Introduction to Loop Quantum Black Hole Models

Cong Zhang

Friedrich-Alexander-Universität Erlangen-Nürnberg

Outline

A. Introduction of a Loop Quantum BH Model: Schw. interior as an example

- Canonical quantization of BH
-What is loop quantization
-Some results
B. Some recent results in LQGBH
-Spherically symmetric model
-Quantum Oppenheimer-Snyder model
-QG effects on BH image, et al

Outline

A. Introduction of a Loop Quantum BH Model: Schw. interior as an example

- Canonical quantization of BH
-What is loop quantization
-Some results
B. Some recent results in LQGBH
-Spherical symmetry model
-Quantum Oppenheimer-Snyder model
-QG effects on BH image, et al

Motivation and background

The black holes of nature are the most perfect macroscopic objects there are in the Universe
-Subrahmanyan Chandrasekhar

https://en.wikipedia.org/wiki/Black_hole
BH s have been observed due to the development of observational technique

Image of a BH at the core of M87 [https://eventhorizontelescope.org/]

Estimated gravitational-wave strain amplitude from GW150914 [PRL 116, 061102 (2016)]

Motivation and background

- The existence of singularities in BHs motivate us to introduce QG in BH physics;
- In loop quantum gravity, our answer on quantum BH haven't formed a unique picture; There are, e.g., Ashtekar-Bojowald paradigm [Ashtekar \& Bojowald 05'], the SF qBH model [Rovelli, Harggard, Christodoulou, Speziale, Vilensky etc. 15', 16', Han, Qu, CZ 24' and so on] and different loop quantum symmetry-reduced models [Ashtekar, Bojowald, Bodendorfer, Boehmer, Chiou, Giesel, Gambini, Han, Husian, Li, Liu, Lewandowski, Modesto, Ma, Mehdi, ,Mena Marugan, Olmedo, Pullin, Singh, Vandersloot, Wang, WilsonEwing, Yang, Zhang and so on]

A few words on LQG full theory

$$
\begin{gathered}
h_{e}=\mathscr{P} \exp \left(\int_{e} A_{a} d x^{a}\right) \quad E_{S}=\int_{S} E^{a} \epsilon_{a b c} d x^{a} d x^{b} \\
\text { Background independent }
\end{gathered}
$$

quantum Schwarzschild BH: interior as an example

$\Sigma=\mathbb{R} \times S^{2}$, homogeneity implies
the symmetry group of $\mathbb{T} \times \mathrm{SO}(3)$

quantum Schwarzschild BH: interior as an example

- $\mathscr{M}_{4}=\mathbb{R} \times \mathbb{R} \times S^{2} \ni(\tau, x, \theta, \phi)$
- The metric with the symmetry $\mathbb{T} \times \mathrm{SO}(3):$ $d s^{2}=-N(\tau)^{2} d \tau^{2}+q_{x x}(\tau) d x^{2}+q_{\theta \theta}(\tau) d \Omega^{2}$

$\Sigma=\mathbb{R} \times S^{2}$, homogeneity implies
the symmetry group of $\mathbb{T} \times \mathrm{SO}$ (3)

Einstein equation

$$
d s^{2}=-\left(\frac{2 M}{\tau}-1\right)^{2} d \tau^{2}+\left(\frac{2 M}{\tau}-1\right) d x^{2}+\tau^{2} d \Omega^{2}
$$

quantum Schwarzschild BH: interior as an example

We do canonical quantization for this system!

- $\mathscr{M}_{4}=\mathbb{R} \times \mathbb{R} \times S^{2} \ni(\tau, x, \theta, \phi)$
- The metric with the symmetry $\mathbb{T} \times \mathrm{SO}(3):$ $d s^{2}=-N(\tau)^{2} d \tau^{2}+q_{x x}(\tau) d x^{2}+q_{\theta \theta}(\tau) d \Omega^{2}$

$\Sigma=\mathbb{R} \times S^{2}$, homogeneity implies
the symmetry group of $\mathbb{T} \times \mathrm{SO}$ (3)

quantum Schwarzschild BH: interior as an example

We do canonical quantization for this system!

- $\mathscr{M}_{4}=\mathbb{R} \times \mathbb{R} \times S^{2} \ni(\tau, x, \theta, \phi)$
- The metric with the symmetry $\mathbb{T} \times \mathrm{SO}(3):$
$d s^{2}=-N(\tau)^{2} d \tau^{2}+q_{x x}(\tau) d x^{2}+q_{\theta \theta}(\tau) d \Omega^{2}$

Question 1: what are the canonical pairs?
The canonical pairs can be found via:
. $S=\int_{\mathbb{R}} d \tau \int_{\left[0, L_{0}\right] \times S^{2}} d^{3} x \sqrt{g} R[q]$
. $P^{x x}=\frac{\delta S}{\delta \dot{q}_{x x}}, P^{\theta \theta}=\frac{\delta S}{\delta \dot{q}_{\theta \theta}}$

$\Sigma=\mathbb{R} \times S^{2}$, homogeneity implies
the symmetry group of $\mathbb{T} \times \mathrm{SO}(3)$

quantum Schwarzschild BH: interior as an example

- $\mathscr{M}_{4}=\mathbb{R} \times \mathbb{R} \times S^{2} \ni(\tau, x, \theta, \phi)$
- The metric with the symmetry $\mathbb{T} \times \mathrm{SO}(3):$ $d s^{2}=-N(\tau)^{2} d \tau^{2}+q_{x x}(\tau) d x^{2}+q_{\theta \theta}(\tau) d \Omega^{2}$

We do canonical

 quantization for this system!Question 1: what are the canonical pairs?

However, in LQG, we prefer the Ashtekar variables $\left(A_{a}^{i}, E_{i}^{a}\right)$, with $q^{a b}=\frac{E_{i}^{a} E_{j}^{b} \delta^{i j}}{\sqrt{\operatorname{det}(E)}},\left\{A_{a}^{i}(x), E_{j}^{b}(y)\right\}=8 \pi G \gamma \delta^{3}(x, y)$

$\Sigma=\mathbb{R} \times S^{2}$, homogeneity implies
the symmetry group of $\mathbb{T} \times \mathrm{SO}$ (3)

quantum Schwarzschild BH: interior as an example

- $\mathscr{M}_{4}=\mathbb{R} \times \mathbb{R} \times S^{2} \ni(\tau, x, \theta, \phi)$
- The metric with the symmetry $\mathbb{T} \times \mathrm{SO}(3):$ $d s^{2}=-N(\tau)^{2} d \tau^{2}+q_{x x}(\tau) d x^{2}+q_{\theta \theta}(\tau) d \Omega^{2}$

Question 1: what are the canonical pairs?

However, in LQG, we prefer the Ashtekar variables $\left(A_{a}^{i}, E_{i}^{a}\right)$, with $q^{a b}=\frac{E_{i}^{a} E_{j}^{b} \delta^{i j}}{\sqrt{\operatorname{det}(E)}},\left\{A_{a}^{i}(x), E_{j}^{b}(y)\right\}=8 \pi G \gamma \delta^{3}(x, y)$
We thus need rewrite: $\left(q_{x x}, q_{\theta \theta}\right) \mapsto\left(\frac{p_{b}^{2}}{p_{c}}, p_{c}\right)$, so that E_{i}^{a} takes the simple form: $E_{i}^{a} \tau^{i} \partial_{a}=p_{c} \tau_{3} \sin \theta \partial_{x}+\frac{p_{b}}{L_{0}} \tau_{1} \sin \theta \partial_{\theta}+\frac{p_{b}}{L_{0}} \tau_{2} \partial_{\phi^{*}}$
$\Sigma=\mathbb{R} \times S^{2}$, homogeneity implies
the symmetry group of $\mathbb{T} \times \mathrm{SO}(3)$

quantum Schwarzschild BH: interior as an example

We do canonical quantization for this system!

Question 1: what are the canonical pairs?

- $\mathscr{M}_{4}=\mathbb{R} \times \mathbb{R} \times S^{2} \ni(\tau, x, \theta, \phi)$
- The metric with the symmetry $\mathbb{T} \times \mathrm{SO}(3):$ $d s^{2}=-N(\tau)^{2} d \tau^{2}+q_{x x}(\tau) d x^{2}+q_{\theta \theta}(\tau) d \Omega^{2}$

$\Sigma=\mathbb{R} \times S^{2}$, homogeneity implies
the symmetry group of $\mathbb{T} \times \mathrm{SO}(3)$

However, in LQG, we prefer the Ashtekar variables $\left(A_{a}^{i}, E_{i}^{a}\right)$, with $q^{a b}=\frac{E_{i}^{a} E_{j}^{b} \delta^{i j}}{\sqrt{\operatorname{det}(E)}},\left\{A_{a}^{i}(x), E_{j}^{b}(y)\right\}=8 \pi G \gamma \delta^{3}(x, y)$
We thus need rewrite: $\left(q_{x x}, q_{\theta \theta}\right) \mapsto\left(\frac{p_{b}^{2}}{p_{c}}, p_{c}\right)$, so that E_{i}^{a} takes the simple form: $E_{i}^{a} \tau^{i} \partial_{a}=p_{c} \tau_{3} \sin \theta \partial_{x}+\frac{p_{b}}{L_{0}} \tau_{1} \sin \theta \partial_{\theta}+\frac{p_{b}}{L_{0}} \tau_{2} \partial_{\phi^{*}}$

Variables conjugate to p_{b}, p_{c} are denoted by b, c. The Ashtekar connection can be written in a, c as:
$A_{a}^{i} \tau_{i} d x^{a}=\frac{c}{L_{0}} \tau_{3} d x^{2}+b \tau_{1} d \theta+b \tau_{2} \sin \theta d \phi+\tau_{3} \cos \theta d \phi$

$$
\left\{b, p_{b}\right\}=G \gamma,\left\{c, p_{c}\right\}=2 G \gamma
$$

quantum Schwarzschild BH: interior as an example

Question 2: How about the dynamics?

Question 1: what are the canonical pairs?

The dynamics is encoded in the Hamiltonian constraint H :

$$
\begin{aligned}
S & =\int d \tau\left(\frac{1}{G \gamma} \dot{a} p_{a}+\frac{1}{2 G \gamma} \dot{b} p_{b}-N H\right) \\
H & =-\frac{1}{2 G \gamma^{2} p_{b} \sqrt{p_{c}}}\left(\gamma^{2} p_{b}^{2}+p_{b}^{2} b^{2}+2 b c p_{b} p_{c}\right)
\end{aligned}
$$

However, in LQG, we prefer the Ashtekar variables $\left(A_{a}^{i}, E_{i}^{a}\right)$, with $q^{a b}=\frac{E_{i}^{a} E_{j}^{b} \delta^{i j}}{\sqrt{\operatorname{det}(E)}},\left\{A_{a}^{i}(x), E_{j}^{b}(y)\right\}=8 \pi G \gamma \delta^{3}(x, y)$ We thus need rewrite: $\left(q_{x x}, q_{\theta \theta}\right) \mapsto\left(\frac{p_{b}^{2}}{p_{c}}, p_{c}\right)$, so that E_{i}^{a} takes the simple form: $E_{i}^{a} \tau^{i} \partial_{a}=p_{c} \tau_{3} \sin \theta \partial_{x}+\frac{p_{b}}{L_{0}} \tau_{1} \sin \theta \partial_{\theta}+\frac{p_{b}}{L_{0}} \tau_{2} \partial_{\phi^{\prime}}$

Variables conjugate to p_{b}, p_{c} are denoted by b, c. The Ashtekar connection can be written in a, c as:

$$
\begin{gathered}
A_{a}^{i} \tau_{i} d x^{a}=\frac{c}{L_{0}} \tau_{3} d x^{2}+b \tau_{1} d \theta+b \tau_{2} \sin \theta d \phi+\tau_{3} \cos \theta d \phi \\
\left\{b, p_{b}\right\}=G \gamma,\left\{c, p_{c}\right\}=2 G \gamma
\end{gathered}
$$

quantum Schwarzschild BH: interior as an example

Question 2: How about the dynamics?

The dynamics is encoded in the Hamiltonian constraint H :

$$
\begin{aligned}
& S=\int d \tau\left(\frac{1}{G \gamma} \dot{a} p_{a}+\frac{1}{2 G \gamma} \dot{b} p_{b}-N H\right) \\
& H=-\frac{1}{2 G \gamma^{2} p_{b} \sqrt{p_{c}}}\left(\gamma^{2} p_{b}^{2}+p_{b}^{2} b^{2}+2 b c p_{b} p_{c}\right)
\end{aligned}
$$

Question 3: How to reconstruct the metric?

- Choose a N
- $\dot{o}=\{o, N H\}, \forall o=b, c, p_{b}, p_{c}$ with initial data satisfying $H\left(b_{o}, c_{o}, p_{b}^{(o)}, p_{c}^{(o)}\right)=0$
- $d s^{2}=-N^{2} d \tau^{2}+\frac{p_{b}^{2}}{p_{c}} d x^{2}+p_{c} d \Omega^{2}$ is independent of the choice of N
- $d s^{2}$ remains the same for initial data related with canonical transformation of H
$q^{a b}=\frac{E_{i}^{a} E_{j}^{b} \delta^{i j}}{\sqrt{\operatorname{det}(E)}},\left\{A_{a}^{i}(x), E_{j}^{b}(y)\right\}=8 \pi G \gamma \delta^{3}(x, y)$
We thus need rewrite: $\left(q_{x x}, q_{\theta \theta}\right) \mapsto\left(\frac{p_{b}^{2}}{p_{c}}, p_{c}\right)$, so that E_{i}^{a} takes the
simple form: $E_{i}^{a} \tau^{i} \partial_{a}=p_{c} \tau_{3} \sin \theta \partial_{x}+\frac{p_{b}}{L_{0}} \tau_{1} \sin \theta \partial_{\theta}+\frac{p_{b}}{L_{0}} \tau_{2} \partial_{\phi}$.
Variables conjugate to p_{b}, p_{c} are denoted by b, c. The Ashtekar connection can be written in a, c as:
$A_{a}^{i} \tau_{i} d x^{a}=\frac{c}{L_{0}} \tau_{3} d x^{2}+b \tau_{1} d \theta+b \tau_{2} \sin \theta d \phi+\tau_{3} \cos \theta d \phi$

$$
\left\{b, p_{b}\right\}=G \gamma,\left\{c, p_{c}\right\}=2 G \gamma
$$

quantum Schwarzschild BH: interior as an example

- Phase space containing canonical pairs $\left(b, p_{b}\right),\left(c, p_{c}\right)$
- $\left\{b, p_{b}\right\}=G \gamma,\left\{c, p_{c}\right\}=2 G \gamma$
- Hamiltonian constraint encoding the dynamics:

$$
H=-\frac{1}{2 G \gamma^{2} p_{b} \sqrt{p_{c}}}\left(\gamma^{2} p_{b}^{2}+p_{b}^{2} b^{2}+2 b c p_{b} p_{c}\right)
$$

Our task is to do quantization for such a Hamiltonian system !

quantum Schwarzschild BH: interior as an example

- Phase space containing canonical pairs $\left(b, p_{b}\right),\left(c, p_{c}\right)$
- $\left\{b, p_{b}\right\}=G \gamma,\left\{c, p_{c}\right\}=2 G \gamma$
- Hamiltonian constraint encoding the dynamics:

$$
H=-\frac{1}{2 G \gamma^{2} p_{b} \sqrt{p_{c}}}\left(\gamma^{2} p_{b}^{2}+p_{b}^{2} b^{2}+2 b c p_{b} p_{c}\right)
$$

Our task is to do quantization for such a Hamiltonian system !
Canonical Quantization: $\left(b, p_{b}, c, p_{c}\right) \mapsto\left(\hat{b}, \hat{p}_{b}, \hat{c}, \hat{p}_{c}\right)$, with $\left[\hat{o}_{1}, \hat{o}_{2}\right]=i \hbar\left\{\widehat{\left.o_{1}, o_{2}\right\}}\right.$

Possible approach: Schrodinger quantization, $\mathscr{H}=L^{2}\left(\mathbb{R}^{2}\right), b, c$ are multiplication operator, $\hat{p}_{b}=-i \gamma G \hbar \partial_{b}, \hat{p}_{c}=-2 i \gamma G \hbar \partial_{c}$

Loop quantum Schwarzschild BH: interior as an example

- Phase space containing canonical pairs $\left(b, p_{b}\right),\left(c, p_{c}\right)$
- $\left\{b, p_{b}\right\}=G \gamma,\left\{c, p_{c}\right\}=2 G \gamma$
- Hamiltonian constraint encoding the dynamics:

$$
H=-\frac{1}{2 G \gamma^{2} p_{b} \sqrt{p_{c}}}\left(\gamma^{2} p_{b}^{2}+p_{b}^{2} b^{2}+2 b c p_{b} p_{c}\right)
$$

Our task is to do quantization for such a Hamiltonian system!
Canonical Quantization: $\left(b, p_{b}, c, p_{c}\right) \mapsto\left(\hat{b}, \hat{p}_{b}, \hat{c}, \hat{p}_{c}\right)$, with $\left[\hat{o}_{1}, \hat{o}_{2}\right]=i \hbar \widehat{\left\{o_{1}, o_{2}\right\}}$
Loop Approach: Inspired by full loop quantum gravity

- Inner product: $\langle f, g\rangle=\lim _{T \rightarrow \infty} \frac{1}{(2 T)^{2}} \int_{-T}^{T} \int_{-T}^{T} \bar{g}(b, c) f(b, c) d b d c$
- $\mathscr{H}=\{f,\|f\|<\infty\}$
- $\widehat{e^{i \lambda b}} f(b, c)=e^{i \lambda b} f(b, c), \widehat{e^{i \lambda c}} f(b, c)=e^{i \lambda c} f(b, c)$
- $\hat{p}_{b}=-i \gamma \ell_{p}^{2} \partial_{b}, \hat{p}_{c}=-2 i \gamma \ell_{p}^{2} \partial_{c}$

Loop quantum Schwarzschild BH: interior as an example

Inner product: $\langle f, g\rangle=\lim _{T \rightarrow \infty} \frac{1}{(2 T)^{2}} \int_{-T}^{T} \int_{-T}^{T} \bar{g}(b, c) f(b, c) d b d c$

$$
\left\langle e^{i \lambda b}, e^{i \lambda^{\prime} b}\right\rangle=\lim _{T \rightarrow \infty} \frac{1}{(2 T)^{2}} \int_{-T}^{T} \int_{-T}^{T} e^{i\left(\lambda^{\prime}-\lambda\right) b} d b d c=\delta_{\lambda, \lambda^{\prime}}
$$

$|\lambda, \mu\rangle=e^{i \lambda b+i \mu c}, \forall \lambda, \mu \in \mathbb{R}^{2}$ forms the orthonormal basis of the Hilbert space. Our Hilbert space has uncountably many basis vectors. Non- separable Hilbert space.
$\lim _{\lambda_{o} \rightarrow 0}\langle\lambda, \mu| \frac{\widehat{e^{i \lambda_{o} b}}-1}{\lambda_{o}}|\lambda, \mu\rangle=\lim _{\lambda_{o} \rightarrow 0} \frac{-1}{\lambda_{o}}=\infty$, implies $\hat{b}:=\lim _{\lambda_{o} \rightarrow 0} \frac{\widehat{e^{i \lambda b}}-1}{\lambda_{o}}$ is not well-defined. The same for \hat{c}
Question: How can we promote $H=-\frac{1}{2 G \gamma^{2} p_{b} \sqrt{p_{c}}}\left(\gamma^{2} p_{b}^{2}+p_{b}^{2} b^{2}+2 b c p_{b} p_{c}\right)$ to an operator?

Loop quantum Schwarzschild BH: interior as an example

$\lim _{\lambda_{o} \rightarrow 0}\langle\lambda, \mu| \frac{\widehat{e^{i \lambda_{o} b}}-1}{\lambda_{o}}|\lambda, \mu\rangle=\lim _{\lambda_{o} \rightarrow 0} \frac{-1}{\lambda_{o}}=\infty$, implies $\hat{b}:=\lim _{\lambda_{o} \rightarrow o} \frac{\widehat{e^{i \lambda b}}-1}{\lambda_{o}}$ is not well-defined. The same for \hat{c}
Question: How can we promote $H=-\frac{1}{2 G \gamma^{2} p_{b} \sqrt{p_{c}}}\left(\gamma^{2} p_{b}^{2}+p_{b}^{2} b^{2}+2 b c p_{b} p_{c}\right)$ to an operator?
We need to do regularization for H. Inspired by the full LQG, the regularization will replace $b, c \rightarrow \frac{\sin (\lambda b)}{\lambda}, \frac{\sin (\mu c)}{\mu}$
Consequently, $\hat{b}\left|\lambda_{o}\right\rangle \mapsto \frac{\widehat{\sin (\lambda b)}}{\lambda}\left|\lambda_{o}\right\rangle=\frac{1}{2 \lambda}\left(\left|\lambda_{o}+\lambda\right\rangle-\left|\lambda_{o}-\lambda\right\rangle\right)$

Difference operator is a key point for singularity resolution.

$$
-i \frac{\partial}{\partial t} \psi=\hat{H} \psi, \quad \hat{H}=\sqrt{\hat{p}} \hat{x} \sqrt{\hat{p}}
$$

$(\hat{x} \psi)(p) \rightarrow i(\psi(p+1)-\psi(p-1))$

$$
\hat{x} \psi \rightarrow i \frac{\mathrm{~d}}{\mathrm{~d} p} \psi
$$

[CZ, Lewandowski, Ma 19’]

$$
-i \frac{\partial}{\partial t} \psi=\hat{H} \psi, \quad \hat{H}=\sqrt{\hat{p}} \hat{x} \sqrt{\hat{p}}
$$

$(\hat{x} \psi)(p) \rightarrow i(\psi(p+1)-\psi(p-1))$

[CZ, Lewandowski, Ma 19’]

Loop quantum Schwarzschild BH: interior as an example

Choosing $N=-V=2 G \gamma^{2} p_{b} \sqrt{p_{c}}$, we have $H[V]=2 p_{b} b c p_{c}+p_{b}^{2} b^{2}+\gamma^{2} p_{b}^{2}$
Regularization leads to: $H[V]^{\left.]_{b}, \tilde{\delta}_{c}\right)}=2 p_{b} \frac{\sin \left(\tilde{\delta}_{b} b\right)}{\tilde{\delta}_{b}} p_{c} \frac{\sin \left(\tilde{\delta}_{c} c\right)}{\tilde{\delta}_{c}}+p_{b}^{2} \frac{\sin ^{2}\left(\tilde{\delta}_{b} b\right)}{\tilde{\delta}_{b}^{2}}+\gamma^{2} p_{b}^{2}$
Classically, $H[V]=\lim _{\tilde{\delta}_{b}, \tilde{\delta}_{c} \rightarrow 0} H[V]^{\left(\tilde{\delta}_{b}, \tilde{\delta}_{c}\right)}$ but in quantum theory, $\widehat{H[V]}=\lim _{\tilde{\delta}_{b}, \tilde{\delta}_{c} \rightarrow \delta_{b}, \delta_{c}} \widehat{H[V]}\left(\tilde{\delta}_{b}, \tilde{\delta}_{c}\right)$
Question: How to choose the parameters: δ_{b}, δ_{c}
Ambiguities arise due to various choices of δ_{b}, δ_{c} :

- μ_{0}-scheme, constant δ_{b}, δ_{c}; [Boehmer Vanderslhoot 07', Chiou 08']
- $\bar{\mu}$-scheme, δ_{b}, δ_{c} being phase space function; [chiou $\left.08^{3}\right]$
- New scheme, δ_{b}, δ_{c} being function of dynamical trajectories. [Corichi, Singh 16, Ashtekar, Olmedo Singh 18']

$$
\left(p_{b}, p_{c}\right) \text { space }
$$

Labels of the dynamical trajectories

The basic idea:

- δ_{b}, δ_{c} have the physical interpretation of coordinate length of edges,
- the fundamental discreteness prevents the parameter from reaching 0.
- various lengths prevented by the discreteness leads to various schemes.
- μ_{0}-scheme, coordinate length is prevented \Rightarrow constant δ_{b}, δ_{c}; [Boehmer and Vanderslhoot 07', Chiou 08']
- $\bar{\mu}$-scheme, physical length along the trajectory is presented \Rightarrow $\delta_{b}\left(p_{b}, p_{c}\right), \delta_{c}\left(p_{b}, p_{c}\right)$; [Chiou 08']
- New scheme, the physical length at the bounce is not 0 . [Ashtekar, Olmedo Singh 18']

$$
\left(p_{b}, p_{c}\right) \text { space }
$$

Labels of the dynamical trajectories

The basic idea:

- δ_{b}, δ_{c} have the physical interpretation of coordinate length of edges,
- the fundamental discreteness prevents the parameter from reaching 0.
- various lengths prevented by the discreteness leads to various schemes.
- μ_{0}-scheme, coordinate length is prevented \Rightarrow constant δ_{b}, δ_{c}; [Boehmer and VandersIhoot 07', Chiou 08']
- $\bar{\mu}$-scheme, physical length along the trajectory is presented \Rightarrow $\delta_{b}\left(p_{b}, p_{c}\right), \delta_{c}\left(p_{b}, p_{c}\right)$; [Chiou 08]
- New scheme, the physical length at the bounce is not 0. [Ashtekar, Olmedo Singh 18']
(Potential) limitation:
- μ_{0}-scheme: the physical prediction depends on fiducial cell; bounce happens when curvature is small;
- $\bar{\mu}$-scheme: large departures from the classical theory very near the horizon; But the horizon is replace by singularity if matter is involved, then the large quantum correction is appropriate.
- New scheme: one actually needs to extend the phase space to include δ_{b}, δ_{c}.

Loop quantum Schwarzschild BH: interior as an example

Some results:

- Effective dynamics: singularity resolution, BH-WH transition, etc.
[Boehmer Vanderslhoot 07', Chiou 08', Corichi, Singh 16', Ashtekar, Olmedo Singh 18']
- Quantum dynamics: discreteness of BH mass at the dynamical level; [cz, Ma, Song, Zhang 20' \& 21']

Loop quantum Schwarzschild BH: interior as an example

Some results:

- Effective dynamics: singularity resolution, BH-WH transition, etc.
[Boehmer VandersIhoot 07', Chiou 08', Corichi, Singh 16', Ashtekar, Olmedo Singh 18']
- Quantum dynamics: discreteness of BH mass at the dynamical level; [cz, Ma, Song, Zhang 20^{\prime} \& $21^{\prime \prime}$]

Constraint equation: $\widehat{H[V]}=0$:

- We find an operator \hat{m} s.t $[\hat{m}, \widehat{H[V]}]=0$;
- The Hilbert space is expanded by the common eigenstate $|m, h\rangle$;
- m is continuous but h is discrete; the range of h depend on m;
- Only for countably many values $m_{(n)}$, one can obtain $\left|m_{(n)}, h=0\right\rangle$;
- The minimal value $m_{(0)}$ is not vanishing.

Loop quantum Schwarzschild BH: interic

Some results:

- Effective dynamics: singularity resolution, BH-WH transition, etc. [Boehmer Vanderslhoot 07', Chiou 08', Corichi, Singh 16', Ashtekar, Olmedo Singh 18']
- Quantum dynamics: discreteness of BH mass at the dynamical level

Constraint equation: $\widehat{H[V]}=$

- We find an operator \hat{m} s.t [
- The Hilbert space is expan
- m is continuous but h is $\mathbf{d} \varepsilon^{s}$
- Only for countably many va
- The minimal value $m_{(0)}$ is n

Summary

With the Schwarzschild interior as the example, we introduce:

- Canonical quantization of a BH model
- Loop quantization
- Some recent results from LQGBH

End of the First Lecture

Introduction to Loop Quantum Black Hole Models

Cong Zhang

Friedrich-Alexander-Universität Erlangen-Nürnberg

Review of the issue in the previous lecture

Choosing $N=-V=2 G \gamma^{2} p_{b} \sqrt{p_{c}}$, we have $H[V]=2 p_{b} b c p_{c}+p_{b}^{2} b^{2}+\gamma^{2} p_{b}^{2}$
Regularization leads to: $H[V]^{\left.]_{b}, \tilde{\delta}_{c}\right)}=2 p_{b} \frac{\sin \left(\tilde{\delta}_{b} b\right)}{\tilde{\delta}_{b}} p_{c} \frac{\sin \left(\tilde{\delta}_{c} c\right)}{\tilde{\delta}_{c}}+p_{b}^{2} \frac{\sin ^{2}\left(\tilde{\delta}_{b} b\right)}{\tilde{\delta}_{b}^{2}}+\gamma^{2} p_{b}^{2}$
Classically, $H[V]=\lim _{\tilde{\delta}_{b}, \tilde{\delta}_{c} \rightarrow 0} H[V]^{\left(\tilde{\delta}_{b}, \tilde{\delta}_{c}\right)}$ but in quantum theory, $\widehat{H[V]}=\lim _{\tilde{\delta}_{b}, \tilde{c}_{c} \rightarrow \delta_{b}, \delta_{c}} \widehat{H[V]}\left(\tilde{\delta}_{b}, \tilde{\delta}_{c}\right)$
Question: How to choose the parameters: δ_{b}, δ_{c}
Ambiguities arise due to various choices of δ_{b}, δ_{c} :

- μ_{0}-scheme, constant δ_{b}, δ_{c}; [Boehmer Vanderslhoot 07', Chiou 08']
- $\bar{\mu}$-scheme, δ_{b}, δ_{c} being phase space function; [chiou 08]
- New scheme, δ_{b}, δ_{c} being function of dynamical trajectories. [Corichi, Singh 16, Ashtekar, Olmedo Singh 18']

Outline

A. Introduction of a Loop Quantum BH Model: Schw. interior as an example - Canonical quantization of BH
-What is loop quantization
-Some results

B. Some recent results in LQGBH

-Spherical symmetry model
-Quantum Oppenheimer-Snyder model
-QG effects on BH image, et al

Loop quantum Schwarzschild BH: spherically symmetric model

Spherically symmetric Model

- $\mathbb{R} \times \mathrm{S}^{2}$ with symmetry $\mathrm{SO}(3): \mathrm{d} s^{2}=-N^{2} \mathrm{~d} t^{2}+\frac{\left(E^{2}\right)^{2}}{E^{1}}\left(\mathrm{~d} x+N^{x} \mathrm{~d} t\right)^{2}+E^{1} \mathrm{~d} \Omega^{2} ;$
- Quantization: promote $E^{1}(x)$ and $E^{2}(x)$ to operators acting on a Hilbert space.

Loops quantization: choose the polymer Hilbert space as the home of the operators.

Loop quantum Schwarzschild BH: spherically symmetric model

Spherically symmetric Model

In the classical theory, we have the constraints algebra $H_{x}\left[N^{x}\right]+H[N]$ with:

$$
\begin{aligned}
H_{x}(x)= & \frac{1}{2 G}\left(2 E^{2}(x) \partial_{x} K_{2}(x)-K_{1}(x) \partial_{x} E^{1}(x)\right) \\
H(x)= & -\frac{1}{2 G} \frac{1}{\sqrt{\left|E^{1}(x)\right|}\left|E^{2}(x)\right|}\left\{\left[E^{2}(x)\right]^{2}+\left[K_{2}(x) E^{2}(x)\right]^{2}+2 K_{1}(x) E^{1}(x) K_{2}(x) E^{2}(x)-\right. \\
& \left.\frac{1}{4}\left[\partial_{x} E^{1}(x)\right]^{2}-E^{1}(x) E^{2}(x) \partial_{x}\left[\frac{\partial_{x} E^{1}(x)}{E^{2}(x)}\right]\right\}
\end{aligned}
$$

Loop quantum Schwarzschild BH: spherically symmetric model

Spherically symmetric Model

$\mathrm{d} s^{2}=-N^{2} \mathrm{~d} t^{2}+\frac{\left(E^{2}\right)^{2}}{E^{1}}\left(\mathrm{~d} x+N^{x} \mathrm{~d} t\right)^{2}+E^{1} \mathrm{~d} \Omega^{2}$

In the classical theory, we have the constraints algebra $H_{x}\left[N^{x}\right]+H[N]$ with:

$$
\begin{aligned}
H_{x}(x)= & \frac{1}{2 G}\left(2 E^{2}(x) \partial_{x} K_{2}(x)-K_{1}(x) \partial_{x} E^{1}(x)\right) \\
H(x)= & -\frac{1}{2 G} \frac{1}{\sqrt{\left|E^{1}(x)\right|}\left|E^{2}(x)\right|}\left\{\left[E^{2}(x)\right]^{2}+\left[K_{2}(x) E^{2}(x)\right]^{2}+2 K_{1}(x) E^{1}(x) K_{2}(x) E^{2}(x)-\right. \\
& \left.\frac{1}{4}\left[\partial_{x} E^{1}(x)\right]^{2}-E^{1}(x) E^{2}(x) \partial_{x}\left[\frac{\partial_{x} E^{1}(x)}{E^{2}(x)}\right]\right\}
\end{aligned}
$$

We can do loop regularization for:

1) $H(x)$ itself [Han, Liu 20', $\mathrm{Cz} 21^{1}$]
2) $H(x)+N_{o}(x) H_{x}(x)$ [Gambini, Olmedo, Pullin 14' \& 20]

Or another approach:
3) Choose $E^{1}(x)=x^{2}$ as the gauge solving the diff. constraint $H_{x}(x)=0$ to get $H[N]=-\frac{1}{2 G} \int d x \frac{N(x)}{\left|x E^{2}(x)\right|}\left\{\left[E^{2}(x)\right]^{2} \partial_{x}\left(x\left[K_{2}(x)\right]^{2}+x-\frac{x^{3}}{\left[E^{2}(x)\right]^{2}}\right)\right\}$.
Do loop regularization for this Gauge fixed Hamiltonian [Kelly, Santacruz, Wilson-Ewing 20'\&22']

Loop quantum Schwarzschild BH: spherically symmetric model

Spherically symmetric Model

$$
\mathrm{d} s^{2}=-N^{2} \mathrm{~d} t^{2}+\frac{\left(E^{2}\right)^{2}}{E^{1}}\left(\mathrm{~d} x+N^{x} \mathrm{~d} t\right)^{2}+E^{1} \mathrm{~d} \Omega^{2}
$$

In the classical theory, we have the constraints algebra $H_{x}\left[N^{x}\right]+H[N]$ with:

$$
\begin{aligned}
H_{x}(x)= & \frac{1}{2 G}\left(2 E^{2}(x) \partial_{x} K_{2}(x)-K_{1}(x) \partial_{x} E^{1}(x)\right) \\
H(x)= & -\frac{1}{2 G} \frac{1}{\sqrt{\left|E^{1}(x)\right|}\left|E^{2}(x)\right|}\left\{\left[E^{2}(x)\right]^{2}+\left[K_{2}(x) E^{2}(x)\right]^{2}+2 K_{1}(x) E^{1}(x) K_{2}(x) E^{2}(x)-\right. \\
& \left.\frac{1}{4}\left[\partial_{x} E^{1}(x)\right]^{2}-E^{1}(x) E^{2}(x) \partial_{x}\left[\frac{\partial_{x} E^{1}(x)}{E^{2}(x)}\right]\right\}
\end{aligned}
$$

We can do loop regularization for:

1) $H(x)$ itself [Han, Liu $\left.20^{\prime}, \mathrm{CZ} 21^{\prime}\right]$
2) $H(x)+N_{o}(x) H_{x}(x)$ [Gambini, Olmedo, Pullin 14' \& 20]

Or another approach:
3) Choose $E^{1}(x)=x^{2}$ as the gauge solving the diff. constraint $H_{x}(x)=0$ to get $H[N]=-\frac{1}{2 G} \int d x \frac{N(x)}{\left|x E^{2}(x)\right|}\left\{\left[E^{2}(x)\right]^{2} \partial_{x}\left(x\left[K_{2}(x)\right]^{2}+x-\frac{x^{3}}{\left[E^{2}(x)\right]^{2}}\right)\right\}$.
Do loop regularization for this Gauge fixed Hamiltonian [Kelly, Santacruz, Wilson-Ewing 20'\&22']

Use the loop regularized Hamiltonian to solve the classical Hamilton equation. See [Giesel, Liu et. al. $\left.{ }^{23}{ }^{\prime}\right]$ for mimetic gravity version of the approach 3).

Oppenheimer-Snyder model

Oppenheimer-Snyder model

Some facts:

- The dust ball takes the metric $d s^{2}=-d \tau^{2}+a(\tau)^{2} d s_{E}^{2}$;
- $a(\tau)$ is governed by: $\mathbb{M}^{2}=\frac{8 \pi G}{3} \rho$ and $\partial_{\tau}\left(\rho a^{3}\right)=0$;
- The Schwarzschild outside is the unique spherically symmetric and stationary metric that can be glued to the dust ball metric by the junction condition. This is the result without necessary to consider the EOM.

Oppenheimer-Snyder model

Some facts:

- The dust ball takes the metric $d s^{2}=-d \tau^{2}+a(\tau)^{2} d s_{E}^{2}$;
- $a(\tau)$ is governed by: $\mathbb{M}^{2}=\frac{8 \pi G}{3} \rho$ and $\partial_{\tau}\left(\rho a^{3}\right)=0$;
- The Schwarzschild outside is the unique spherically symmetric and stationary metric that can be glued to the dust ball metric by the junction condition. This is the result without necessary to consider the EOM.

What will happen if the dust ball is a LQC one?

Quantum Oppenheimer-Snyder model

Quantum Oppenheimer-Snyder model

Quantum Oppenheimer-Snyder model

Quantum Oppenheimer-Snyder model

- The outside metric is uniquely determined by the modified Friedemann equation [see Luca Cafaro, Jerzy

Lewandowski 24 ' and Luca's talk]

$$
\text { for } \mathbb{H}^{2}=\frac{8 \pi G}{3} \rho X(\rho) \text {, we get } f(r)=g(r)=1-2 G M r^{-1} X\left(3 M /\left(4 \pi r^{3}\right)\right)
$$

- The same metric is obtained by other people from various approaches [e.g., Marto, Tavakoli \& Moniz 15', Kelly, Santacruz \& Wilson-Ewing 20', Bobula \& Powłowski 23', and Giesel, Liu, Rullit, Singh \& Weigl 23']
- The Penrose diagram of the maximally extended spacetime is studied as follows:

Quantum Oppenheimer-Snyder model

$M<M_{\text {min }}$

$M=M_{\text {min }}$

$M>M_{\text {min }}$

Quantum Oppenheimer-Snyder model

$M<M_{\text {min }}$

$M=M_{\text {min }}$

$$
M>M_{\min }
$$

Observational effects of quantum correction

[Yang, CZ, Ma 23']

FIG. 6. The observational appearances of the thin disk near the BHs with the three different profiles. In each row, the first two panels show the emission intensity $I_{\text {em }} / I_{0}$ and observational intensity $I_{\text {obs }} I_{0}$, normalized to the maximum value I_{0}, of a thin disk near the quantum-corrected quantum-corrected BH. The parameters are $R_{s}=2, \gamma=1$ and $\Delta=0.1$.

Observational effects of quantum correction

[CZ, Ma, Yang 23’]

By measuring the position and width of the light rings, we could get the details of the quantum correction.

BH model with spinfoam

While the spacetime offers distinct advantages, it is not without debates:
The existence of Cauchy horizon implies that the spacetime could be unstable under perturbation [Cao, Li et.al. 23' and 24', Shao, Cz, et.al. (2023)].

BH model with spinfoam

- The metric is locally the same as ours except for the B-Region in the new spacetime;
- No Cauchy horizon.

BH model with spinfoam

BH model with spinfoam

What is the dynamics in the B region?

BH model with spinfoam

The dynamics of B region is governed by the spinfoam model [Carlo's lecture]

The SF amplitude can be numerical calculated with various algorithm [Hongguang's lecture]: Small spin regime: e.g. Soltani, Rovelli \& Martin-Dussaud 21', Donà \& Frisoni 23'.
Large spin regime: Han, Liu \& Qu 23'.

BH model with spinfoam

[Han, Qu \& CZ 24’]

- ∂B is located in the semiclassical region, so that the boundary state can be chosen as the coherent state "labelled" by ($\left(e_{a}^{i}, K_{a}^{i}\right)$ with spread t.
- We consider the amplitude as $t \rightarrow 0$, equivalent as $j \rightarrow \infty$;
- In LQG, $\pm e_{a}^{i}$ are regarded as different states due to the $\mathrm{SU}(2)$ gauge;
- $\pm e_{a}^{i}$ give the same 3-D metric $q_{a b}$;
- The boundary state is proposed as the superposition
$\left(\psi_{\left(e_{-}, K_{-}\right)}+\psi_{\left(-e_{-}, K_{-}\right)}\right) \otimes\left(\psi_{\left(e_{+}, K_{+}\right)}+\psi_{\left(-e_{+}, K_{+}\right)}\right)$
$A=A\left(\psi_{\left(K_{+}, e_{+}\right)} \otimes \psi_{\left(K_{-}, e_{-}\right)}\right)+A\left(\psi_{\left(K_{+},-e_{+}\right)} \otimes \psi_{\left(K_{-}, e_{-}\right)}\right)+A\left(\psi_{\left(K_{+}, e_{+}\right)} \otimes \psi_{\left(K_{-},-e_{-}\right)}\right)+A\left(\psi_{\left(K_{+},-e_{+}\right)} \otimes \psi_{\left(K_{-},-e_{-}\right)}\right)$
- We consider a non-degenerate 2-complex containing 56 vertices in our work;
- The first two terms dominate the amplitude;
- The first two terms imply the transition $\pm e_{-} \rightarrow \pm e_{+}$with $\operatorname{det}\left(e_{+}\right)=-\operatorname{det}\left(e_{-}\right)$;
- Tunneling between opposite orientations accompanying the BH-WH transition;
- The value of the effective action in the amplitude is computed with the results:

$$
S^{(++)}=-0.0458193513442056, S^{(--)}=-0.0458193513442275
$$

where the parameter is chosen as $t=1 / 246.34$, and $G M=2 \times 10^{5} \sqrt{\beta \kappa \hbar}, \quad \beta=\frac{1}{10}$.

Summary

We introduced our works related to the quantum OS model with the results:

$$
\begin{aligned}
& d s^{2}=-f(r) d t^{2}+g(r)^{-1} d r^{2}+r^{2} d \Omega^{2} \\
& f(r)=g(r)=1-\frac{2 G M}{r}+\frac{\alpha G^{2} M^{2}}{r^{4}}
\end{aligned}
$$

The SF dynamics with the complex critical point method

Thank you for your attention !

