) + αt; q(t) = q(0) + βt. (3.81)

By eliminating the time we see that the phase tra-
jectory is given on the unit square by

p(t) = p(0) +
α

β
(q(t) − q(0)) (3.82)

If (α/β) is a rational number,

(α/β) = m/n, (3.83)

then the trajectory will be periodic and will repeat
itself after a period. If α/β is irrational, then the
trajectory will be dense in the unit square (but will
not necessarily fill it completely). One can show that
our system is ergodic, i.e. for any phase function
F (q, p) the relation

< F (q, p) >t=< F (q, p) >s=
∫

dqdpF (q, p)
(3.84)

holds. In other words, the time average is equal to
an ensemble average and there exists an invariant
density which is ρ = 1. The proof of eq.(3.84) is
simple (Reichl, 1987). This simple example shows,
that there exist Hamiltonian systems which observe
the general formalism, which requires the existence
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of probability densities.
Let us consider now the classical mechanics of sys-
tems with a more realistic Hamiltonian. We will as-
sume that the Hamiltonian is defined on a space of
f coordinates q = q1, ..., qf and f momenta p =
p1, ..., pf . For a large class of systems the Hamilto-
nian is the sum of a momentum-dependent kinetic
energy and a coordinate-dependent potential energy

H(q1, ..., qf , p1, ..., pf) = T (p1, ..., pf)+U(q1, ..., qf)
(3.85)

By integration of the Hamiltonian equations (3.34) at
given initial state qi(t), pi(t), (i = 1, ..., f) we may
calculate the future state at t + δt in a unique way.
One of the most important results of modern physics
is, that in spite of the deterministic connection be-
tween initial and future states, limited predictability
occurs. This is due to the fact that most complex
Hamiltonian systems are chaotic. However before we
discuss this question in more details, let us first look
at the simpler question of the reversibility of mechan-
ical motion. Mechanical motions as e.g. the orbits of
planets may go in both directions. Forward and back-
ward movement are both allowed, the motion is re-
versible. On the other hand, macroscopic motions, as
one of a comet falling down to earth are irreversible,
they cannot go in backward direction. The reversibil-
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ity of the mechanical motion is formally due to the
invariance of the Hamilton equations with respect to
the so-called T-transformation, which models the re-
versal of motion. Let us assume now that q(t) and
p(t) are solutions of the Hamilton equations. The T-
transformation leading to reversal of motion at time
t = 0 is given by (i = 1, 2, ...., f)

qi(t) → q′i(t) = qi(−t)

pi(t) → p′i(t) = −pi(−t) (3.86)

One can show easily, that the p′i(t) and the q′i(t) are
solutions of the Hamilton equation, i.e. they cor-
respond to allowed motions. A similar argument is
true for the quantum-mechanical motion, where the
T-transformation is given by

ψ(q1, ...qf , t) → ψ′(q1, ..., qf , t) = ψ∗(q1, ..., qf ,−t).
(3.87)

Here ψ is the wave function and ψ∗ its complex conju-
gate. The wave function should satisfy the Schrödinger
equation

∂tψ(q1, ..., qf , t) = Hψ(q1, ..., qf , t) (3.88)

where H is the Hamilton-operator. One can easily
show now, that ψ′ is also a solution of the Schrödinger
equation, i.e. it represents a possible motion of the
system. Since the times of Boltzmann, Loschmidt,
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Poincare and Zermelo there is a never ending discus-
sion about the origin of the breaking of time symme-
try observed in macroscopic physics (see e.g. Linde,
1984; Prigogine & Stengers, 1988; Prigogine, 1989;
Ebeling, et al., 1990). Our point of view is in brief,
that the observed irreversibility might be a property
of the expanding world in which we are living. The
second law is a basic property of this, our actual
Universe. A priori we cannot exclude the possibility
that in contracting phases of the Universe or in other
Universes (if such exist) the second law is not valid.
Actually all our observations refer to the expanding
Universe surrounding us . Merely for philosophical
reasons we share Boltzmann’s and Einstein’s view,
that globally the world is uniform in space and time.
Stationarity on big scales is one of its basic properties.
Boltzmann expressed his views in the following sen-
tences (quotation from Brush, 1965): ”The second
law of thermodynamics can be proved from the
mechanical theory if one assumes, that the present
state of the universe, or at least that part that sur-
rounds us, started to evolve from an improbable
state and is still in a relatively improbable state.
This is a reasonable assumption to make, since
it enables us to the facts of experience, and one
should not expect to be able to deduce it from any-
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thing more fundamental. ... . For the universe as
a whole, there is no distinction between the ”back-
wards” and ”forwards” directions of time, but for
the worlds on which living beings exist, and which
are therefore in relatively improbable states, the
direction of time will be determined by the direc-
tion of increasing entropy, proceeding from less
to more probable states”. We believe, that Boltz-
mann, who was a really deep thinker, was right in
the general respect, his views were just limited by
the knowledge of his time. Nowadays our knowledge
about the fundamental laws of dynamics is no more
limited to the classical mechanics. Modern physics
is based on quantum mechanics, general relativity
theory on the big scales and quantum field theories
on the small scales. Let us imagine how Boltzmann
would rephrase his ideas in our days, nearly 100 years
after his reply to Zermelo’s paper. Probably Boltz-
mann would start from general relativity, quantum
field theories, relativistic thermodynamics and mod-
ern cosmological theory (Neugebauer, 1980; Linde,
1984). Guided by his general view about stationar-
ity he would like the model of the closed Universe
which has oscillating solutions (Linde, 1984). Modi-
fying the standard picture about regular oscillations,
Boltzmann would possibly assume stochastic oscil-
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lations. He would not insist on the purely thermal
character of the oscillations but would admit as well
vacuum fluctuations. Maybe he would say that our
Universe is subject to some colored noise with a basic
period of about 1 - 100 billions of years. Still he would
insist on his hypothesis: ”Among these worlds the
state probability increases as often as it decreases.
For the Universe as a whole the two directions of
time are indistinguishable, just as in space there
is no up or down”. We believe that the laws of
macroscopic physics are deeply affected by the ex-
pansion of our Universe. Expanding space soaks up
radiation and acts as a huge thermodynamic sink for
all radiation. At present the whole Metagalaxis is
filled with a sea of thermal photons having a density
of about 500cm−3 and a temperature of about 2.7 K.
This so-called background radiation acts as a thermal
heat bath which influences all motions of particles in
an irreversible way.

Following Boltzmann’s view that our world is basi-
cally probabilistic, let us consider now the question,
how probabilities may be introduced into a many-
particle classical mechanical system and what is the
dynamics of these probabilities. We postulate that
the system may be characterized at time t by a prob-
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ability density

ρ(q1, ...qf , p1, ..., pf , t) (3.89)

such that the ensemble average (3.56) of any given
phase function F is defined. Trying to find an equa-
tion which determines the time evolution of the prob-
ability density we note first, that the reversibility of
the mechanical motion requires

dρ

dt
= 0. (3.90)

Here d/dt denotes the substantial derivation corre-
sponding to a coordinate system moving with the
phase point. An observer moving on the flow in the
phase space will see a constant probability, otherwise
he could differ between the past and the future. The
so-called Liouville equation (3.90) is equivalent to the
well-known invariance of the phase volume with re-
spect to motion. Let us transform now eq. (3.90) by
using the Hamilton equations (3.34). We get

dρ

dt
=
∂ρ

∂t
+

∑

r





∂ρ

∂qr
q̇r +

∂ρ

∂pr
ṗr



 = 0 (3.91)

This is the explicite form of the Liouville equation
which we may write formally, employing the Poisson
brackets, as

∂ρ

∂t
+ [H, ρ] = 0 (3.92)
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There exists a different way to derive the Liouville
equation starting from the property of the Hamilto-
nian flow to be free of sources (see Chapter 2). This
way we get

∂ρ

∂t
+

∑

r





∂ρq̇r
∂qr

+
∂ρṗr
∂pr



 = 0. (3.93)

By using the fact that the divergence of Hamilton
flows is zero

ρ
∑

r





∂q̇r
∂qr

+
∂ṗr
∂pr



 = 0. (3.94)

we arrive again at the Liouville equation eq.(3.92).

The Liouville equation is still reversible; strictly
speaking it is not a kinetic equation. We may com-
pare it with the Frobenius-Perron equation intro-
duced in section 3.3. Stationary solutions of eq.(3.92)
are easily found. We have to observe however several
requirements, a probability has to fulfill, as smooth-
ness and integrability.

A rather general solution is

ρ(q1, ...qf , p1, ..., pf) = F (H(q1, ...qf , p1, ..., pf))
(3.95)

with a free function F which is arbitrary up to certain
requirements. One example of a stationary solution
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of this type is

ρ(q1, .., qf , p1, .., pf) = C exp[−βH(q1, ..qf , p1, .., pf)]
(3.96)

where C and β are positive constants. Later this
distribution will get the name “canonical”. Further
any function of constants of motion is a stationary
solution. Namely, in the case we can find s con-
stants of the motion I1, .., Is which are single valued
differential (analytic) functions. Furthermore these
s functions must be independent of each other and
exist globally, i.e. for all allowed values of the coordi-
nates and momenta. Then, again for a rather general
class of functions F we find a whole class of solutions
in the form

ρ(q1, ..., qf , p1, ..., pf) = F (I1, .., Is) (3.97)

The problem with the Liouville equation is, that it
has so many solutions. In this way we come back
to Boltzmann’s hypothesis stating that possibly the
Hamiltonian is the only single valued analytic inte-
gral of motion, i.e. the solutions of type (3.96) ex-
pressing Gibbs’ canonical distributions would be suf-
ficiently general.
Why should this be true? The key ideas are based
on Poincare’s work from 1890, about the instabil-
ity of many-body motions. The further development
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of this work we owe especially to Birkhoff, Hopf,
Krylov, Born, Kolmogorov, Arnold, Moser, Sinai,
Chirikov, Zaslavskii and others. We have explained
the concept of instability and Lyapunov exponents
already in the previous chapter. Let us repeat the
main ideas in brief: The states and the trajecto-
ries of dynamical systems are never exactly known
and are subject to stochastic perturbations. There-
fore the stability of motion with respect to small
changes is of large interest. The stability of trajec-
tories x(t) = [q1(t), ..., qf(t), p1(t), ..., pf(t)] is stud-
ied by investigating besides the original trajectories
x(t; x0, t) which starts at x0, t0 also a second one
x(t; x0 + δx0, t0), which at the initial time t0 starts
at x0 + δx0 where δx0 is a small shift vector. The
motion is called globally stable if for all t and any
ε > 0 there exists always an η(ε, t0) such that for
|δx(t0)| < η follows |δx(t)| < ε for any t > t0. If
such an η does not exist, the motion is called unsta-
ble.
From a more detailed analysis of the instability we
obtain the spectrum of eigenvalues of singular points,
the spectrum of Floquet exponents of periodic orbits
and the spectrum of Lyapunov exponents. These ex-
ponents are all related to the properties of the Jaco-
bian J defined earlier by eq.(2.89) of the dynamical
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system.
For Hamilton systems the trace of the Jacobian is
zero

TrJ(x) = 0. (3.98)

Correspondingly the eigenvalues are either real, con-
sisting of symmetrically located pairs or conjugated
imaginary. This means that we will not find asymp-
totically stable singular points. All singular points
will be of saddle type or centers. An analog state-
ment can be given for the stability of periodic orbits.
The sum of the Lyapunov-exponents λi is always zero

∑

i
λi = 0 (3.99)

what corresponds to the conservative character of
Hamiltonian systems. If at least one (the largest)
Lyapunov exponent is positive, the motion is chaotic.
Generally we expect that the real parts of the spec-
trum have positive and negative contributions

λ1 ≥ ... ≥ λj > 0 > λj+1 ≥ ... ≥ λn (3.100)

Then the sum of the positive Lyapunov exponents
is in most cases equal to the Kolmogorov entropy
(Pesin, 1977 ; Ledrappier & Young, 1985). The Kol-
mogorov entropy is closely connected with the prob-
lem of the predictability of motions (Eckmann & Ru-
elle, 1985). Originally Kolmogorov introduced this
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quantity on the basis of the many-point entropies
of the Shannon theory (Kolmogorov, 1958). Here
we use only the simplified version based on the λ-
spectrum. Let us define the Pesin - entropy by (Pesin,
1977; Ebeling, Steuer & Titchener, 2001)

Kλ =
+
∑

i
λi, (λi > 0). (3.101)

The Pesin entropy is identical to the Kolmogorov en-
tropy for a big class of interesting systems (Pesin
identity) (Pesin, 1977, Eckmann & Ruelle, 1985).
The dynamics is characterized as unstable if Kλ > 0
. If Kλ > 0 for a certain region of the phase space
we say that this region is stochastic. In this case pre-
dictability is quite limited. Trajectories tend to di-
verge at least in certain directions, what makes long
term predictions impossible. Small uncertainties at
zero time will arrive at very large values very soon.
One of the most important results of the modern the-
ory of Hamiltonian systems is, that most many-body
systems have stochastic regions (Krylov, 1950, 1979;
Arnold and Avez, 1968; Sinai, 1970, 1972; Chirikov,
1979; Lichtenberg and Lieberman, 1983; Zaslavskij,
1984; Arnold, 1987). Systems with positive K - en-
tropy are called now K-systems or K - flows. The
property of being a K-flow includes mixing and er-
godicity. The opposite however is not true. Sinai
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(1970, 1972) has shown that systems of N > 2 hard
spheres in a box with hard walls are K-systems. This
makes rather probable that all systems of particles
with rather hard repulsion are also K-systems. We
consider this to be one of the most important results
of modern statistical mechanics.

3.5 Markov models

In the previous two sections we have considered sev-
eral examples of chaotic dynamical systems leading
to stationary probability densities, corresponding to
invariant measures (Lasota & Mackey, 1985). For
a simple example we shall demonstrate now, how
Markov models for the dynamics may be derived.
Such Markov models correspond to irreversible ki-
netic equations for the process to be described. Fol-
lowing the work of Nicolis, Piasecki and Mc Kernan
(1992) we study first the tent map (3.59) (Nicolis,
Martinez & Tirapegui, 1991; Nicolis, Piasecki and
Mc Kernan, 1992; Mc Kernan, 1993; Nicolis and Gas-
pard, 1993)

x(t + 1) = rx(t) if x ≤ 0.5

x(t + 1) = r[1 − x(t)] if x > 0.5. (3.102)

The time-dependent version of the Perron-Frobenius
equation for the tent map is obtained by a general-
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ization of eq.(3.66). Considering the balance of prob-
abilities at time t and t + 1 we obtain

p(x, t + 1) =
1

r

(

p(
x

r
, t) + p(1 − x

r
, t)

)

(3.103)

Let us consider now the special parameter value r =
2; then the map is fully chaotic and the time evolution
is given by:

p(x, t + 1) =
1

2

(

p(
x

2
, t) + p(1 − x

2
, t)

)

(3.104)

As we can verify by substitution, the stationary dis-
tribution is given by

p0(x) = 1 if 0 < x < 1. (3.105)

In other words, the equal distribution satisfies the
stationary Perron-Frobenius equation at r = 2. The
mean uncertainty corresponding to the equal distri-
bution (3.105) is H = 0. Any other normalized dis-
tribution has a lower value of the mean uncertainty.
This is exactly the behavior we expect from the point
of view of thermodynamics. We note, that for con-
tinuous distributions the mean uncertainty is not al-
ways positive definite. Another more serious problem
with the Perron-Frobenius equation (3.103) is, that
an initial distribution must not necessarily converge
to the stationary distribution. In other words, we
have no irreversibility of the evolution, no Markov
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property. The solution of this problem comes from
the rather old idea of coarse-graining introduced al-
ready by Gibbs. The introduction coarse-grained de-
scriptions leads us and to evolution equations with
Markov character. So far we have considered a fine
(microscopic) description of our dynamic system based
on the exact state x(t) at any time t or the corre-
sponding distribution p(x, t). A coarse description
does not specify the state exactly but only with re-
spect to certain intervals. Let us introduce a partition
of the state space by

P : [C1, ...., Cλ], Ci ∪ Cj = 0 if i 6= j
(3.106)

P is called a partition of the interval [0, 1]. Now
we restrict our description by giving only the num-
ber of the interval in which the exact state x(t) is
located. On this coarse-grained level the state is one
of the λ discrete possibilities. The corresponding dy-
namics is a hopping process between the intervals.
Since the hopping is a discrete process, the descrip-
tion of the dynamics has necessarily to use stochas-
tic methods. We note at this place that for for dis-
crete processes deterministic descriptions do not ex-
ist. This is an important point. For the case of con-
tinuous state spaces we have a free choice between
deterministic and probabilistic descriptions, both are
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strictly equivalent. After introducing coarse-graining
no deterministic description exists anymore and the
stochastic description is a must. Let us introduce
P (i, t) as the probability of finding the system at the
time t on the level (the interval) i. In exact term this
probability is defined by

P (i, t) =
∫

Ci

dx · p(x, t) (3.107)

In accordance with our general reasoning we assume
now that the evolution of the probability is a Markov
process defined by a stochastic matrix W = [Wij]
and the equations

P (i, t + 1) =
∑

j
WijP (j, t) (3.108)

with
∑

i
Wij = 1

The problem with the rough descriptions is, that the
Markov picture might not exist or be incompatible
with eqs.(3.106-3.108). In any case a general proof of
the existence of Markov descriptions seems to be dif-
ficult. A partition of the original phase space which
leads to a Markov description is called a Markov par-
tition. Evidently no general prescription is known,
how to find Markov partitions for an arbitrary given
dynamics. However several rules are known, which
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might be helpful in finding Markov partitions for
given deterministic dynamics.
An example where this procedure works was demon-
strated by Nicolis et al. (1991,1992). We will discuss
this example here without giving a full prove. Let us
now consider again the tent map with r = 0.5(1 +√

5). For this map the dynamics is chaotic and has
an attractor located in the interval [r(1− r/2), r/2].
This means, in the coarse of the time evolution, any
initial state will be attracted by this interval. In the
coarse grained description a 2-partition is generated
by means of the maximum of the tent at 0.5:

C1 = [0, 0.5), C2 = [0.5, 1] (3.109)

The resulting states, denoted e.g. by “L” and “R””
may be viewed as the letters of an alphabet. Then
following Nicolis et al. (1992) the stochastic matrix
W is exactly given by

W11 = 0 W12 = 1/r2 (3.110)

W21 = 1 W22 = 1/r (3.111)

We can easily verify the Markov properties

W11 +W21 = 1, W12 +W22 = 1.

Further we verify, that the stationary (invariant) dis-
tribution has the components

P (1) = 1/(1 + r) = 0.27639....
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P (2) = r/(1 + r) = 0.72360... (3.112)

A direct proof of these relations may be given by com-
parison by carrying out the integrations in eq.(3.108),
this way we may confirm that eq.(3.111) and eq.(3.112)
are true. Some generalization of this description is
possible for the 4-partition

C1 = [r(1 − r/2), 1/2]; C2 = [1/2, r/2];(3.113)

C3 = [0, r(1 − r/2)]; C4 = [r/2, 1](3.114)

After some transitory dynamics, the attractor is reached,
which cannot be left, i.e. the transitions 1 → 3, 1 →
4, 2 → 3, 2 → 4 are impossible. The corresponding
matrix elements should disappear.

W13 = 0 W14 = 0 W23 = 0 W24 = 0

The matrix elements W11,W21,W12,W22 remain un-
changed. The message is, that there might be several
Markov descriptions for a given deterministic dynam-
ics.

Another example which can be treated this way
is the logistic map at r = 4, where also a family of
Markov partitions is known. For instance, the points
of the unstable periodic orbits x = 0.345...; x =
0.905... define a three-cell Markov partition. The re-
sulting 3 states, e.g. ”O”, ”L” and ”M” by be con-
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sidered again as an alphabet. As shown by Nicolis et
al. (1989) the corresponding probability matrix has
the elements

W11 = 1/2 W12 = 0 W13 = 1 (3.115)

W21 = 1/2 W22 = 1/2 W23 = 0 (3.116)

W31 = 0 W32 = 1/2 W33 = 0. (3.117)

Many other examples for generating Markov par-
titions are known. However the deep problem re-
mains open, what are in general the conditions for
making a transition to Markov descriptions. Evi-
dently Markov-like descriptions are the condition sine
qua non for the formulation of a “statistical mechan-
ics” including “kinetic equations” and the irreversible
transition to an “equilibrium thermodynamics”. In
conclusion we may state that nonlinear systems in the
chaotic regime are leading to probabilistic and ther-
modynamic descriptions in a quite natural way. In
other words, nonlinearity, chaos, and thermodynam-
ics are closely linked together. This point will occur
to be fundamental for all the problems discussed in
this book. This was the reason to explain this con-
nection for simple examples already at the beginning
of this book.

Our basic hypothesis is, even without having a
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general prove of this statement, that the macro-
scopic systems which are the objects of ”statisti-
cal physics” have similar properties as the simple
chaotic maps studied in this Chapter.
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Chapter 4

Entropy and Equilibrium Distributions

4.1 The Boltzmann-Planck principle

According to our general concepts, Statistical Physics
is the bridge between the microscopic and macro-
scopic levels of description. Basic tools are probabil-
ity and entropy. We have shown in the last Chapter
how these concepts come into play. Probability may
be introduced axiomatically as we did in Chapter 2 as
an appropriate concept for the description of meso-
scopic or macroscopic systems. However, and this is
even more interesting in the present context, it may
arise (see sections 3.3 - 3.5) in a natural way if the
dynamics of systems is chaotic. Having probabilities
we may calculate entropies as first done for physi-
cal systems by Boltzmann (see section 3.1). Entropy
concepts were used already several times in the pre-
vious Chapters. In the introduction we gave, based
on the historical point of view, a brief discussion of
the probabilistic physical entropy concept developed

59
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in the pioneering work of Boltzmann, Planck and
Gibbs. As we mentioned already, strictly speaking
this concept has still an earlier root in game theory.
Already in the 18th century DeMoivre used the ex-
pression log(1/pi) as a measure for the uncertainty
of predictions in the context of describing the out-
come of games. The mathematical concept, entropy
as mean uncertainty, was worked out later by Shan-
non, who formed the basis of the modern information
theory. Shannon’s information theory has nowadays
very many applications reaching from technology, to
medicine and economy. The concept of entropy used
in the stochastic theory is also based on Shannon’s
entropy.
In order to explain these ideas in brief, we consider a
system with discrete states numbered with i = 1, , s
which are associated with the probabilities pi. The
states i are standing here for certain states of order
parameters of the system. Then the Shannon entropy
is defined as the mean uncertainty per state

H = 〈log(1/pi)〉 = −∑

i
pi log pi. (4.1)

This quantity is always between zero and one:

0 ≤ H ≤ 1 (4.2)
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The mean uncertainty is zero, if all the probability is
concentrated on just one state

H = 0 if pk = 1, pi = 0if i 6= k
(4.3)

On the other hand the uncertainty is maximal, if the
probability is equally distributed on the states

H = 1 if pi = 1/s i = 1, ..., s (4.4)

The equal distribution corresponds to maximal un-
certainty. This property will play an important role
in the considerations in the last section of this Chap-
ter. Another important fact is that H has the prop-
erty of additivity. In order to prove this we consider
two weakly coupled systems 1 and 2 with the states
i and j respectively and with

p12
ij = p1

i · p2
j (4.5)

Using this relation we can show quickly that the mean
uncertainty is an additive function

H12 = H1 + H2 (4.6)

This way, the mean uncertainty has quite similar
properties as the entropy and we arrive at the hy-
pothesis that both quantities are closely related, may
be even proportional. Still we have to find out, what
are the conditions for a proportionality.
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The expression for the mean uncertainty may be
generalized to continuous state spaces. Let us as-
sume that x is a set of n order parameters on the
dynamic-stochastic level of description. If p(x) de-
notes the probability density for this set of order pa-
rameters which describe the macroscopic state, the
mean uncertainty (informational entropy) of the dis-
tribution (the H - function) is defined by

H = −const
∫

dx p(x) · log p(x) (4.7)

In the case of discrete variables i = 1, 2, , s we come
back to the classical Shannon expression with a sum
instead of the integral. As well known these are the
basic formulas of information theory. We shall come
back to this later several times.
In order to come from the general expression for the
mean uncertainty (informational entropy) to Boltz-
mann’s physical entropy we identify the state space
with the phase space of one molecule q,p: Then
the Boltzmann’s mean uncertainty of states in phase
space is given by

HB = −
∫ dpdq

h3
f(p, q, t) · ln f(p, q, t), (4.8)

Here f(p, q, t) is the one-particle distribution func-
tion. Further we introduced a constant h with the
dimension of an action. This was h3 has the same di-
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mension as dpdq and this makes the whole integral
dimensionless. Here is a point where classical theory
has to borrow results from quantum theory. Heisen-
berg’s uncertainty relation teaches us, that there is no
way to measure location and momentum at the same
time with an accuracy better than h (Planck’s con-
stant). This makes h3 the natural choice for the mini-
mal cell in Boltzmann’s theory. We compare now our
results with the Boltzmann formula for the entropy
of ideal gases. As shown in the previous chapter, the
Boltzmann entropy of ideal gases is given by

SB = −kB
∫ dpdq

h3
f(p, q, t) · ln f(p, q, t), (4.9)

with the normalization

N =
∫ dpdq

h3
f(p, q, t). (4.10)

We see that Boltzmann’s entropy is proportional to
the uncertainty of molecular states:

SB = kBHB (4.11)

where kB is the universal Boltzmann constant.

For the generalization to interacting systems we
must realize in accordance with Chapter 3, that the
new state space is the phase space of all theN molecules
in the system. For this general case we introduce af-
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ter Gibbs the normalized probability density ρ in the
6N -dimensional phase space. Assuming that Shan-
non’s state space is the phase space of all the molecules
forming the system, the Shannon entropy of the sys-
tem is given by the N -particle probability ρ. There-
fore Gibbs’ mean uncertainty HG is the phase space
entropy for the distribution of the molecules in the
total phase space

HG = −
∫ dpNdqN

h3N
ρ(qN ,pN) · ln ρ(qN ,pN).

(4.12)
By multiplication with Boltzmann’s constant we get
the statistical Gibbs entropy

SG = kBHG (4.13)

or explicitly

SG = −kB
∫ dpdq

h3N
ρ(qN ,pN) · ln ρ(qN ,pN) (4.14)

Now the basic theorems of statistical thermodynam-
ics tell us, that in the case of ideal gases the Boltz-
mann entropy equals the thermodynamic entropy, i.e.

SB = S. (4.15)

For interacting systems we postulate that the ther-
modynamic entropy corresponds to the Gibbs en-
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tropy

SG = S. (4.16)

In this way - in some sense - the thermodynamic en-
tropy may be considered in a specific (formal) sense
as a special case of the Shannon entropy. It is (up to a
constant) just the mean uncertainty of the location of
the molecules in the phase space. The close relation
between the thermodynamic entropy and the Shan-
non entropy is the solid basis for the embedding of
the information concept into the theoretical physics
(Brillouin, 1956; Grandy & Schick, 1991).

The Gibbs expression includes all interaction ef-
fects which in general lead to a decrease of the value
of the entropy in comparison to the ideal gas (Ebel-
ing & Klimontovich, 1984). In principle, eq.(4.11)
works for nonequilibrium states as well, however this
is true only cum grano salis as we will see later. In
a different but closely related approach developed by
Boltzmann and Planck the entropy of a macrostate
was defined as the logarithm of the thermodynamic
probability

SBP = kB lnW. (4.17)

which is defined as the total number of equal probable
microstates corresponding to the given macro state.
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This fundamental formula is carved on Boltzmann’s
gravestone in the “Zentralfriedhof“ cemetery in Vi-
enna.
For the special case of equilibrium systems with fixed
energy E the Gibbs relations eqs. (4.11) and (4.13)
reduce to the Boltzmann-Planck formula (4.14).
Let us mention further on that after Einstein one
may invert relation (4.14) what gives us the prob-
ability that the nonequilibrium state occurs as the
result of a spontaneous fluctuation

W (y1, y2, ..., yn) = const exp[−δS(y1, y2, ..., yn)/kB]
(4.18)

where δS is the lowering of entropy. We will come
back to this relation in Chapter 5 and use it as a basis
for developing Einstein’s theory of fluctuations.
Another interesting aspect aspect of eq. (4.15) is
its relation to considerations on measures of distance
from equilibrium (see Chapter 2). The inspection of
relation (4.15) shows directly that δS is a kind of
measure of the distance from equilibrium (at E =
const) since equilibrium is the most probable state .
In Shannon’s approach the basic role play some or-
der parameters x and the corresponding probabilities
p(x) or pi. In order to find a closer connection to the
Boltzmann-Gibbs approach, we have to consider the
order parameters as certain functions of the micro-
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scopic variables.

x = x(q1, ..., p3N) (4.19)

Let us assume now that Gibbs’ probability density
may be represented as the product of the probability
density in the order parameter space and the condi-
tional probability (formula of Bayes)

ρ(p, q) =
∫

p(x) · ρ(p, q|x)dx (4.20)

Then a brief calculation yields

SG = kBH + Sb (4.21)

with

Sb =
∫

p(x)S(x)dx (4.22)

S(x) = −kB
∫ dpdq

h3
ρ(p, q|x) log ρ(p, q|x) (4.23)

Here S(x) is the conditional statistical entropy for a
given value of the order parameter x. In this way
we have shown that, up to a factor, the Shannon
entropy of an order parameter is a fully legitimate
part of the Gibbs entropy. As eq.(4.21) shows, the
contribution kBH constitutes the statistical entropy
contained in the order parameter distribution. In
general this is a very small part of the total statistical
entropy, the overwhelming part comes from the term
Sb. The part collected in SB reflects the entropy
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contained in the microscopic state, it is not available
as information. Let us give an example: The Gibbs
entropy of a switch with two states is the sum

SG = kB log 2 + Sb (4.24)

where Sb is the usual (bound) entropy in one of the
two positions. The two contributions to the total
entropy are interchangeable in the sense discussed
already by Szilard, Brillouin and many other work-
ers (Denbigh & Denbigh, 1985). Information (i.e.
macroscopic order parameter entropy) may be changed
into thermodynamic entropy (i.e. entropy bound in
microscopic motions). The second law is valid only
for the sum of both parts, the order parameter en-
tropy and the microscopic entropy.

4.2 Isolated systems: The microcanonical distribution

From the point of view of statistical physics, as we
have shown already in section 4.1, entropy is deeply
connected with the mean uncertainty of the micro-
scopic state in the phase space. Let us study now in
more detail systems which are energetically isolated
from the surrounding in the sense that the energy is
closely concentrated around a given value E:

E − (1/2)δE ≤ H ≤ E + (1/2)δE (4.25)
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The part of the phase space enclosed by this rela-
tion is called the energy shell. In isolated systems
the available part of the phase space is the volume
Ω(E) of this energy shell enclosing the energy surface
H(q,p) = E. Boltzmann’s postulate is, that un-
der conditions equilibrium, any point on the energy
shell (more precise the neighborhood of the point) is
visited equally frequent. This so-called ergodic hy-
pothesis is physically plausible but very difficult to
prove for concrete systems (Sinai, 1970, 1972, 1977).
Equivalent is the assumption that the probability is
constant on the shell

ρ(q, p) =
1

Ω(E)
(4.26)

Equal probability on the shell is equivalent to maxi-
mum of the entropy. Therefore thermodynamic equi-
librium corresponds to maximal entropy. This prop-
erty which appears here as a consequence of certain
aspects of the dynamics on the shell (ergodicity) will
be turned in the last section to a first principle of
statistical physics.
If the system is isolated (i.e. located on an energy
shell) but not in equilibrium only certain part of the
energy shell will be available. In the course of relax-
ation to equilibrium the probability is spreading over
the whole energy shell filling it finally with constant
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density. Equilibrium means equal probability, and as
we have seen and shall explain in more detail later,
least information about the state on the shell.

We shall come back now to our basic question
about the meaning of entropy. Usually entropy is
considered as a measure of disorder, but the entropy
is like the face of Janus, it allows other interpreta-
tions. The standard one is based on the study of
phase space occupation. The number of states with
equal probability corresponds to the volume of the
available phase space Ω(A). Therefore the entropy is
given by

S = kB ln Ω∗(A) (4.27)

Here A is the set of all macroscopic conditions Ω(A)
the corresponding phase space and

Ω∗(A) =
Ω(A)

h3NN !
(4.28)

Here the mysterious factor N ! was introduced as a
consequence of the indisguishability of the micro-
scopic particles. In the nonequilibrium states the
energy shell is not filled with equal density, but shows
regions with increased density (attractor regions). Let
S(E, t) be the entropy at time t. Then we may de-
fine an effective volume of the occupied part of the
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energy shell by

S(E, t) = k ln Ω∗
eff(E, t) (4.29)

Ω∗
eff(E, t) = exp[S(E, t)/kB] (4.30)

In this way, the relaxation on the energy shell may be
interpreted as a monotonous increase of the effective
occupied phase volume. This is connected with a
devaluation of the energy, a point of view discussed
already in section 2.3.

4.3 Gibbs distributions for closed and for open systems

Starting from the microcanonical distribution we in-
tend now to derive the equilibrium canonical distri-
butions for the microscopic variables of the Γ-space.
First we consider the standard cases:
i) Closed systems, allowing exchange of energy with
a second system.
ii) Open systems which involve additionally particle
exchange.
An isolated system with energy E and volume V
is divided in two subsystems, further called bath and
system. Both subsystem should be macroscopic bod-
ies and, therefore, allow the introduction of intensive
thermodynamic variables. They are both in ther-
mal equilibrium which implies the equality of their
temperatures. We label the bath volume by Vb and
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the volume of the system by V , respectively and ev-
idently follows

V0 = Vb + V (4.31)

In the Hamilton function the interaction part though
it is essential for the relaxation to the equilibrium
state will be neglected. Therefore choosing the anal-
ogous labeling it reads

E0 = Hb +H +Hint ' Hb(q
b
1, ...p

b
3M) +H(q1, ..., p3N)(4.32)

Here q1, ...q3N and p1, ..., p3N are the microscopic
variables of the system and
qb1, ...q

b
3M , p

b
1, ..., p

b
3M those of the bath, respectively.

First we look for the distribution of the microscopic
variables of the system if the exchange of particles
is forbidden. Suppose the energy of the system is
fixed at a value H = E. From eq.(4.32) immedi-
ately follows that the bath should possess the energy
Hb = Eb = E0 − E. The probability to find the mi-
croscopic variables of the considered system in states
with energy E is found by collection of the probabil-
ity of the bath to be in states H = Eb. It means

ρ(E) = exp[−S0(E0, V0)/kB]
∫

dΓbδ(Hb + E − E0)
(4.33)

The integral is taken over the bath variables qb1...p
b
3N .

Otherwise this integral gives just the thermodynamic
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weight of the numbers of microscopic (quantum) states
of the bath which realize the volume V and the en-
ergy Eb

Ω(Eb, Vb) =
∫

dΓbδ(Hb + E − E0) (4.34)

Since the bath is considered as a macroscopic body
we are able to find its thermodynamic entropy

Sb(Eb, Vb) = kB ln Ω(EB, VB) (4.35)

By inversion of this formula we are left with

ρ(E) = exp[(Sb(E0 −E, V0 −V )−S0(E0, V0))/kB].
(4.36)

We reformulate the expression in the exponent by
using the definition of the free energy F = E − TS.
Hence we derive

Sb(E0 −E, V0 − V ) − S(E0, V0) =
1

T
(F0 − FbE) =

1

T
(F (T, V ) −E)(4.37)

where F (T, V ) is the free energy of the considered
system. In deriving (4.37) we made use of the equal-
ity of the temperatures. Subsequently we interpret
E = H(q1...p3N) as the Hamilton function of the mi-
croscopic variables of the system and find the canon-
ical distribution

ρ(q1, ..., p3N) = exp







F (T, V ) −H(q1, ..., p3N)

kBT







(4.38)
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This way we derived now Gibbs’ canonical distribu-
tion, already known to us from Chapter 3, from the
microcanonical distribution.
The bridge between thermodynamics and statistics
follows from the normalization condition of this dis-
tribution. Accordingly to

∫ dΓ

h3N
ρ = 1 (4.39)

the free energy of a system with volume V and em-
bedded in a thermal bath with temperature T is de-
fined by the statistical sum Q(T, V )

F (T, V ) = −kBT lnQ(T, V ) = −kBT ln
∫ dΓ

h3N
exp(−βH)

(4.40)
The mean energy follows from the relation

E = 〈H〉 = − ∂

∂β
lnQ(T, V ) = kBT

∂

∂T
lnQ(T, V )

(4.41)
and the dispersion is defined by

〈H2〉−(〈H〉)2 =
∂2

∂β2
lnQ(T, V ) = − ∂

∂β
〈H〉 = kBT

2CV

(4.42)
This way all important thermodynamical quantities
are given by the partition function Q(T, V ).

Quite similar we can proceed if particle exchange
between the bath and the system is possible. The
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additional condition concerns with the conservation
of the particle number of the bath and the system.

N0 = Nb +N (4.43)

The thermodynamic entropy of the bath is analo-
gous to equation (4.37) but depends now also on N .
Therefore in the exponent of the probability distribu-
tion the following difference of the entropies occurs

∆S = Sb(E0 −E, V0 − V,N0 −N)−S(E0, V0, N0).
(4.44)

Introducing the thermodynamic potential Ξ = −pV
it becomes

∆S =
1

T
(Ξ + µN −E) (4.45)

and we end with

ρN(q1, ..., p3N) = exp





Ξ +Nµ−HN

kBT



 (4.46)

By using again a normalization condition which reads
now

1 =
∑

N

∫ dq1...dp3N

N !h3N
ρN(q1, ..., p3N) (4.47)

we find a relation between thermodynamics and sta-
tistical quantities

Ξ = −kT ln
∑

N

∫ dΓ

N !h3N
exp[−HN

kBT
] (4.48)
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In conclusion let us shortly comment on the general
procedure how the canonical distributions were de-
rived from the microcanonical one. First of all the
fixed energy of the system defined by the microscopic
state was interpreted as an extensive thermodynamic
variable of the system, further we neglected the in-
teraction energy. Secondly the exponents in the dis-
tributions (4.38) and (4.46) correspond to that value
of the overall entropy when the temperatures of the
bath and the system have been equilibrated. The
overall entropy is maximized under the constraints
E, V,N for the considered system and E0, V0, N0 for
bath plus system. Our result could be derived also
from the minimal reversible work which has to be
applied isoenergetically to generate the state of our
system embedded in the bath.

∆S = − 1

T
Rmin. (4.49)

This minimal work obviously depends on the actual
thermodynamic embedding of the considered system.
In the case of a closed system where the volume and
temperature are constant Rmin = F (T, V )−H . Fix-
ing the pressure instead of the volume we would have

Rmin = G(T, p)−H = F (T, V ) + pV −H. (4.50)

with G(T, p) being the Gibbs free energy.
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4.4 The Gibbs-Jaynes maximum entropy principle

Summarizing and looking again at the previous deriva-
tions of Gibbs ensembles, one might be not too happy
with the logical built-up of the theory. We started
with the Boltzmann-Planck expression for the en-
tropy of systems with equally probable states, ap-
plying this formula to macroscopically isolated sys-
tems with fixed energy. In fact we postulated that
constant probability on the energy shell is given a
priori. Also we did not care much about the mathe-
matical difficulties to prove ”ergodicity” for concrete
systems. In a following step we derived, by using
some embedding procedure, the probability distribu-
tions for other situations, as e.g. systems in a heat
bath.

The great follower of Gibbs’ work E.T. Jaynes criti-
cizes this approach with the following remarks (Jaynes,
1985): ”A moment’s thought makes it clear how
useless for this purpose is our conventional text-
book statistical mechanics, where the basic con-
nections between micro and macro are sought in
ergodic theorems. These suppose that the microstate
will eventually pass near every one compatible with
the total macroscopic energy; if so, then the then
the long-time behavior of a system must be deter-
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mined by its energy. What we see about us does
not suggest this.” In order to find an alternative,
and possibly more elegant procedure, let us turn the
question around, starting now from Gibbs original
work. We quote again a sentence of Jaynes (1985):
”Why is that knowledge of microphenomena does
not seem sufficient to understand macrophenom-
ena? Is there an extra general principle needed
for this? Our message is that such a general prin-
ciple is indeed needed and already exists, having
been given by J. Willard Gibbs 110 years ago...
. A macrostate has a crucially important further
property - entropy - that is not determined by the
microstate.”
We will show now that all Gibbsian ensembles may
be derived in a unique way just from one principle,
the Gibbs-Jaynes maximum entropy principle. We
start as Gibbs and Jaynes from a very general vari-
ational principle. In order to explain this variational
principle we start with the following abstract prob-
lem: We consider a macroscopic systems, given in-
complete information A. Then we postulate that
holds the

Gibbs-Jaynes principle:
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If an incomplete information A is given about
a macroscopic system, the best prediction we can
make of other quantities are those obtained from
the ”ensemble” ρ that has maximum information
entropy H while agreeing with A. By ”agreeing”
with A we mean that the average < A > calcu-
lated with ρ corresponds to the given information
A.

Let us sketch briefly how this general principle
works in the case that ρ = ρ(q, p) is a probabil-
ity density in the phase space and A = [A1, ..., Am]
stands for a set of real functions on the phase space.
The most important case is that the Ak(q, p) are con-
stants of the motion (energy, angular momentum,
particle numbers etc.). In order to find the proba-
bility density under the constraints

A′
k = 〈Ak〉 =

∫

dqdpAk(q, p)ρ(q, p) (4.51)

we maximize the information entropy

H = −
∫

dqdpρ(q, p) ln ρ(q, p) (4.52)

under the given constraints. We define anm-component
vector λ = [λ1, ..., λm] of Lagrange multipliers. Then
the probability density that agrees with the given
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data A′ follows from

δ[H+
∑

k
λk(A

′
k−

∫

dqdpAk(q, p)ρ(q, p))] = 0 (4.53)

This leads to

ρ(q, p) = Z−1 exp[−∑

k
λkAk(q, p)], (4.54)

where the normalization factor, the so-called parti-
tion function, is given by

Z(λ1, ..., λm) =
∫

dqdp exp[−∑

k
λkAk(q, p)] (4.55)

The found probability density ρ spreads the prob-
ability as uniformly as possible over all microstates
subject to the constraints. The Lagrange multipliers
are found from the relations

A′
k = 〈Ak〉 = − ∂

∂λk
lnZ(λ1, ..., λm). (4.56)

The dispersion is given by second derivatives

〈(Ak − A′
k)

2〉 =
∂2

∂λ2
k

lnZ(λ1, ..., λm) = − ∂

∂λk
〈Ak〉
(4.57)

We see that the linear ’ansatz’ (4.54) implies that the
mean values and the dispersion are closely connected.
Let us turn now to more concrete examples:

• Microcanonical ensemble:
The case that there are no constraints, except
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the fixation of the system on an energy shell.
This leads to the ensemble (on the shell)

ρ(q, p) = const. (4.58)

• Canonical ensemble:
The case that the mean of the energy is given
A′

1 = E = 〈H〉 leads to the ensemble

ρ(q, p) = Z−1 exp[−βH(q, p)]. (4.59)

• Grand canonical ensemble:
The case that besides the mean energy A′

1 =
E also the s mean particle numbers are given
A′

2 =< N1 >, ..., A′
s+1 =< Ns > are given

leads to the ensemble

ρ(q, p;N1, ..., Ns) = Z−1 exp[−βH(q, p)−λ1N1−...−λsNs].
(4.60)

After identifying β with the reciprocal tempera-
ture and λk/β with the chemical potentials, we
are back at the formulae derived in the last sec-
tion.

• Canonical ensemble for rotating bodies:

We consider here the case of rotating bodies
consisting ofN particles in internal equilibrium.
We assume that the angular velocity of the body
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is ω and the angular momentum is L. In a co-
ordinate system which rotates with the body we
find the Hamiltonian

Hr = H −Ω · L (4.61)

The assumption that in the rotating system the
system behaves like a standard canonical ensem-
ble we find (Landau & Lifshits, 1990)

ρ(q, p) = Z−1
r exp[−βHr(q, p)]. (4.62)

This leads in the original system of coordinated
to the distribution

ρ(q, p) = Z−1 exp [−β (H(q, p) − Ω · L(q,p))] .
(4.63)

This distribution may be obtained directly from
Jaynes method by assuming that L plays the
role of an additional observable which is an in-
tegral of motion and Ω is the corresponding
Langrange parameter, connected with the mean
value of the angular momentum by

〈L〉 = −β−1 ∂

∂Ω
lnZ(β,Ω). (4.64)

This way we have shown that the Gibbs-Jaynes max-
imum entropy principle is indeed very powerful, it
contains all known distributions for equilibrium situ-
ations as special cases. In fact, the principle provides
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much more useful information (Levine & Tribus, 1978).
A few other applications, including non-equilibrium
situatations, will be demonstrated below. In non-
equilibrium, in general, the linear ’ansatz’ (4.54) is
no more sufficient, since the means and the disper-
sion may be independent variables. In order to admit
such situations we have to use quadratic functions in
the exponent of the distribution function. Examples
will be demonstrated in the next Chapter.


