

SOFT THEOREMS FOR SIGMA MODELS WITH 2D-3D TARGET SPACE

M. Shifman

William I. Fine Theoretical Physics Institute, University of Minnesota

Karol Kampf, Jiri Novotny, Jaroslav Trnka +MS

64. Cracow School of Theoretical Physics, Zakopane, Tatra Mountains, Poland; , June 15–23, 2024// JUNE 18

Soft theorems: Connecting soft limits of scattering amplitudes and sigma models History: Gell-Mann — Levy (1960) ↔ Adler (1965)

The simplest case: spontaneous symmetry breaking $G \rightarrow H$, sigma model for Goldstones has coset target space G/H Currents generating spontaneously broken symmetries are coupled to Goldstones, but are conserved Example : (GML), SU(2) chiral symmetry in $(QCD) \leftarrow SU(2)/SU(2)$; Three axial currents are coupled to pions and conserved as operators $\partial^{\mu} \mathscr{A}_{\mu}^{i} = 0$ Adler consistency condition // Adler zero

Drastic changes the last decade or so

1. How to establish soft theorems if your target space is NOT a coset? (I.e. massless scalar particles are not necessarily Goldstones!)

2. Can one incorporate symmetries of sigma models directly into S-matrix?

3. Some sigma models can be understood as consequence of a "generalized Adler zero" emerging in "exceptional" sigma Born-Infeld (DBI) theory, and the so-called special Galileon.

 Cheung, K. Kampf, J. Novotny and J. Trnka (2015) Generalized Adler zero: $M(q) = O(q^{\sigma})$,

Dirac-Born-Infeld action:
$$\mathscr{L} = -b^2 \sqrt{-\det\left(\eta + \frac{F}{b}\right)} + b^2$$

 η is the Minkowski metric, F is the Faraday tensor

models (whose leading interactions are uniquely fixed by a single coupling constant), namely, nonlinear sigma models, of the type CP(1), the Dirac-

Galileon is a scalar field whose action is invariant under Galilean transformations, e.g.

$$\mathrm{Gal}_3^1 \to \partial_\mu \pi \partial^\mu \pi (\partial^2) \pi - \partial_\mu \pi \partial^\mu \partial^\nu \pi \partial_\nu \pi$$

Variety of Soft Recursion Relations: What particular sigma models will be considered?

Model 1: U(1) fibration of CP(1) \sim O(3):

Model 2: U(1) Lie-algebraic generalization of $CP(1) \sim O(3)$:

Nearest-neighbors isotropic interaction

$$\mathscr{H} \to \mathscr{L}_{\text{Euclid}} = \frac{1}{2g^2} \partial_{\mu} \mathbf{S} \partial_{\mu} \mathbf{S} \to G \partial_{\mu} \phi^{\dagger} \partial_{\mu} \phi = \frac{1}{2g^2} \frac{1}{(1 + \phi^{\dagger} \phi)^2} \partial_{\mu} \phi^{\dagger} \partial_{\mu} \phi$$

3D target space

of CP(1) \sim O(3): 2D target space

Spontaneously broken currents are crucial! If not ALL massless particles are Goldstone (T \neq coset), then Adler zeros \rightarrow Recursions Typically,

To avoid Adler zero and arrive at recursions, generically, both even- and oddparticle amplitudes \neq 0. Some other necessary conditions apply, e.q. linear terms in nonlinearly realized sim transformations

Cheung review + Cheung, K. Kampf, J. Novotny and J. Trnka (2015)

Adler Zeroes: if T= coset G/H, e.g. CP(1) or PCM. (Modulo some nuances)

 $p_2 \qquad p = p_1 + p_2 \rightarrow \text{ pole singularity}$

Noncollinear magnetic phenomena in correlated electron systems in cont. limit are described by a sigma model on target space with a geometry that interpolates between 2D sphere S_2 and 3D sphere S_3

Gell-Mann-Levy representation for three pions

 $\mathscr{H} = \frac{1}{2g^2} \int dx \left\{ \begin{array}{c} \sum \\ a = 1, \end{array} \right\}$

 $J_{\mu} = -iU^{\dagger}\partial_{\mu}U \equiv \sum_{\alpha}$

If $\kappa = 1$, then CP^1 model

Target = 2D sphere Coset SU(2)/U(1) and sl(2)

$$\sum_{\substack{1,2,3}} J^a_{\mu} J^a_{\mu} - \kappa J^3_{\mu} J^3_{\mu} \bigg\}, \qquad U(x) \in SU(0)$$
$$0 \le \kappa \le 1$$
$$2 J^a_{\mu} T^a, \quad J^a_{\mu} = \operatorname{Tr} \left(J_{\mu} T^a \right), \quad U^{\dagger} U = 1$$

If $\kappa = 0$, then U(1) Principal Chiral Model GML Target = 3D sphere Coset $SU(2) \times SU(2) / SU(2)$

If $0 < \kappa < 1$, then U(1) fibtration over CP^{\perp}

Adler Zeroes \rightarrow Soft Recursion Relations

 $\left[SU(N)/(SU(N-1) \times U(1))\right] \times U(1) \sim SU(N)/SU(N-1) \longrightarrow dim= 2N-1$

For generic k cubic vertices are present

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi_{I} \partial^{\mu} \phi_{I} + \frac{1}{2} K_{IJK} \partial_{\mu} \phi_{I} \partial^{\mu} \phi_{J} \phi_{K} + \mathcal{O}(\phi^{4})$$
$$N_{\mu}^{J} = \sum_{I=1}^{N} F_{I}^{J} \partial_{\mu} \phi_{I} + \sum_{L,K=1}^{N} \mathcal{K}_{LK}^{J} \phi_{K} \partial_{\mu} \phi_{L} + \mathcal{O}(\phi^{3})$$
$$\lim_{p \to 0} \sum_{I=1}^{N} F_{I}^{J} A_{n}(\alpha + \phi_{I}(p), \beta) = \sum_{I \in \alpha \cup \beta} \sum_{K=1}^{N} \mathcal{C}_{IK}^{J} A_{n-1}^{K,I}(\alpha, \beta).$$

In the soft limit $p \rightarrow 0$ n-leg amplitude through a sum of (n-1) amplitudes 😽

[su(2)/u(1)]xu(1) SU(2) Example (Soft Recursion Relations)

3 massless ϕ^+, ϕ^-, χ Verify 5-leg ampl vs.sum of 4-leg ampl GENERAL [SU(N)/(SU(N-1)×U(1))] × U(1)

[SU(2)/U(1)]XU(1)

$$A_4(\phi_1^+, \phi_2^+, \phi_3^-, \phi_4^-) = \frac{1}{4F^4} (3F_0^2 - 8F^2) s_{12} ,$$
$$A_4(\phi_1^+, \phi_2^-, \chi_3, \chi_4) = \frac{F_0^2}{4F^4} s_{12} ,$$

$$A_5(\phi_1^+, \phi_2^+, \phi_3^-, \phi_4^-, \chi_5) = \frac{\mathrm{i}F_0}{F^6} \Big(F^2 - \frac{F_0^2}{2} \Big) (s_{12} - s_{34}).$$

The soft theorem for $p_1 \to 0$ predicts,

$$\lim_{p_1 \to 0} A_5 = \frac{\mathrm{i}F_0}{2F^2} A_4(\phi_5^+, \phi_2^+, \phi_3^-, \phi_4^-) - \frac{\mathrm{i}F_0}{2F^2} \left[A_4(\phi_2^+, \phi_3^-, \chi_4, \chi_5) + A_4(\phi_2^+, \phi_4^-, \chi_3, \chi_5) \right] = -\frac{\mathrm{i}F_0}{F^6} \left(F^2 - \frac{F_0^2}{2} \right) s_{34} ,$$

$$F_0 = \frac{1}{g}\sqrt{1-\kappa}, \quad F = \frac{1}{\sqrt{2g}}, \quad s_{ij} = (p_i + p_j)^2$$

Praszałowicz-Fest

- Michal was instrumental in many developments in the Skyrmion theory which were mentioned in Larry McLerran presentation
- A few remarks after Larry McLerran: today's advances in Skyrmions and related theories

$$\begin{bmatrix} J_{\mu}^{a} J_{\mu}^{a} \\ J_{\mu}^{a} J_{\mu}^{a} \end{bmatrix} - \kappa J_{\mu}^{3} J_{\mu}^{3}$$
, 2,3

Limit $\kappa \sim 1$ reduces to a frustrated magnetic system earlier considered by Sutcliffe as a host to Hopfions; Limit $\kappa \sim 0$ is similar to the 3D Skyrme model.

$$(a) \quad \mathbf{K} = 0 \qquad (b$$

(a) Position curve of a Q=7 Skyrmion at $\kappa = 0$; (b) For positive relatively small κ this settles to a three loop configuration; The three-loop solution may be tracked for increasing κ , but it develops an instability at κ = 0.77 and settles to a distinct buckled loop configuration

Carlos Naya, Daniel Schubring, Mikhail Shifman, Zhentao Wang, 2022

(c) K = 0.77b) K = 0.5Hopfion

Conclusions

Dynamics of Goldstone massless particles for target spaces of SU(N)/SU(N-1) i.e. U(1) fibrations of CP^{N-1} :

Special Recursions. Lagrangian can be uniquely fixed if we start from these recursions.

Skymion and Hopfion topological numbers are related; There is a continuous path in κ leading from one to another