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Problem Statement:

Question: Does quantum complexity capture information about the underlying
cosmological spacetime?

OR
Is quantum complexity sensitive to the presence of cosmological horizons– de
Sitter horizon in this case?

Yes.

based on S.Chowdhury, M. Bojowald and J. Mielczarek “Upper bound on
quantum complexity of time dependent oscillators”- ongoing.
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Introduction
Complexity quantifies the difficulty of performing a certain task (here task≡
constructing an unitary operator).
Complexity ≡ minimal number of elementary operations required to complete
the task.
Quantum circuit picture: Minimum number of universal gates {gi} required
in the circuit that constructs the desired unitary U as a product of gi’s:

U = gngn−1....g2g1I (1)

Requires finding the optimal circuit, which is a very challenging task.
Geometrizing quantum complexity:

Idea proposed by Nielsen and his collaborators in [Science 311 no. 5764,(
2006), Quant.Inf.Comput. 6 (2006) 3, 213-262,Quant.Inf.Comput. 8 (2008)].
The problem of determining complexity of a unitary operation is related to the
problem of finding minimal length geodesics on the unitary manifold.
Optimal circuit ≡ minimal geodesic on the unitary group manifold connecting
I to U .
complexity ≡ length of the minimal geodesic.
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General recipe to geometrically compute complexity:
Given a target unitary operator Utarget, identify a set of fundamental
operators (OI) that form a closed commutator algebra and hence specify a
Lie group.
After identifying the OI ’s, classify them as “easy” or “hard”.
To define the geometry, consider a metric (GIJ ) that accurately penalizes the
directions along the hard operators such that moving in their direction is
discouraged for geodesics in the Lie group.
To determine the geodesics on the Lie groups equipped with GIJ , solve the
Euler-Arnold equation: [V. Arnold, Ann. Inst. Fourier 16 (1966) 319]

GIJ
dV J(s)

ds
= fK

IJV
J(s)GKLV

L(s), (2)

where fK
IJ are the structure constants of the Lie algebra, defined by

[OI ,OJ ] = ifK
IJOK . (3)

Given a solution V I(s), the trajectory in the group is given by

U(s) = P exp
(
− i

∫ s

0

ds′ V I(s′)OI

)
(4)
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The path ordered exponential is usually approached by using an iterative
approach. The result gives as a Dyson series

U(s) = I− i

∫ s

0

V I(s′)OIds
′ + (−i)2

∫ s

0

V I(s′)OIds
′
∫ s′

0

V J(s′′)OJds
′′ + · · ·

(5)

We will keep only the leading-order term in the Dyson series. Approximating
the Dyson series implies deviations of the trajectory to the target unitary
from the geodsic. The result is a distance greater than the geodesic length.
Instead of getting the actual value we get an upper bound on the complexity.
Finally we impose the boundary conditions:

U(s = 0) = I and U(s = 1) = Utarget (6)

to filter out the geodesics that realize the target unitary operator.
The complexity of the target unitary operator is given by:

C[Utarget] := min{V I(s)}

∫ 1

0

ds
√
GIJV I(s)V J(s), (7)

where the minimization is over all solutions {V I(s)} of the Euler–Arnold
equation.
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Desired target unitary
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Time dependent oscillator
The Hamiltonian of an oscillator with time-dependent frequency can be
written as:

H(t) =
p2

2
+

1

2
ω2(t)q2, (8)

The canonically conjugated variables q and p can be promoted to operators

q(t) = f(t)a0 + f∗(t)a†0, p(t) = g(t)a0 + g∗(t)a†0 . (9)

where a0 and a†0 are the annihilation and creation operators defined at some
initial time t0 and g(t) = ḟ(t). The mode function f(t) satisfies the following
equation:

f̈(t) + ω2(t)f(t) = 0. (10)

The time evolution of the creation and the annihilation operator gives us the
system’s time evolution. The annihilation and the creation operator at any
time t can be written as:

a(t) = α∗(t)a0 − β∗(t)a†0 , a†(t) = −β(t)a0 + α(t)a†0, (11)

where α, β ∈ C, are the so-called Bogoliubov coefficients.
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The Bogoliubov coefficients can be expressed in terms of the mode function
as:

α = −i(f̃g∗ − f∗g̃), β = i(f̃g − fg̃), (12)

where f and f̃ are the mode functions in two different regimes.
The Bogoliubov coefficients also satisfy the normalization condition:

|α|2 − |β|2 = 1, (13)

which allows the Bogoliubov coefficients to be parametrized hyperbolically as:

α(t) = e−iθ(t) cosh(r(t)), β(t) = e−i(ϕ(t)−θ(t)) sinh(r(t)). (14)

Using this parametrization, (11) can be written as:

a(t) = eiθ(t) cosh(r(t))a0 − ei(ϕ(t)−θ(t) sinh(r(t))a†0, (15)
a†(t) = e−iθ(t) cosh(r(t))a0 − e−i(ϕ(t)−θ(t)) sinh(r(t))a†0. (16)
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Desired target unitary
The above equation can be simply represented as a unitary transformation,

a(t) = U†(t)a(t0)U(t) (17)

In order for the above transformation to hold, U(t) needs to be of the
following form

U = S(r(t), ϕ(t))R(θ(t)), (18)

where S(r, ϕ) and R(θ) are popularly known as the squeezing and the
rotation operator and are expressed as

S(ξ(t)) = exp
(
1

2
(ξ∗(t)a2 − ξ(t)a†2)

)
, R(θ(t)) = exp

(
iθ(t)

a†a+ aa†

2

)
.

(19)

where ξ(t) = r(t)eiϕ(t).
Therefore, the target unitary operator in this case is the product of the
unitary operators S and R:

Utarget = S(r(t), ϕ(t))R(θ(t)). (20)

Satyaki Chowdhury Geometric quantum complexity as a probe of de Sitter horizon June 16, 2024 11 / 21



Geometric complexity of the target unitary
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Complexity of the target unitary
We need a set of Hermitian operators (OI) that can be used to build Utarget
and is closed with respect to taking commutators. For our Utarget,

O1 =
a2 + a†2

4
, O2 =

i(a2 − a†2)

4
, O3 =

aa† + a†a

4
, (21)

satisfy the commutation relations

[O1,O2] = −iO3, [O1,O3] = −iO2, [O2,O3] = iO1 , (22)

forming the su(1, 1) Lie algebra.
In terms of these OI , the target unitary operator in terms of the generators
can be written as:

Utarget = exp
(
− 2ir(t)(sin(ϕ(t))O1 + cos(ϕ(t))O2)

)
exp(2iθ(t)O3). (23)

With the choice GIJ = δIJ , the Euler–Arnold equations can be written for
individual components of the tangent vector as

dV 1

ds
= −2V 2V 3,

dV 2

ds
= 2V 1V 3,

dV 3

ds
= 0. (24)
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The general solutions to Eq. (24) are

V 1(s) = v1 cos(2v3s)− v2 sin(2v3s), (25)
V 2(s) = v1 sin(2v3s) + v2 cos(2v3s), (26)
V 3(s) = v3 (27)

with integration constants vi, i = 1, 2, 3, determined by the condition that
the target unitary is reached in the group manifold at s = 1.
The complexity of the target unitary operator C[Utarget] =

√
v21 + v22 + v23

The final step involves deriving the vI ’s from the boundary condition.
U(s = 1) = Utarget = exp(−2ir(t)(sin(ϕ(t))O1 + cos(ϕ(t))O2) exp(2iθ(t)O3).

Apply BCH formula to express the product as a single exponential.

eXeY = eZ (28)

where, Z = X + Y + 1
2 [X,Y ] + 1

12 [X, [X,Y ]]− 1
12 [Y, [X,Y ]] + · · ·
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We will focus on Z = X + Y and Z = X + Y + 1
2 [X,Y ].

Warning: Neglecting the nested commutator terms in the BCH formula
changes the target unitary operator.

Utarget = eXeY , U
(1)
target ≈ eX+Y , U

(2)
target ≈ eX+Y+ 1

2 [X,Y ] (29)

An approximation in the BCH formula places the final operator closer to the
identity than desired and therefore under-estimates the distance. It implies
that the curves we consider do not reach the exact target unitary we are
interested in.
Interpret the result as approximate upper bound.
The boundary condition U(s = 1) = U

(1)
target gives

v3 = −2θ(t), (30)
v1 = −4θ(t)r(t) csc(2θ(t)) sin(2θ(t)− ϕ(t)), (31)
v2 = 4θ(t)r(t) csc(2θ(t)) cos(2θ(t)− ϕ(t)). (32)

The upper bound on the complexity of U (1)
target is therefore given by

C[U
(1)
target] ≲ 2

√
θ(t)2(1 + 4 r(t)2 csc2(2θ(t))). (33)
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More generally, the upper bound can be written in terms of the Bogoliubov
coefficients by realizing that the parameters r, θ, and ϕ can be parameterized
by

r = arcsinh|β|, θ = −arg(α), ϕ = −arg(αβ). (34)

This allows us to rewrite the upper bound (33) as

C[U
(1)
target] ≲ 2

√
arg(α(t))2(1 + 4arcsinh2|β(t)| csc2(2arg(α(t)))). (35)

For, U(s = 1) = U
(2)
target, the complexity upper bound becomes

C[U
(2)
target] ≲ 2

√
θ(t)2(1 + 4r(t)2(1 + θ(t)2) csc2(2θ(t))) (36)
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Scalar field on de Sitter background
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Each mode of a free quantum field on a non-static background behaves like a
harmonic oscillator with time-dependent frequency.
For the massless case the frequency function is given by:

ω2
dS(τ) = k2 − 2

τ2
, τ → conformal time.. (37)

The Bogoliubov coefficients can be obtained using α = −i(f̃g∗ − f∗g̃), and
β = i(f̃g − fg̃), in which f will be the Minkowski mode function and the f̃
will be the de Sitter one, i.e.:

f(τ) =
e−ikτ

√
2k

, f̃(τ) =
e−ikτ

√
2k

(
1− i

kτ

)
. (38)

The Bogoliubov coefficients are:

α(τ) = 1− 1

2k2τ2
− i

kτ
, β(τ) =

e−2ikτ

2k2τ2
, (39)

Complexity:

C[U
(1)
target] ∼ 0 (sub Horizon modes)

∼ ln a (super Horizon modes) (a = scale factor = − 1

Hτ
)
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Summary
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Summary

Quantum complexity of a unitary operator ≡ length of the minimal geodesic
in the unitary group manifold formed by the fundamental operators required
to construct U .
Approximating the Dyson series gives us an upper bound instead of the
actual value of complexity.
When the mode is inside the horizon, the value of complexity is significantly
low.
Complexity increases as the logarithm of the scale factor after the mode exits
the horizon.
An indication that geometric complexity might be used to capture
information about the underlying cosmological spacetime- presence of
cosmological horizons to be precise.
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Thank you!
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