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Chapter 1

Introduction
(selected topics)

1.1 The task of statistical physics

Statistical Physics is that part of physics which de-
rives emergent properties of macroscopic matter from
the atomic properties and structure and the micro-
scopic dynamics.

Emergent properties of macroscopic matter mean here
those properties (temperature, pressure, mean flows,
dielectric and magnetic constants etc.) which are es-
sentially determined by the interaction of many par-
ticles (atoms or molecules).

Emergent means that these properties are typical for
many-body systems and that they do not exist (in
general) for microscopic systems.

The key point of statistical physics is the introduc-
tion of probabilities into physics and connecting them
with the fundamental physical quantity entropy.



October 3, 2007 18:24 WorldScientific/ws-b9-75x6-50 LecKral2

4 Introduction (selected topics)

atomistics — statistical mechanics
— thermodynamics and transport

The task is to construct the bridge between micro-
physics, i.e.properties and dynamics of atoms and
molecules with macrophysics, i.e. thermodynamics,
hydrodynamics, electrodynamics of media

microphysics — statistical physics
— macrophysics

Mmacrophysical properties = properties which are
determined by the interaction of very many particles
(atoms, molecules), in contrast to properties which
are characteristic for one or a few particles.

A macrosystem is a many-body system which is de-
termined by the basic equations of classical or quan-
tum mechanics. Further basic elements of the theory
should be the laws of interaction of the particles as,
e.g. the Coulomb law, the symmetry principle and
the boundary conditions characterizing the macro-
scopic embedding.

The problem seems to be practically insolvable, not
only for the impossibility to solve more than 1024
pled usual or partial differential equations but also
due to the incomplete knowledge about the initial

COU-
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and boundary conditions.

New concepts are needed and it has to be shown that
probabilities and/or density operators and entropies
may be introduced in a natural way if the dynamics
is unstable.

The point of view taken in this textbook is mainly
classical but the quantum-statistical analysis goes in
many aspects in a quite analogous way.

Using probabilities instead of trajectories

we come to a dynamics of probabilities.

In the classical case: Liouville equation

in the quantum case: von Neumann equation:

microdynamics + probabilities
— Liouville - von Neumann dynamics

Macroscopic properties may be described as mean
values

However: Liouville - von Neumann equation are for-
mally completely equivalent to the original dynamical
equations.

have still the property of reversibility of the micro-
scopic dynamics.

Conclusions based on these equations would not be
in accord with the second law of thermodynamics
So, a second step has to be made.
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The basic idea is, that macroscopic processes allow
and require a coarse-grained description (Gibbs and
the Ehrenfest’s).

1) it makes no sense to describe a macroscopic pro-
cess in all microscopic detail, since it completely im-
possible to observe all the details and to follow the
trajectories of all particles. 2) a coarse - grained de-
scription keeps the relevant macroscopic informations
but neglects the irrelevant microscopic details.

it was only recently understood, that the whole con-
cept of coarse - graining is intimately connected with
the instabilities of the microscopic trajectories 3) Fi-
nally we arrive at equations for the coarse - grained
probabilities which are irreversible and yield an ap-
propriate basis for the macroscopic physics. These
equations are called kinetic equations or master equa-
tions.

Our scheme may now be completed in the following
way':

coarse-graining + dynamic instability
— kinetic / master eqs.

The following chapters are aimed to work out this
program, with some special attention to the concept
of Brownian motion . But, before going in the details
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we would like to have another more historical oriented
look at the development of the basic ideas and at
the historical facts - admittedly with some bias to
the development in Berlin, largely following earlier
work (Rompe et al., 1987; Ebeling & Hoffmann, 1990,
1991).

1.2 On history of fundamentals of statistical thermodynamics

19th century pioneers :

Sadi Carnot (1796-1832),

Robert Mayer (1814-1878),

Hermann Helmholtz (1821-1894),

William Thomson (1824-1907)

Rudolf Clausius (1822-1888).

Evidently Mayer was the first who formulated the
law of energy conservation. His paper is clearly ex-
pressing the equivalence of work and heat .

Joule came to similar conclusions which were based

on direct measurements concerning the conversion of
work into heat.

Physicists which worked in the middle of the 19th
century in Berlin: The genius of Hermann Helmholtz
determined the direction and the common style of re-
search

1847 he reported to the ”Berliner Physikalische Gesellschaft”,
a new society founded by young physicists, about
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his research on the principle of conservation of en-
ergy. At 27 years of age Helmholtz was working as
a military surgeon to a regiment of Hussars in Pots-
dam. He could follow his interest in physics only in
his leisure time, since his family’s financial situation
did not allow him to enjoy full-time study. The ex-
perimental research which he carried out from the
beginning of the 1840’s in the laboratory of his ad-
viser Professor Magnus was primarily devoted to the
conversion of matter and heat in such biological pro-
cesses as rotting, fermentation and muscular activ-
ity. Helmholtz’s insight led him to infer a new law of
nature from the complexities of his measurements on
juices and extracts of meat and muscles. From exper-
iments and brilliant generalization emerged the prin-
ciple of conservation of energy or what is now called
the first law of thermodynamics. Neither J.R. Mayer
nor J.P. Joule (not to speak of the other pioneers of
the energy principle) recognized its fundamental and
universal character as clearly as did Helmholtz, who
must therefore be regarded as one of the discover-
ers of the principle, although his talk to the Berlin
Physical Society was given later than the fundamen-
tal publications of Mayer and Joule. Both were un-
known to Helmholtz at the time. Helmholtz had to
fight hard for the recognition of his result - Professor
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Poggendorf, the influential editor of the “Annalen
der Physik und Chemie”, had no wish to publish
what seemed to him rather speculative and philo-
sophical. Magnus also regarded it with disfavor, but
at least recommend that it be printed as a separate
brochure, as was very quickly managed with the help
of the influential mathematician C.G. Jacobi. The
new law of nature quickly demonstrated its fruitful-
ness and universal applicability. For instance Kirch-
hoft’s second law for electrical circuits is essentially
a particular case of the energy principle. Nowadays
these laws are among the most frequently applied
laws in the fields of electrical engineering and elec-
tronics. The discovery of the fundamental law of cir-
cuits was done early in Kirchhoft’s life in Konigsberg
and Berlin.

Rudolf Clausius (1822-1888) also played an
essential role in the history of the law of conservation
of energy and its further elaboration (Ebeling & Or-
phal, 1990). After studying in Berlin, he taught for
some years at the Friedrich-Werdersches Gymnasium
in Berlin and was a member of the seminar of Pro-
fessor Magnus at the Berlin University. His report
on Helmholtz’s fundamental work, given to Magnus’
colloquium, was the beginning of a deep involvement
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with thermodynamical problems. DBuilding on the
work of Helmholtz and Carnot he had developed, and
published 1850 in Poggendorft’s Annalen his formula-
tion of the second law of thermodynamics. Clausius
was fully aware of the impact of his discovery. The
title of his paper explicitly mentions “laws”. His
formulation of the second law, the first of several,
that heat cannot pass spontaneously from a cooler
to a hotter body, expresses its essence already. Un-
like Carnot, and following Joule, Clausius interpreted
the passage of heat as the transformation of different
kinds of energy, in which the total energy is con-
served. To generate work, heat must be transferred
from a reservoir at a high temperature to one at a
lower temperature, and Clausius here introduced the
concept of an ideal cycle of a reversible heat engine.
In 1851

bf William Thomson (Lord Kelvin) formulated inde-
pendently of Clausius another version of the second
law. Thomson stated that it is impossible to cre-
ate work by cooling down a thermal reservoir. The
central idea in the papers of Clausius and Thomson
was an exclusion principle: "Not all processes which
are possible according to the law of the conserva-
tion of energy can be realized in nature. In other
words, the second law of thermodynamics is a se-

LecKral2
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lection principle of nature”. Although it took some
time before Clausius’ and Thomson’s work was fully
acknowledged, it was fundamental not only for the
further development of physics, but also for science
in general. 1965 Clausius gave more general
forms of the second law.

The form valid today was reported by him at a meet-
ing of the “Zuricher Naturforschende Versamm-
lung” in 1865. There for the first time, he intro-
duced the quotient of the quantity of heat absorbed
by a body and the temperature of the body d'Q/T
as the change of entropy . The idea to connect the
new science with the atomistic ideas arose already in
the fifties of the 19th century.

August Karl Kronig (1822-1879)

extended thermodynamics and started with statisti-
cal considerations. In this way Kronig must be con-
sidered a pioneer of statistical thermodynamics. In
1856, he published a paper in which he described
a gas as system of elastic, chaotically moving balls.
Kronig’s model was inspired by Daniel Bernoulli’s pa-
per from 1738, where Bernoulli succeeded in deriving
the equation of state of ideal gases from a billiard
model. Kronig’s early attempt to apply probability
theory in connection with the laws of elastic colli-
sions to the description of molecular motion, makes
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him one of the forerunners of the modern kinetic the-
ory of gases. After the appearance of Kronigs paper,
Clausius developed the kinetic approach
In a paper “Uber die Art der Bewegung, die wir
Warme nennen”, which appeared 1857 in Vol. 100
of the Annalen der Physik, Clausius published his
ideas about the atomistic foundation of thermody-
namics. In fact, his work from 1857 as well as a
following paper published in 1858 are the first com-
prehensive survey of the kinetic theory of gases. As
a result of his work Clausius developed new terms
like the mean free path and cross section and intro-
duced in 1865 the new fundamental quantity entropy.
Further we mention the proof of the virial theorem
for gases, which he discovered in 1870. Parallel to
Clausius’s work the statistical theory was developed
in Great Britain by

James Clerk Maxwell derived in 1860 the
prob distribution for velocities of molecules
in Philosophical Magazine (probability distribution
for the velocities of molecules in a gas). In 1866
Maxwell gave a new derivation of the velocity dis-
tribution based on a study of direct and reversed
collisions and formulated a first version of a trans-
port theory. In 1867 Maxwell considered first
the statistical nature of the second law of
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thermodynamics and considered the con-
nection between entropy and information.
His “Gedankenexperiment” about a demon observ-
ing molecules we may consider as the first fundamen-
tal contribution to the development of an informa-
tion theory. In 1878 Maxwell proposed the new term
“statistical mechanics”.

Ludwig Boltzmann (1844-1906)
began his studies at the University of Vienna in 1863,
he was deeply influenced by Stefan, who was a bril-
liant experimentalist and also by Johann Loschmidt
(1821-1895) who was an expert in the kinetic theory
of gases. Boltzmanns kinetic theory of gases:
In 1866, he found the energy distribution for gases.
In 1871 he formulated the ergodic hypothesis ,
In 1872 formulation of Boltzmanns famous kinetic
equation and the H-theorem.

In 1889
Max Planck (1858 - 1947)
was called to succeed Kirchhoff at the Berlin Chair
of Theoretical Physics where he became one of the
most famous of theoretical physicists at his time, in
particular a world authority in the field of thermody-
namics. He was a pioneer in understanding the fun-
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damental role of entropy and its connection with the
probability of microscopic states. Later he improved
Helmholtz’s chemical thermodynamics and his the-
ory of double layers, as well as developed theories of
solutions, including electrolytes, of chemical equilib-
rium and of the coexistence of phases. Planck was
especially interested in the foundations of statistical
thermodynamics. In fact he was the first who wrote
down explicitely the famous formula

S = klogW. (1.1)

The great american pioneer
Josiah Willard Gibbs (1839 - 1903):
developed the ensemble approach, the entropy func-
tional and was the first to understood the role of the
maximum entropy method.

The new field is not free of contradictions and math-
ematical difficulties: criticized e.g. by
Henri Poincare (1854 - 1912) followed by
Zermelo: stated problems of mathematical foun-
dation of Boltzmann’s theory:.
Probles with the “ergodic hypothesis”. The latter
says that the trajectory of a large system crosses ev-
ery point of the energy surface. Zermelo found a
serious mathematical objection against Boltzmanns
theory which was based on the theorem of Poincare
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about the “quasi- periodicity of mechanical systems”
published in 1890 in the paper “Sur le probleme de
trots corps les equations de la dynamique”. In this
fundamental work Poincare was able to prove un-
der certain conditions that a mechanical system will
come back to its initial state in a finite time, the so-
called recurrence time. Zermelo showed in 1896 in a
paper in the “Annalen der Physik” that Boltzmanns
H-theorem and Poincares recurrence theorem were
contradictory. In spite of this serious objection, in
the following decades statistical mechanics was dom-
inated completely by ergodic theory. A deep analysis
of the problems hidden in ergodic theory was given
by

Paul and Tatjana Ehrenfest in a survey ar-
ticle 1911

in “Enzyklopadie der Mathematischen Wissenschaften”.
Much later it was recognized that the clue for the so-
lution of the basic problem of statistical mechanics
was the concept of instability of trajectories devel-
oped also by Poincare in 1890 in Paris. Before we
study this new direction of research, we explain first
the development of some other directions of statisti-
cal thermodynamics.

In 1907, Einstein proposed that quantum
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effects lead to the vanishing of the specific
heat at zero temperature.

His theory may be considered as the origin of quan-
tum statistics. In 1924 Einstein gave a correct
explanation of gas degeneracy at low temper-
atures by means of a new quantum statistics, the
so-called Bose-Einstein statistics. In addition to the
Bose-Einstein condensation his ideas about the in-
teraction between radiation and matter should be
emphasized. In 1916 his discussion of spontaneous
emission of light and induced emission and adsorp-
tion forms the theoretical basis of the nonlinear dy-
namics and stochastic theory of lasers.

Another important line of the development of ther-

modynamics is the foundation of irreversible ther-
modynamics.
We mention the early work of Thomson, Rayleigh,
Duhem, Natanson, Jaumann and Lohr. The final
formulation of the basic relations of irreversible ther-
modynamics we owe to the work of Onsager (1931),
Eckart (1940), Meixner (1941), Casimir (1945), Pri-
gogine (1947) and De Groot (1951). Irreversible ther-
modynamics is essentially a nonlinear science, which
needs for its development the mathematics of nonlin-
ear processes, the so-called nonlinear dynamics.

LecKral2
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The great pioneers of nonlinear dynamics in
the 19th century were Helmholtz, Rayleigh, Poincare
and Lyapunov. John William Rayleigh (1842-1919)
is the founder of the theory of nonlinear oscillations.
Many applications in optics, acoustics, mechanics and
hydrodynamics are connected with his name. Alexan-
der M. Lyapunov was a Russian mathematician, who
formulated in 1982 the mathematical conditions for
the stability of motions. Henri Poincare (1854-1912)
was a French mathematician, physicist and philoso-
pher who studied in the 1890s problems of the me-
chanics of planets and arrived at a deep understand-
ing of the stability of mechanical motion. His work
”Les methodes nouvelles de la mechanique celeste”
(Paris 1892/93) is a corner stone of the modern non-
linear dynamics. Important applications of the new
concepts were given by the engineers Barkhausen and
Duffing in Germany and van der Pol in Holland.
Heinrich Barkhausen (1881-1956) studied physics and
electrical engineering at the Technical University in
Dresden, were he defended in 1907 the dissertation
“Das Problem der Schwingungserzeugung” devoted
to to problem of selfoscillations. He was the first
who formulated in a correct way the necessary phys-
ical conditions for self-sustained oscillations. Later
he found worldwide recognition for several technical
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applications as e.g. the creation of short electromag-
netic waves. Georg Duffing worked at the Technical
High School in Berlin-Charlottenburg. He worked
mainly on forced oscillations; a special model, the
Duffing oscillator was named after him. In 1918 he
published the monograph “Erzwungene Schwingun-
gen bei veranderlicher Eigenfrequenz und thre tech-
nische Bedeutung”. Reading this book, one can
convince himself that Duffing had a deep knowledge
about the sensitivity of initial conditions and chaotic
oscillations. A new epoch in the nonlinear theory
was opened when A.A. Andronov connected the the-
ory of nonlinear oscillations with the early work of
Poincare. In 1929 he published the paper “Les cy-
cles limites de Poincare et la theorie des oscil-
lations autoentretenues” in the Comptes Rendus
Acad. Sci. Paris. The main center of the devel-
opment of the foundations of the new theory theory
evolved in the 1930s in Russia connected with the
work of Mandelstam, Andronov, Witt and Chaikin
as well as in the Ukraina were N.M. Krylov, N.N.
Bogoliubov and Yu.A. Mitropolsky founded a school
of nonlinear dynamics.

That there existed a close relation between sta-
tistical thermodynamics and nonlinear science was
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not clear in the 19th century when these important
branches of science were born. Quite the opposite,
Henri Poincare, the father of nonlinear science, was
the strongest opponent of Ludwig Boltzmann, the
founder of statistical thermodynamics. In recent times
we have the pleasure to see that Poincare’s work con-
tains the keys for the foundation of Boltzmann’s er-
godic hypothesis. The development of this new sci-
ence had important implications for statistical ther-
modynamics. We have mentioned already the new
concept of instability of trajectories developed by
Poincare in Paris in 1890. This concept was in-
troduced into statistical thermodynamics by Fermi,
Birkhoff, von Neumann, Hopf and Krylov. The first
significant progress in ergodic theory was made through
the investigations of G. Birkhoff and J. von Neumann
in two subsequent contributions to the Proceedings
of the national Academy of Science U.S. in 1931/32.
The Hungarian Johann von Neumann (1903-1957)
came in the 1920s to Berlin attracted by the sphere
of action of Planck and Einstein in physics and von
Mises in mathematics. Von Neumann, who is one
of the most influential thinkers of the 20th century
made also important contributions to the statistical
and quantum-theoretical foundations of thermody-
namics. Von Neumann belonged to the group of “sur-
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prisingly intelligent Hungarians” (D. Gabor, L. Szi-
lard, E. Wigner), who studied and worked in Berlin
around this time. The important investigations of
von Neumann on the connection between microscopic
and macroscopic physics were summarized in his fun-
damental book “Mathematische Grundlagen der
Quantenmechanik” (published in 1932). It is here
that he presented the well known von Neumann equa-
tion and other ideas which have since formed the ba-
sis of quantum statistical thermodynamics. Von Neu-
mann formulated also a general quantum-statistical
theory of the measurement process, including the in-
teraction between observer, measuring apparatus an
the object of observation. This brings us back to
Maxwell and in this way to another line of the his-
torical development.

The information-theoretical approach to
statistical physics
start with Maxwell’s speculations about a demon ob-
serving the molecules in a gas. Maxwell was in-
terested in the flow of information between the ob-
server, the measuring apparatus and the gas. In
fact this was the first investigation about the rela-
tion between observer and object, information and
entropy. This line of investigation was continued

LecKral2
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by Leo Szilard, prominent assistant and lecturer
at the University of Berlin and a personal friend of
von Neumann. His thesis (1927) ”Uber die En-
tropieverminderung in einem thermodynamaischen
System bei Eingriffen intelligenter Wesen” inves-
tigated the connection between entropy and informa-
tion. This now classic work is probably the first com-
prehensive thermodynamical approach to a theory of
information processes and, as the work of von Neu-
mann, deals with thermodynamical aspects of the
measuring process. The first consequent approach
to connect the foundations of statistical physics with
information theory is due to Jaynes (Jaynes, 1957;
1985). Jaynes method was further developed and ap-
plied to nonequilibrium situations by Zubarev (Sub-
arev, 1976; Zubarev et al., 1996, 1997)) and by Stratonovich.
The information-theoretical method is of phenomeno-
logical character and connected with the maximum
entropy approach.

On history of the concept of Brownian
motion

As observed first by Ingenhousz and Brown, the
microscopic motion of particles is essentially erratic.
These observations led to the concept of Brownian
motion which is basic to Statistical Physics. More-
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over, the discussion of Brownian motion introduced
quite new concepts of microscopic description, perti-
nent to stochastic approaches. The description put
forward by Einstein in 1905/1906, Smoluchowski in
1906 and Langevin in 1908 is so much different from
the one of Boltzmann: it dispenses from the descrip-
tion of the system’s evolution in phase space and re-
lies on probabilistic concepts. Marc Kac put is as
follows: ”... while directed towards the same goal
how different the Smoluchowski approach is from
Boltzmann’s. There is no dynamics, no phase
space, no Liouville theorem — wn short none of
the usual underpinnings of Statistical Mechanics.
Smoluchowski may not have been aware of it but
he bequn writing a new chapter of Statistical physics
which in our time goes by the name of Stochastic
processes”

The synthesis of the approaches leading to the under-
standing of how the properties of stochastic motions
are connected to deterministic dynamics of the sys-
tem and its heat bath were understood much later in
works by Mark Kac, Robert Zwanzig and others.

A big part of our book is devoted to Brownian mo-
tion. For this reason and also having in mind the
anniversary of the fundamentals of stochastic theory
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to be noticed in the years 2005-2008, we will prepare
a separate article on the history of this important
concept.

Problems:

What is the main difference (with respect to termi-
nology and basic equations) between the standard
approach to statistical mechanics (Boltzmann, Gibbs)
and the stochastic approach by Smoluchowski, Ein-
stein, Fokker, Planck et al.?

(See the view of Marc Kac and have a look at some
original papers as far as available!)
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Chapter 2

Thermodynamic, Deterministic and
Stochastic Levels of Description
(Selected results)

2.1 Thermodynamic level

First Law:

There exists a fundamental extensive thermody-
namic variable E. Energy can neither be created
nor be destroyed. In can only be transferred or
changed in form. Enerqgy is conserved in isolated
systems. The energy production inside the system
1S zero.

dE = d E + d;E (2.1)

d,E =0 (2.2)

Any process is connected with a transfer d,E or
with a transformation of energy. Energy transfer
may have different forms as heat, work and chemi-
cal energy. The unit of energy is 1J = 1Nm, cor-
responding to the work needed to move a body 1
meter against a force of 1 Newton. An infinitesimal
heat transfer we denote by d'Q) and the infinitesimal

25
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work transfer by d’A. If there is no other form of
transfer, i.e. the system is closed, we find for the
energy change (balance of energy):

dE = d.E =dQ+dA (2.3)

In other words, the infinitesimal change of energy of a
system equals the sum of of the infinitesimal transfers
of heat and work. This is a mathematical expression
of the principle given above: A change of energy must
be due to a transfer, since creation or destruction of
energy is excluded. If the system is open, i.e. the
exchange of matter in the amount d/N; per sort ¢ is
admitted, we assume

dE = d'Q +d A+ pdN; (2.4)

Here the so-called chemical potential u; denotes the
amount of energy transported by a transfer of a unit
of the particles of the chemical sort 7 . Here pu; has
the dimension of energy per particle or per mole. The
infinitesimal work has in the simplest case the form

dA=—pdV (2.5)

In the case that there are also other forms of work
we find more contributions having all a bilinear form

A=Y ldly (2.6)

LecKral2
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where [; is intensive and Ly is extensive and in par-
ticular we have [y = —p and Ly = V. Strictly speak-
ing this expression for the infinitesimal work is valid
only for reversible forms of work. Later we shall come
back to the irreversible case. In this way the balance
equation for the energy changes (2.6) assumes the
form

dE =d'Q + Y lydLy + X judN;  (2.7)
k )

In this equation there remains only one quantity which
is not of the bilinear structure, namely the infinites-
imal heat exchange d'Q). The hypothesis, that bilin-
earity holds also for the infinitesimal heat, leads us
to the next fundamental quantity, the entropy. We
shall assume that d’) may be written as the product
of an intensive quantity and an extensive quantity:.
The only intensive quantity which is related to the
heat is T" and the conjugated extensive quantity will
be denoted by S. In this way we introduce entropy
als the extensive quantity which is conjugated to the
temperature:

d0Q = TdS (2.8)

This equation may be interpreted also in a different
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way by writing following Clausius
d'Q

T

The differential of the state variable entropy is given
by the infinitesimal heat d'Q divided by the temper-
ature T'. In more mathematical therms, the temper-
ature T' is an integrating factor of the infinitesimal
heat.

dS =

(2.9)

The variable entropy was introduced in 1865 by
Clausius. The unit of entropy is 1J/K . One can
casily show that this quantity is not conserved. Let
as consider for example two bodies of different tem-
peratures 717 and 75 being in contact. Empirically we
know that there will be a heat flow from the hotter
body 1 to the cooler one denoted by 2 . We find

d'Q) = TvdS; = d'Q = T»dS (2.10)

Due to our assumption 177 > Ty we get dS7 < d.S
. 1.e. heat flow down a gradient of temperature pro-
duces entropy. The opposite flow against a gradient
of temperature is never observed. A generalization
of this observations leads us to the

Second Law of thermodynamics:
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Thermodynamaic systems possess the extensive state
variable entropy. Entropy can be created but never
be destroyed. The change of entropy in reversible
processes s given by the exchanged heat divided
by the temperature. During irreversible processes
entropy 1s produced in the interior of the system.
In isolated systems entropy can never decrease.

Let us come back now to our relation (2.7) which
reads after introducing the entropy by eq. (2.8)

dE = TdS + X lydLy + X 11:dN; (2.11)
k )

This equation is called Gibbs fundamental relation.
Since the Gibbs relation contains only state vari-
ables it may be extended (with some restrictions) also
to irreversible processes. In the form (2.13) it may
be interpreted as a relation between the differentials
dE.dS,dL; and dN; . Due to the Gibbs relation one
of those quantities is a dependent variable. In other
words we may write e.g.

E = E(S, Ly, N;)
or
S = S(E, Ly, N;).

In order to avoid a misunderstanding, we state ex-
plicitely:  “The Gibbs fundamental relation was
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obtained from a balance, but primanrily it is rela-
tion between the extensive variables of a system”.
Since this point is rather important, let as repeat it
again: Eq.(2.6) expresses a balance between the en-
ergy change in the interior dE (the Lh.s of the eq.)
and the transfer of energy forms through the border
(the r.h.s.). On the other hand eq. (2.13) expresses
the dependence between state variables, i.e. a com-
pletely different physical aspect. For irreversible pro-
cesses the Gibbs relation (2.13) remains unchanged,
at least in cases where the energy can still be ex-
pressed by the variables S, Ly, N; . On the other
hand the balance (2.6) has to be modified for irre-
versible processes. This is due to the fact that there
exists a transfer of energy which passes the border
of the system as work and changes inside the sys-
tem into heat. Examples are Ohms heat and the
heat due to friction. In the following we shall denote
these terms by d'Ags. Taking into account those
contributions, the balance assumes the form

dE =d'Q + Y lydLj, + d' Agis + 3 pidN;  (2.12)
k )

For later applications we formulate now the first and
the second law in a form due to Prigogine (1947). The
balance of an arbitrary extensive variable X may be
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always written in the form
dX = d, X +d: X (2.13)

where the index ”e” denotes the exchange with the

surrounding and the index ”7¢” the internal change.

Then the balances for the energy and the entropy
read

dEl =d.E + d; F, (2.14)

S =d.5+d;S (2.15)

Further the first and the second laws respectively as-
sume the mathematical forms

dE =d.E; dE=0

deB =dQ+dA+> pd.N;

dQ
d,S =
=T
ds >d.S;  d;S > 0. (2.16)

This writing is especially useful for our further con-
siderations. We mention that the relation for d.S is
to be considered as a definition of exchanged heat.
The investigations of De Groot, Mazur and Haase
have shown that for open systems other definitions
of heat may be more useful. As to be seen so far, the
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"most natural” definition of heat exchange in open
systems 1is

*

d
deS = T + Z SideNi (217)

The new quantity d*Q) is called the reduced heat;
while d'Q) is called here the entropic heat. Further
s; is the specific entropy carried by the particles of
kind 7 . The idea which led to the definition (2.18) is,
that the entropy contribution which is due to a simple
transter of molecules should not be considered as a
proper heat. Another advantage of the reduced heat
is, that it possesses several useful invariance prop-
erties (Haase, 1963; Keller, 1977). The first and the
second laws of thermodynamics formulated above are
a summary of several hundred years of physical re-
search. They constitute the most general rules of
prohibition in physics.

2.2 Lyapunov Functions: Entropy and Thermodynamic Potentials

As stated already by Planck, the most characteris-
tic property of irreversible processes is the existence
of so-called Lyapounov functions. This type of func-
tion was defined first by the russian mathematician
Lyapunov more than a century ago. A Lyapunov
function is a non-negative function with the follow-
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Ing properties

L(t) >0, dL@ < 0. (2.18)
dt

As a consequence of these two relations, Lyapunov
functions are per definition never increasing in time.
Our problem is now to find a Lyapunov function for
an arbitrary macroscopic system. Let us assume that
the system is initially (t+ = 0) in a nonequilibrium
state, and that we are able to isolate the given sys-
tem for ¢ > 0 from the surrounding. From the the
definition of equilibrium follows that, after isolation,
changes will occur. Under conditions of isolation the
energy [ will remain fixed, within the natural un-
certainities, but the entropy will monotoneously in-
crease due to the second law. Irreversible processes
connected with a positive entropy production P > 0
will drive the system finally to an equilibrium state lo-
cated at the same energy surface. In thermodynamic
equilibrium, the entropy assumes the maximal value

Seq(E, X)

which is a function of the energy and certain other
extensive variables. The total production of entropy
during the process of equilibrization of the isolated
system may be obtained by integration of the entropy
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production over time.
AS(t) = [ P(t)dt (2.19)

Due to the condition of isolation, there is no exchange
of entropy during the whole process. Due to the non-
negativity of the entropy production

—P(t) >0 (2.20)

LecKral2

the total production of entropy AS(%) is a monotonously

non-decreasing function of time. The concrete value
of AS(t) depends on the path ~ from the initial to
the final state and on the rate of the transition pro-
cesses. However the maximal value of this quantity
AS(00) should observe some special conditions.

Just for the case that the transition occurs with-
out any entropy exchange, this quantity should be
identical with the total entropy difference between
the initial state and the equilibrium state at time
t — o0

5S = S.,(E, X) — S(E,t = 0) (2.21)

This is the so-called entropy lowering which is sim-
ply the difference between the two entropy values.
By changing parameter values infinitely slow along
some path v we may find a reversible transition and
calculate the entropy change in a standard way e.g.
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by using the Gibbs fundamental relation (2.13). An
important property of the quantity 0.5 is, that it is
independent on the path v from the initial state to
the equilibrium state. On the other hand the entropy
change on an irreversible path may depend on details
of the microscopic trajectory. In average over many
realizations (measurements) should hold

(AS(c0)) = ([* P(t)dt) =65 (2.22)

This equality follows from the fact that S is a state
function, its value should be independent on the path
on which the state has been reached. Assuming for a
moment that the equality (2.24) is violated we could
construct a cyclic process which contradicts the sec-
ond law. The macroscopic quantity

AS = (AS(c0)) (2.23)

may be estimated by averaging the entropy produc-
tion for many realizations of the irreversible approach
from the initial state to equilibrium under conditions
of strict isolation from the outside world. The result

AS =58 (2.24)

is surprising: It says that we can extract equlibrium
information 4.5 from nonequilibrium (finite-time) mea-
surements of entropy production. We will come back
to this point in the next section. Here let us proceed
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on the way of deriving Lyapunov functions.
By using the relations given above we find for macro-
scopic systems the following Lyapunov function

L(t) = AS — AS(t) (2.25)

which yields for isolated systems (Klimontovich, 1992,
1995 )

Due to
%(f) Pt <0 (2.26)
and
AS > AS(t) (2.27)

the function L(t) has indeed the necessary properties
(2.18) of a Lyapunov function.

Let us consider now a system which is in contact with
a heat bath of temperature T'. Following Helmholtz
we define the characteristic function

F=E-TS (2.28)

which is called the free energy. According to Gibbs’
fundamental relation the differential of F is given by

dF =dE —TdS — SdT

= Y lydLy + X pdN; — SdT (2.29)
k i
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In this way we see that the proper variables for the
free energy are the temperature and the extensive
variables Ly, (note Ly = V') and N; with (i =1, ...s).
In other words we have

The total differential (2.31) may also be considered
as a balance relation for the free energy change for a
quasistatic transition between two neighboring states.
Let us now consider the transition under more gen-
eral situations admitting also dissipative elements.

Then we find
dF = dE — SdT —TdS =

dA—dQ—SdI —Td.S — Td;S.

dF = d'A — SdT — Td;S (2.30)

At conditions where the temperature is fixed and
where the exchange of work is excluded we get

F
dF = —Td;S < 0; C;—t ——TP<0 (231)

As a consequence from eq. (2.31), the free energy is
a nonincreasing function for systems contained in a
heat bath which excludes exchange of work. At these
conditions the free energy assumes its minimum F



October 3, 2007 18:24 WorldScientific/ws-b9-75x6-50 LecKral2

38  Thermodynamic, Deterministic and Stochastic Levels of Description  (Selected results)

at the thermal equilibrium. Consequently the Lya-
pounov function of the system is given by

L(t) = F(t) - F,, (2.32)

which possesses the necessary Lyapunov properties
(2.18). Another important situation is a surrounding
with given temperature 1" and pressure p. The char-
acteristic function is then the free enthalpy (Gibbs
potential)

G=FE+pV -TS (2.33)
with the total differential
dG =dE — pdV — Vdp — SdT —TdS (2.34)
and the balance relation

dG =d'A—d'Q—Vdp—pdV —SdT—-Td.S—Td;S

= Vdp — SdT — Td;S. (2.35)
For given temperature and pressure we get
dG = —Td;S <0

dG
— =-TP< 2.
7 <0 (2.36)

Consequently the free enthalpy G is a non-increasing
function for systems imbedded in an isobare and isother-
mal reservoir. In thermal equilibrium the minimum
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G, is assumed. Therefore
L(t)=G(t) — Gy (2.37)

is a Lyapunov function possessing the necessary prop-
erties (2.27-28). Let us consider now the most general
situation, where our system is neither isolated nor in
a reservoir with fixed conditions during its course to
equilibrium. In the general case the Lyapounov func-
tion may be defined by

L(t) = Seg(E(t = 0), X) — S(E,t = 0) — [ P(t')dt’
(2.38)
This function has again the necessary properties of a
Lyapunov function (2.27-28), i.e. it is non-negative
and non-increasing. However it will tend to zero only
under the condition of total isolation during the time
evolution.
The definition of the entropy production is in general
a non-trivial problem. In the special case however
that the only irreversible process is a production of
heat by destruction of mechanical work the definition
of P(t) is quite easy. Since then P(t) is given as
the quotient of heat production and temperature, a
calculation of L(t) requires only the knowledge of the
total mechanical energy which is dissipated.
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2.3 Energy, entropy, and work

Energy, entropy and work are the central categories
of thermodynamics and statistical physics. The fun-
damental character of these phenomenological quan-
tities requires our full attention. The entropy concept
closes the gap between the phenomenological theory
and the statistical physics. In spite of the central po-
sition of energy, entropy and work in physics, there
exist many different definitions and interpretations
(Zurek, 1990). Below we will be concerned with sev-
eral these interpretations. We introduce mechanical
energy, heat and work. Furtheron we talk about the
Clausius entropy, the Boltzmann entropy, the Gibbs
entropy, the Shannon entropy and Kolmogorov en-
tropy. Extending the categories of energy and en-
tropy to other sciences the confusion may even in-
crease. In order to avoid any misinterpretation one
has to be very careful when talking about these cate-
gories. However there should be no dought, that en-
ergy and entropy are central quantities. But due to
their fundamentality a specific difficulty of philosoph-
ical character arises: It is extremely difficult or even
impossible to avoid tautologies in their definition.
In conclusion we may say that energy and entropy
should be elements of an axiomatics of science. As we
memntioned above, the difficulty in defining funda-
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mental quantities was already discussed by Poincare
with respect to energy. In his lectures on thermody-
namics (1893) Poincare’ says:

“In every special instance it is clear what energy
1s and we can give at least a provisional definition
of it; it is impossible however, to give a general
definition of it. If one wants to express the (first)
law n full generality,... , one sees it dissolve be-
fore one’s eyes, so to speak leaving only the words:
There is something, that remains constant (in iso-
lated systems).”

We may translate this sentence to the definition
of entropy in the following way: “In every special
instance 1t 1s clear what entropy is and we can
give at least a provisional definition of it; it 1s
impossible however, to give a general definition of
it. If one wants to express the second law in full
generality, ... , one sees it dissolve before one’s
eyes, so to speak leaving only the words: There
1s something, that is non-decreasing in isolated
systems”.

In this way our definition of entropy is finally: En-
tropy is that fundamental and universal quantity char-
acterizing a real dynamical system, that is non-decreasing
in isolated systems. Energy and entropy are not in-
dependent, but are connected in a rather deep way.
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Our point of view is based on a valoric interpreta-
tion (Ebeling, 1993). This very clear interpretation
will be taken as the basis for a reinterpretation of
the various entropy concepts developed by Clausius,
Boltzmann, Gibbs, Shannon and Kolmogorov. As
the key points we consider the value of energy with
respect to work. The discussion about this relation
started already in the last century and is continuing
till now. The valoric interpretation was given first
by Clausius and was worked out by Helmholtz and
Ostwald. But then, due to a strong opposition from
the side of Kirchhoff, Hertz, Planck and others, it
was nearly forgotten except by a few authors (Schopf,
1984; Ebeling and Volkenstein, 1990). As a matter
of fact however, the valoric interpretation of the en-
tropy, was for Clausius itself the key point for the
introduction of this new concept in 1864-65. What
many physicists do not know is that the entropy con-
cept taught in universities as the Clausius concept is
much nearer to the reinterpretation given by Kirch-
hoff than to the original Clausius’ one (Schopf, 1984).
Here we try to develop the original interpretation in
terms of a value concept in connection with some
more recent developements. We concentrate on pro-
cesses in isolated systems, i.e. with given energy. Let
us start with a comparison of the entropy concepts of
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Clausius, Boltzmann and Gibbs. In classical thermo-
dynamics the entropy difference between two states
is defined by Clausius in terms of the exchanged heat
/ /

dsS = %; 0S = SQ - Sl = 12 % (239)
Here the transition 1 — 2 should be be carried out
on a reversible path and d’'@Q is the heat exchange
along this path. In order to define the entropy of a
nonequilibrium state we may construct a reversible
" Frsatzprozess” connecting the nonequilibrium state
with an equilibrium state of known entropy. Let us
assume in the following that the target state 2 is an
equilibrium state. By standard definition an equilib-
rium state is a special state of a system with the prop-
erties that the variables are uniquely defined, con-
stant in time and remain the same after isolation from
the surrounding (compare section 2.1). The state 1
is by assumption a nonequilibrium state, i.e. a state
which will not remain constant after isolation. Due
to internal irreversible processes, the process start-
ing from state 1 will eventually reach the equilib-
rium state 2 which is located (macroscopically) on
the same energy level. This is due to the condition of
isolation which is central in our picture. Now we may
apply eq. (2.39) finding in this way the nonequlib-
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rium entropy.

Sl(y;E,X,t - O) - Seq(E7 X) - 5S(y;E, X)
(2.40)
The quantity 0.5 is the so-called entropy lowering in
comparison to the equilibrium state with the same
energy. It was introduced by Klimontovich as a mea-
sure of organization contained in a nonequilibrium
system (Klimontovich, 1982, 1989, 1990; Ebeling and
Klimontovich, 1984; Ebeling, Engel and Herzel, 1990).
Several examples were given as e.g. the entropy low-
ering of oscillator systems, of turbulent flows in a
tube and of nonequlibrium phonons in a crystal gen-
erated by a piezoelectric device.
We shall assume in the following that the entropy
lowering depends on a set of order parameters y =
Y1, Y2, ---, Yn as well as on the energy E and on other
extensive macroscopic quantities X. The equilib-
rium state is characterized by y1 = yo = ... = y,, = 0.
There are some intrinsic difficulties connected with
the construction of an “Ersatzprozess”; therefore Muschik
(1990) has developed the related concept of an ac-
companying process. By definition this is a projec-
tion of the real path on a trajectory in an equilibrium
subspace. Since the entropy is as a state function in-
dependent on the path, the concepts “Ersatzprozess”
or accompanying process give at least a principal pos-
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sibility of calculating the nonequilibrium entropy. In
practice these concepts work well for nonequilibrium
states which are characterized by local equilibrium,
which is valid e.g. for many hydrodynamic flows and
chemical reactions (Glansdorff and Prigogine, 1971).
In more general situations the exact definition of the
thermodynamic entropy remains an open question,
which is the subject of intensive discussions (Ebeling
and Muschik, 1992). Let us consider now another ap-
proach which is based on the concept of entropy pro-
duction. Assuming again that the initial state 1 is a
nonequilibrium state, we know from the definition of
equilibrium that, after isolation, changes will occur.
Under conditions of isolation the energy E will re-
main fixed, within the natural uncertainties, but the
entropy will monotoneously increase due to the sec-
ond law. Irreversible processes connected with a pos-
itive entropy production P > 0 will drive the system
finally to an equilibrium state located at the same
energy surface. In thermodynamic equilibrium, the
entropy assumes the maximal value S, (F, X ) which
is a function of the energy and certain other exten-
sive variables. According to eq. (2.37) the entropy
change is a Lyapunov functions and may be obtained
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by integration of the entropy production over time:
68 = Sey(E, X) — S(E,t=0) /1 t (2.41)

In the special case that production of heat by de-
struction of mechanical work is the only irreversible
process application of eq. (2.41) is quite easy. Since
then P(t) is given as the quotient of heat produc-
tion and temperature a calculation of requires the
knowledge of the total mechanical energy which is
dissipated. Eq. (2.41) is another way to obtain the
entropy lowering and in this way the entropy of any
nonequilibrium state. As above we may consider this
difference as a measure of order contained in the body
in comparison with maximal disorder in equilibrium.
Eq. (2.41) suggests also the interpretation as a mea-
sure of distance from equilibrium. So far the ther-
modynamic meaning of entropy was discussed, but
entropy is like the face of Janus, it allows other inter-
pretations. The most important of them with respect
to statistical physics is the interpretation of entropy
as measure of uncertainty or disorder. In the pio-
neering work of Boltzmann, Planck and Gibbs it was
shown that in statistical mechanics the entropy of a
macrostate is defined as the logarithm of the thermo-
dynamic probability W

S = kplog W (2.42)
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which is defined as the total number of equally proba-
ble microstates corresponding to the given macrostate.
Further kg is the Boltzmann constant. In the sim-
plest case of classical systems, the number of states
with equal probability corresponds to the volume of
the available phase space €2(A) divided by the small-
est accessable phase volume h3 (h - Planck’s con-
stant). Therefore the entropy is given by

SBP = ]fB 10g Q*(A), (2.43)

Q*(A) = Q(A)/h® (2.44)

Here A is the set of all macroscopic conditions. In
isolated systems in thermal equilibrium, the available
part of the phase space is the volume of the energy
shell enclosing the energy surface

H(q,p) =E. (2.45)

[f the system is isolated but not in equilibrium only
certain part of the energy shell will be available. In
the course of relaxation to equilibrium the probabil-
ity is spreading over the whole energy shell filling
it finally with constant density. Equilibrium means
equal probability, and as we shall see, least informa-
tion about the state on the shell. In the nonequi-
librium states the energy shell shows regions with
increased probability (attractor regions). We may
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define an effective volume of the occupied part of the
energy shell by

S(E,t) = kplog O (B, 1), (2.46)

orf(Est) =exp (S(E,t)/kp) (2.47)

In this way, the relaxation on the energy shell may be
interpreted as a monotoneous increase of the effective
occupied phase volume. This is connected with a
devaluation of the energy.

Let us discuss now in more detail the relation be-
tween free energy and work. The energetic basis of
all human activities is work, a term which is also
difficult to define. The first law of thermodynamics
expresses the conservation of the energy of systems.
Energy may assume various forms. Such forms of en-
ergy as heat or work appear in processes of energy
transfer between systems. They may be of different
value with respect to their ability to perform work.
The (work) value of a specific form of energy is mea-
sured by the entropy of the system. As shown first
by Helmholtz, the free energy

F=FE-TS (2.48)

represents the amount of energy in a body at fixed
volume and temperature which is available for work.
Before going to explain this in more detail we go
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back for a moment to a system with fixed energy and
with fixed other external extensive parameters. Then
the capacity to do work (the work value) takes it
minimum zero in thermodynamic equilibrium, where
the entropy assumes the maximal value S, (E, X).
Based on this property Helmholtz and Ostwald de-
veloped a special entropy concept based on the term
“value”. In the framework of this concept we con-
sider the difference

58S = S,(E, X) — S(E, X) (2.49)

as a measure of the “value” of the energy contained
in the system. In dimensionless units we may define
a “lowering of entropy” by

Le = [S(E,X) — S(E,X)|/Nks  (2.50)

where N is the particle number. We consider Le as
a quantity which measures the distance from equilib-
rium or as shown above the (work) value of the en-
ergy contained in a system. Further the lowering of
entropy Le should also be connected with the nonoc-
cupied part of the phase space. As shown above, any
nonequilibrium distribution is concentrated on cer-
tain part of the energy surface only. Therefore the
relaxation to equilibrium is connected with a spread-
ing of the distribution and a decrease of our knowl-
edge on the microstate.
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In terms of the phase space volume of statistical
mechanics this measure has the following meaning.
It gives the relative part of the phase space in the
energy shell which is occupied by the system. The
second law of thermodynamics tells us that entropy
can be produced in irreversible processes but never
be destroyed. Since entropy is a measure of value of
the energy this leads to the formulation that the dis-
tance from equilibrium and the work value of energy
in isolated systems cannot increase spontaneously. In
other words Le and w are Lyapunov functions ex-
pressing a tendency of devaluation of energy:.

In order to increase the value of energy in a sys-
tem one has to export entropy. In this way we have
shown, that the meaning of the thermodynamic con-
cept of entropy may be well expressed in terms of
distance from equilibrium, of value of energy or of
relative phase space occupation instead of the usual
concept of entropy as a measure of disorder.

Now let us come back to the free energy, the term in-
troduced into thermodynamics by Helmholtz. As we
will shown in detail, the concept of Helmholtz may
be interpreted in the way that the total energy con-
sists of a free part which is available for work and a
bound part which is not available. A related concept
is the exergy, which is of much interest for technical
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applications.
Due to the relation
E:F—I—TS:Ef—I—Eb (2.51)

the energy in a body consists of two parts.
E:Ef—l—Eb; Ef:F; E,=TS (2.52)

Correspondingly, the first part £y = F' may be inter-
preted as that part of the energy, the “free energy”,
that is available for work. The product of entropy
with the temperature £y = T'S may be interpreted
as the bound part of the energy. On the other hand
due to

H=G+TS=H+H, (2.53)

it gives also the bound part of the enthalpy (G - being
the free enthalpy). From the second law follows as
shown in the previous section that under isothermal
conditions the free energy is a non-increasing function
of time

=<0 (2.54)

and that under isobaric-isothermal condition the free
enthalpy is non-increasing

dG
<

— <0 2.55
dt — (2:35)
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The tendency of F' and G to decrease is in fact de-
termined by the general tendency expressed by the
second law, to devaluate the energy (or the enthalpy)
with respect to their ability to do work.

Let us study now the work W performed on a system
during a finite transition from an initial nonequilib-
rium state to a final equilibrium state. Then as we
have shown

W =0F = F,, — F,, (2.56)

is the work corresponding to a process when the pa-
rameters are changed infinitely slowly along the path
v from the starting nonequilibrium point to the fi-
nal equilibrium state. This relation is not true, if
the parameters are switched along the path ~ at a
finite rate. At that conditions the process is irre-
versible and the work W will depend on the micro-
scopic initial conditions of the system and the reser-
voir, and will, on average exceed the free energy dif-
ference (Jarzynski, 1996)

(W) > 6F = Fp. — F,, (2.57)

The averaging is to be carried out over an ensemble
of transitions (measurements). The difference

(W) —=W]>0 (2.58)
is just the dissipated work W, associated with the
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increase of entropy during the irreversible transition.
In recent work Jarzynski (1996) discussed the above
relations between free energy and work from a new
perspective. The new relation derived by Jarzynski
(1996) instead of the inequality (2.57) is an equality

{exp[—BW]) = exp|—LW] (2.59)

where 3 = 1/kgT. This nonequilibrium identity,
proven by Jarzynski (1997) using different methods,
is indeed surprising: It says that we can extract equi-
librium information

OF =W = —kgTln(exp(—6W))]  (2.60)

from an ensemble of nonequilibrium (finite-time) mea-
surements. In this respect eq.(2.60) is an equivalent
of eq.(2.22).

2.4 Deterministic Level

Description by variables:

x(t) = [21(t), 2o(t), ..o, ()] (2.61)

.CCZ(t) = E(.Cl?l, ...,In(t)), 1= 1, 2, N (262)
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A detailed pictues you will find in the book, also in
many available textbooks.

2.5 Stochastic Level of Description

Due to stochastic influences the future state of a dy-
namical system is in general not uniquely defined.

In other words the dynamic map defined by (2.62)

is non-unique. A given initial point z(0) may be the
source of several different trajectories. The choice be-
tween the different possible trajectories is a random
event.

Description developed by Paul Langevin (1911):
Add stochastic forces with zero mean value

;= Fi(x) + V2DE(t) (2.63)
where xi(t) is a delta-correlated Gaussian random
variable.

< f(t) >=(); < &(t)fj(tl) >= 5@'5(?5 — t/)
(2.64)

By averaging we find
<xr >=< Fj(x) >> Fj(< z >) (2.65)

This way, in average, the deterministic dynamics is
reproduced at least approximately.

After all the term trajectory looses its precise mean-
ing and should be supplemented in terms of proba-



October 3, 2007 18:24 WorldScientific/ws-b9-75x6-50 LecKral2

Stochastic Level of Description 55

bility theory. We describe the state of the system
at time ¢ by a probability density P(x,t;u). Per
definition P(ax,t; u)dx is the probability of finding
the trajectory at time ¢ in the interval (x, x + dz).
Instead of the deterministic equation for the state
we get now a differential equation for the probability
density P(x,t;u).

Define GG as the probability flow vector. Based on
the equation of continuity we get

O:P(x,t;u) = —divG(x,t; u) (2.66)

In the special case that there are no stochastic forces
the flow is proportional to the deterministic field i.e.

Gi(z,t,;u) = Fi(z, t;u)P(x, t;u)

Including now the influence of the stochastic forces
we assume here ad hoc an additional diffusive con-
tribution to the probability flow which is directed
downwards the gradient of the probability

0
(%i

This is the simplest “Ansatz” which is consistent with
eq.(2.73) for the mean values. The connection of
the "diffusion coeflicient” D with the properties of
the stochastic force will be discussed later. Introduc-
ing eq.(2.5) into eq.(2.66) we get a partial differential

Gi(x, t;u) = Fi(x,t;u)P(x, t;u) — D—P(x, t;@)%67)
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equation.
QP(% tu) =3 0 D 0 P(x,t;u) — Fi(x,t;u)P(x tu)]
(975 ] _ - &EZ (‘93}2 ] [ ] )

(2.68)
We will use the following notation:
(i) f 21, ...x, — @1, ..., £ are usual mechanical coor-
dinates, we call the equation Smoluchowski equation
to honour the contribution of Marian Smoluchowski
(18.. - 1917).
(ii) If 2y, ...,z — @1, ..., T f, V1, .05 Tepresent coor-
dinates and velocities (momenta) we denote the equa-
tion as Fokker-Planck equation, since Fokker and
Planck wrote down the first version. Alternatively we
may call the equation Klein-Kramers equations af-
ter the scientists which formulated the standard form
used nowadays.
(iii) In the general case that the meaning of the xy, ..., x,,
is not specified at all, we speak about the it Chapman-
Kolmogorov equation.
In the literature all these equations are often called
the Fokker-Planck equation but this is historically
not fully correct.

In this way we have found a closed equation for
the probabilities. The found stochastic equation is
consistent with the deterministic equation (2.62) and
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will, at least approximately, take into account stochas-
tic influences.

On the basis of a given probability distribution
P(x,t;u) we may define now mean values of any
function f(x) by

(f(x)) = [dzf(z)P(z,t;u).
Further we may define the standard statistical ex-

pressions as e.g. the dispersion and in particular the
mean uncertainty (entropy) which is defined as

H = —(log P(x,t;u)) (2.69)

The Fokker-Planck equation has a unique station-
ary solution

Po(@; u)
which is the target of evolution
P(x,t;u) — Py(x; u)
There exists a non-negative functonal
K(P; Py) = (log P(x, t;u) Py(@; uw))
such that

dK(P:; P
Pih)
dt -
This is a very general stochastic inequality which has
many special cases.
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Let us first study a system with
For systems with overdamped potential dynamics
in configuration space and friction

p = 1my
oV (x,t;
Fi(z, tiu) = — Sl
pOx;
we get the Smoluchowski equations and the solution
reads
Ve, t;u)
Pilax: — t _ N
o(x; u) = const exp Dy
With the Einstein relation
kT
D=—
o
this gives the Boltzmann distribution.
1 V(x;
Py(x;u) = @ exp | — /E:?TU)

This gives
kpTK =< v(x) > =U,(T;u)

where U, is the configurational part of the internal
energy defined by

U, =F,+TS,; F,=kgTInQ:; S, = —/de(:U) In P(x)

In the case of an hamiltonian dynamics we find
the Fokker-Planck-Klein-Kramers equation and the
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the stationary solution reads

1 H(x,v;u)
P, u) = —
(@, viu) = exp |-
Then we find the non-negative functonal
K(P; By) = (log P(z, v, t;u)Py(x, v;u)) = B(F(¢)—F)

such that

dF(t))
dt
The approach based on the Fokker-Planck equa-
tion is the simplest but not the only one. There ex-
ists a different approach due to Markov, Chapman
and Kolmogorov, which is based on transition prob-
abilities and the idea of a so-called Markov chain.

<0, F(t)— F,

Let us still underline that the concept of the Markov
process is rather a property of the model we apply for
the description than a property of the physical sys-
tem under consideration (Van Kampen, 1981). If a
certain physically given process cannot be described
in a given state space by a Markov relation, often it
may be possible, by introducing additional compo-
nents, to embed it into a Markov model. This way a
non-Markovian model can be converted, by enlarge-
ment of the number of variables, into another model
with Markovian properties. We note already here,
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that the basic equation of statistical physics, the Li-
ouville equation which will be introduced in the next
Chapter, is of markovian character.

By some manipulation of the Chapman-Kolmogorov
equation we get the following equation for the prob-
ability density.

% = /d:c’W(m]x')P(x’,t) — W(a'|2)P(z,t)

(2.70)
This equation is called Pauli-equation or master equa-
tion since it plays a fundamental role in the theory
of stochastic processes. The integration is performed
over all possible states «/ which are attainable from
the state x by a single jump. It is a linear equation
with respect to P and determines uniquely the evo-
lution of the probability density. The r.h.s.consists
of two parts, the first stands for the gain of proba-
bility due to transitions &’ — x whereas the second
describes the loss due to reversed events. Eq.(2.70)
needs still further explanation by the determination
of the transition probabilities per unit time corre-
spondingly to the special physical situation. It will be
the subject of chapters 7. and 8. The transition prob-
ability is in many cases a quickly decreasing function
of the jump Az = x — 2’ . By using a Taylor expan-
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sion with respect to Az and moments of the tran-
sition probability one can transform eq.(2.70) to an
infinite Taylor series. This is the so-called Kramers-
Moyal expansion.

OP(x,t) = (=1)" _0"M(z)P(z,t)
ot Z1: m! 2 Ox;,...0x; (2.7
with
M, i (x) = /dAa:dAxildAximW(x + Az|z)

(2.72)
being the moments of the transition probabilities per
unit time. According to Pawula there are just two
possibilities considering homogeneous Markov pro-
cesses
(1) All coefficients of the Kramers-Moyal expansion
are different from zero.

(2) Only two coefficients in the expansion are differ-
ent from zero.

In the first case we have to deal with the full master
equation. In the latter one the Markovian process is
called difusive, which is of special interest to us, and
leads to the following second-order partial differential

equation:
0 0 0?
—P = M;(x)P —|\M;(x)P
(0 0) = g M) P+ 3 5 (M () )
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(2.73)

This is a generalization of the Fokker-Planck equa-
tion given above. For its solution we need of course
initial conditions P(x,t = 0) and boundary condi-
tions which take into account the underlying physics.
Writing eq.(??) again in the form of a continuity
equation (2.97) we find for the vector of the prob-
ability flow the components

Gi(z,t) = Mi(x)P(x,t) + X i[]\Lj(x)P(x, t)]

J al’z'

(2.74)

The strong mathematical theory of the given stochas-
tic equations was developed by Chapman, Kolmogorov
and Feller; therefore one speaks often about the Chap-
man - Kolmogorov - Feller equation. In physics
however, this equation was used much earlier by Ein-
stein, Smoluchowski, Fokker and Planck for the de-
scription of diffusion processes and Brownian mo-
tion respectively (Chandrasekhar, 1943). Due to this
original physical relation the coefficients M;(x) and
M;;(z) are often called drift coefficients and diffu-
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sion coefficients respectively. Let us still mention that
an alternative mathematical foundation of the theory
of stochastic processes may be based on the theory
of stochastic differential equations (Gichman et al.,
1971).

Another large class of Markovian processes contains
systems with a discrete state space. This concerns
the atomic processes or extensive thermodynamic vari-
ables, like e.g. particle numbers in chemical reacting
systems. The Pauli equation which was developed
originally for the transitions between atomic levels
has the form

9 p(N, 1) = X [W(N|N)P(N',t) - W(N'|N)P(N, 1)

ot

(2.75)
where IN is the vector of possible discrete events
(population numbers, occupation numbers). As ex-
ample we refer to the large class of birth and death
processes where IN are natural numbers which change
during one transition by AN = +£1. Let us still sum-
marize the new tools in comparison with the deter-
ministic models. Obviously the stochastic approach
contains more information about the considered sys-
tems due to the inclusion of fluctuations into the de-
scription. Besides moments of the macroscopic vari-
ables it enables us to determine correlation functions,
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spectra which will give knowledge between the func-
tional dependence of the fluctuational behaviour at
different times.

Some physical phenomena can be explained only by
taking into account fluctuations. The stochastic ap-
proach on a mesoscopic level delivers often more el-
egant solutions than the microscopic statistical ap-
proach. Inclusion of fluctuations of the macroscopic
variables does not necessarily enlarge the number
of relevant variables but changes only their charac-
ter by transforming them into stochastic variables.
The main difference compared with the deterministic
models is the permeability of separatrices. This state-
ment concerns especially non-chaotic dynamics, for
instance if dealing with one or two order parameter.
With certain probability stochastic realizations reach
(or cross) unstable points, saddle points, and sepa-
ratrices what is impossible in the deterministic de-
scription. Stochastic effects make possible to escape
regions of attraction around stable manifolds. Phys-
ical situations which make use of that circumstamce
are e.g. nucleation or chemical reactions where ener-
getically unfavourable states has to be overwhelmed.
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Problem:
Study a 1D Rayleigh particle with the dynamics

T =0 (2.76)
o = (a — bw*)v + V2DE(t) (2.77)

(i) Find solutions without noise D = 0 and

(ii) study the Fokker-Planck equation in the case with
noise D > 0.

Investigate first the case a < 0,b = 0 (so-called
Ornstein-Uhlenbeck process) and then the case a >
0,b > 0 (free active Brownian particles) Find sta-
tionary solutions of the Fokker-Planck equation.



