Gravitational Lensing from clusters of galaxies to test disformal coupling theories

Saboura Zamani

Institute of Physics, University of Szczecin, Poland Cracow School of Theoretical Physics 15 - 23 June 2024, Poland The research is funded by the Polish National Science Centre grant

SZCZECIN COSMOLOGY

DARK MATTER

95% of the Energy-Mass budget of the Universe: Dark matter + Dark Energy

- Rotational curve
- Mass tracers (X-rays, Sunyaev—Zeldovich, strong & weak lensing)
- Bullet Cluster
- Cosmic Microwave Background (CMB) anisotropies
- \cdot Large Scale Structure (LSS)

Credits: ESA

Λ CDM: Λ -Cold Dark Matter

· Abundance

 ${\rm DM} \Rightarrow \sim 27\%$ of the universe's total mass-energy budget

• Cold

DM particles should be non-relativistic (cold)

Feebly Interacting

DM is thought to interact via gravity and the weak nuclear force

\cdot Invisible

It does not interact with light

\cdot Distribution

A web-like structure throughout the universe

Einstein-Hilbert Action:

$$S = \int d^4x \sqrt{-g} R + S_{\text{fluid}} \tag{1}$$

Our NMC Action: (D. Bettoni, S. Liberati, 2015, 1502.06613)

$$S = \frac{M_{\rm Pl}^2}{2} \int d^4x \sqrt{-g} \left[R + \boldsymbol{\alpha}_{\rm d} \boldsymbol{\rho}_{\rm DM} \boldsymbol{R}_{\boldsymbol{\mu}\boldsymbol{\nu}} \boldsymbol{u}^{\boldsymbol{\mu}} \boldsymbol{u}^{\boldsymbol{\nu}} \right] + S_{\rm fluid}$$
(2)

Our DM variable couple to the contracted Ricci tensor with the fluid four-vector velocity.

THEORETICAL BACKGROUND: NMC - NEWTONIAN LIMIT

Modified Poisson equation:

$$\nabla^2 \Phi = 4\pi G_N \left[\rho - \epsilon \, L^2 \, \nabla^2 \rho_{\rm DM} \right]$$

The source of gravity is not only density but also on how the matter is distributed.

- + Density $\rho = \rho_{\rm DM} + \rho_{gas}$
- Polarity $\Rightarrow \epsilon = -1$
- Characteristic Length of NMC model $\Rightarrow L \propto \alpha_d$

(3)

GRAVITATIONAL LENSING

Effective lensing potential:

$$\Phi_{\rm lens}(R) = \frac{2}{c^2} \frac{D_{ls}}{D_l D_s} \int_{-\infty}^{+\infty} \Phi(R, z) \, dz \tag{4}$$

$$\kappa(R) = \frac{1}{c^2} \frac{D_{ls} D_l}{D_s} \int_{-\infty}^{+\infty} \Delta_r \Phi(R, z) \, dz \tag{5}$$

GRAVITATIONAL LENSING

$$\kappa(R) = \frac{4\pi G_N}{c^2} \frac{D_{ls} D_l}{D_s} \int_{-\infty}^{+\infty} \left[\rho(R, z) - \epsilon L^2 \Delta_r \rho_{DM}(R, z)\right] dz \qquad (6)$$

•
$$\Delta_r = \frac{2}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial^2 r}$$
 (Spherical coordinates)

CLASH¹ survey programme: 19 clusters (Postman et al. 2011, 1106.3328)

- X-ray \Rightarrow hot gas
- $\cdot\,$ strong and weak gravitational lensing \Rightarrow DM \Rightarrow NFW model

Hot gas = modified β -model (Donahue M. et al. 2015, 1405.7876)

$$\rho_{gas}(r) = \rho_{e,0} \left(\frac{r}{r_0}\right)^{-\alpha} \left[1 + \left(\frac{r}{r_{e,0}}\right)^2\right]^{-3\beta_0/2} + \rho_{e,1} \left[\left(\frac{r}{r_{e,1}}\right)^2\right]^{-3\beta_1/2}$$

 $\{\rho_{e,0}, r_{e,0}, r_{e,1}, r_0, \alpha, \beta_0, \beta_1\}$ fixed by preliminary fit of X-ray data

- Tension between X-ray and lensing data \Rightarrow Not including X-ray data directly in modeling our cluster

¹Cluster Lensing And Supernova survey with Hubble

CLASH¹ survey programme: 19 clusters (Postman et al. 2011, 1106.3328)

- $\cdot \,\, \text{X-ray} \Rightarrow \text{hot gas}$
- strong and weak gravitational lensing \Rightarrow DM \Rightarrow NFW model

DM Model \Rightarrow Navarro-Frenk-White Profile (J. F. Navarro, C. S. Frenk, and S. D. M. White, 1996) $\rho_{\rm NFW}(r) = \frac{\rho_s}{\frac{r}{r_s} \left(1 + \frac{r}{r_s}\right)^2}$ $\rho_s = \frac{\Delta}{3} \frac{c_{\Delta}^3}{\log(1 + c_{\Delta}) - \frac{c_{\Delta}}{1 + c_{\Delta}}} \rho_c, \quad c_{\Delta} = \frac{r_{\Delta}}{r_s}, \quad \Delta = 200$

¹Cluster Lensing And Supernova survey with Hubble

+ χ^2 function

$$\chi^{2} = \left(\boldsymbol{\kappa}^{\text{theo}}(\boldsymbol{\theta}) - \boldsymbol{\kappa}^{\text{obs}}\right) \cdot \mathbf{C}^{-1} \cdot \left(\boldsymbol{\kappa}^{\text{theo}}(\boldsymbol{\theta}) - \boldsymbol{\kappa}^{\text{obs}}\right)$$
(7)

 $\boldsymbol{\theta} = \{c_{200}, M_{200}, L\}$: NMC model parameters

 $\mathbf{C}:$ Covariance error matrix

Bayes Theorem - Deriving the Posterior Distribution using MCMC

$$\mathcal{P}(\boldsymbol{\theta}, \mathcal{M} | D) = \frac{\mathcal{L}(D | \boldsymbol{\theta}, \mathcal{M}) \pi(\boldsymbol{\theta}, \mathcal{M})}{\mathcal{E}(D | \mathcal{M})}$$

• Bayesian Evidence

$$\mathcal{E}(D|\mathcal{M}) = \int d\boldsymbol{\theta} \mathcal{L}(D|\boldsymbol{\theta}, \mathcal{M}) \pi(\boldsymbol{\theta}, \mathcal{M})$$

• Bayesian Evidence

$$\mathcal{E}(D|\mathcal{M}) = \int d\boldsymbol{\theta} \mathcal{L}(D|\boldsymbol{\theta}, \mathcal{M}) \pi(\boldsymbol{\theta}, \mathcal{M})$$

• Bayes Factor

$$\mathcal{B}_j^i = \frac{\mathcal{E}(M_i)}{\mathcal{E}(M_j)}$$

· Jeffrey Scale $\Longrightarrow \mathcal{B}_{j}^{i}$ interpretation

$\log \mathcal{B}_j^i < 1$	Disfavoured
$1 \le \log \mathcal{B}_j^i < 2.5$	Substantial
$2.5 \le \log \mathcal{B}_j^i < 5$	Strong
$\log \mathcal{B}_j^i \ge 5$	Decisive

WHEN MARGINALISATION IS NOT ENOUGH: AN EXAMPLE

- Marginalisation:
 - Simply "reading" the posteriors which are produced as output by the MCMCs.
- Profile distribution:
 - An extension of the profile likelihood
 - It highlights the behavior of the posterior around the maximum of the likelihood. (A. Gómez-Valent, 2022, 2203.16285)

RESULTS: GR VS MODIFIED

Figure 1: Comparison between values of concentration parameter c_{200} in GR and NMC model considering Marg. and PD.

RESULTS: GR VS MODIFIED

Figure 2: Comparison between values of mass *M*₂₀₀ in GR and NMC model considering Marg. and PD.

RESULTS

Figure 3: Comparison of dark matter parameters c_{200} , M_{200} , obtained from GR and from the NMC model considered in this work.

RESULTS

RESULTS: CLOSER LOOK!

RESULTS

$$\Delta M_{200} \equiv \frac{M_{200,\rm NMC} - M_{200,\rm GR}}{M_{200,\rm GR}}$$

	GR MOD (marg.)		MOD (PD)			$\log B_j^i$	$\log S_j^i$			
Cluster	C200	M_{200}	C200	M_{200}	$\log L$	C200	M_{200}	$\log L$		
		$(10^{15}\mathrm{M}_\odot)$		$(10^{15}M_\odot)$	(kpc)		$(10^{15}M_\odot)$	(kpc)		
A383	$6.49\substack{+2.65\\-1.89}$	$0.70\substack{+0.29 \\ -0.22}$	$5.71\substack{+2.41 \\ -1.65}$	$0.74\substack{+0.30 \\ -0.25}$	$1.15^{+0.47}_{-0.49}$	$4.41^{+3.47}_{-3.56}$	$0.60^{+0.37}_{-0.30}$	(0.84, 2.13, 2.50)	$0.005\substack{+0.024\\-0.023}$	$-0.010\substack{+0.035\\-0.038}$
A209	$2.46\substack{+0.69 \\ -0.58}$	$1.57_{-0.39}^{+0.48}$	$1.85\substack{+0.78 \\ -1.13}$	$1.35\substack{+0.57 \\ -0.89}$	$2.24^{+0.90}_{-0.60}$	(0.21, 0.38, 2.35)	(0.005, 0.078, 1.285)	(1.57, 3.42, 3.50)	$0.006^{+0.022}_{-0.022}$	$-0.025\substack{+0.038\\-0.052}$
A2261	$3.93\substack{+1.19\\-0.92}$	$1.98\substack{+0.56 \\ -0.46}$	$2.69^{+1.04}_{-1.33}$	$1.67\substack{+0.71 \\ -0.76}$	$2.31\substack{+0.62\\-0.39}$	(0.65, 0.87, 3.99)	< 1.43	$2.28^{+0.61}_{-0.61}$	$-0.0005\substack{+0.0190\\-0.0202}$	$0.011\substack{+0.034\\-0.037}$
RXJ2129	$6.52^{+2.41}_{-1.83}$	$0.47^{+0.17}_{-0.13}$	$5.37^{+2.17}_{-1.77}$	$0.47^{+0.18}_{-0.15}$	$1.50^{+0.51}_{-0.54}$	$3.97^{+3.36}_{-3.45}$	$0.38^{+0.23}_{-0.21}$	$2.17^{+0.72}_{-0.72}$	$0.014^{+0.022}_{-0.023}$	$0.005\substack{+0.040\\-0.037}$
A611	$4.28\substack{+1.74 \\ -1.24}$	$1.37\substack{+0.51 \\ -0.41}$	$4.00^{+1.55}_{-1.20}$	$1.37\substack{+0.53 \\ -0.41}$	$1.32\substack{+0.53\\-1.34}$	$3.18^{+1.94}_{-1.91}$	$1.19\substack{+0.59\\-0.57}$	(2.18, 2.27, 2.74)	$-0.013^{+0.021}_{-0.022}$	$-0.021\substack{+0.046\\-0.041}$
MS2137	$3.45^{+3.40}_{-1.67}$	$0.96\substack{+0.70 \\ -0.44}$	$3.22^{+2.72}_{-1.45}$	$0.96\substack{+0.64 \\ -0.42}$	$0.50^{+1.21}_{-2.49}$	(0.11, 2.26, 3.89)	$0.96^{+0.59}_{-0.74}$	(1.85, 2.30, 2.43)	$0.057^{+0.021}_{-0.025}$	$0.084^{+0.031}_{-0.043}$
RXJ2248	$4.58^{+2.34}_{-1.67}$	$1.24\substack{+0.60\\-0.42}$	$4.06^{+2.80}_{-1.58}$	$1.28\substack{+0.72 \\ -0.47}$	$-0.17\substack{+1.16 \\ -1.73}$	$3.18^{+3.13}_{-3.10}$	$1.04^{+0.67}_{-0.62}$	(1.97, 2.29, 2.55)	$-0.049^{+0.017}_{-0.025}$	$-0.077^{+0.035}_{-0.044}$
MACSJ1115	$3.01\substack{+1.05 \\ -0.78}$	$1.44\substack{+0.44 \\ -0.38}$	$2.70^{+1.05}_{-0.88}$	$1.36\substack{+0.45 \\ -0.42}$	$1.32^{+1.09}_{-3.06}$	(0.35, 0.41, 3.14)	(0.02, 0.07, 1.44)	(2.73, 3.38, 3.42)	$0.014^{+0.023}_{-0.022}$	$0.008\substack{+0.032\\-0.037}$
MACSJ1931	$4.85^{+3.26}_{-1.93}$	$1.21\substack{+0.79 \\ -0.48}$	$3.55^{+1.86}_{-1.45}$	$1.35\substack{+0.90 \\ -0.54}$	$1.49^{+0.81}_{-2.44}$	(0.11, 3.52, 6.02)	$1.98^{+0.80}_{-0.80}$	(2.09, 2.21, 2.80)	$-0.025^{+0.027}_{-0.020}$	$-0.056\substack{+0.038\\-0.037}$
MACSJ1720	$5.08^{+2.02}_{-1.48}$	$1.06\substack{+0.40 \\ -0.31}$	$2.16\substack{+0.76 \\ -0.57}$	$0.78\substack{+0.43 \\ -0.34}$	$2.56^{+0.19}_{-0.16}$	(0.57, 1.28, 3.77)	(0.02, 0.25, 0.82)	(2.52, 2.92, 3.01)	$0.009^{+0.023}_{-0.022}$	$-0.016\substack{+0.046\\-0.032}$
MACSJ0416	$3.13\substack{+0.90 \\ -0.73}$	$0.91\substack{+0.28 \\ -0.23}$	$3.19^{+1.54}_{-0.82}$	$0.84^{+0.27}_{-0.26}$	$-1.89\substack{+1.47 \\ -3.43}$	(0.26, 0.29, 3.03)	$\left(0.010, 0.014, 0.850\right)$	(3.06, 3.42, 3.44)	$-0.075^{+0.026}_{-0.022}$	$-0.143\substack{+0.046\\-0.037}$
MACSJ0429	$5.77^{+2.75}_{-1.85}$	$0.71_{-0.23}^{+0.31}$	$2.09\substack{+0.80\\-0.55}$	$0.50\substack{+0.36 \\ -0.24}$	$2.56^{+0.15}_{-0.21}$	(0.28, 2.17, 3.82)	(0.002, 0.319, 0.752)	(2.58, 2.59, 2.96)	$-0.083^{+0.020}_{-0.025}$	$-0.154\substack{+0.038\\-0.046}$
MACSJ1206	$4.77^{+2.01}_{-1.43}$	$1.28\substack{+0.43 \\ -0.34}$	$4.48^{+1.98}_{-1.51}$	$1.27\substack{+0.43 \\ -0.35}$	$0.63^{+1.16}_{-1.23}$	$3.10^{+2.47}_{-2.51}$	$1.08^{+0.49}_{-0.53}$	(2.26, 2.32, 2.79)	$0.004^{+0.020}_{-0.022}$	$-0.0004\substack{+0.0355\\-0.0402}$
MACSJ0329	$8.53^{+2.71}_{-2.26}$	$0.66\substack{+0.18 \\ -0.15}$	$7.10^{+2.68}_{-2.52}$	$0.62\substack{+0.20 \\ -0.19}$	$1.29^{+0.82}_{-2.30}$	$0.98\substack{+0.61 \\ -0.83}$	(0.006, 0.035, 0.568)	(2.95, 3.04, 3.18)	$0.009^{+0.020}_{-0.024}$	$0.0004\substack{+0.0374\\-0.0455}$
RXJ1347	$3.16^{+1.14}_{-0.89}$	$2.96\substack{+0.97 \\ -0.80}$	$2.83^{+1.19}_{-0.94}$	$2.82\substack{+0.98 \\ -0.92}$	$1.62^{+0.74}_{-0.53}$	(0.36, 0.87, 3.37)	(0.04, 0.66, 1.40)	(2.79, 3.16, 3.43)	$0.008^{+0.029}_{-0.026}$	$0.005\substack{+0.053\\-0.045}$
MACSJ1149	$2.57\substack{+0.97 \\ -0.73}$	$1.79_{-0.49}^{+0.58}$	$2.21_{-0.72}^{+0.92}$	$1.73_{-0.55}^{+0.62}$	$0.83^{+1.61}_{-0.52}$	(0.37, 0.58, 2.76)	(0.02, 0.27, 1.41)	(2.01, 3.22, 3.23)	$0.033^{+0.023}_{-0.021}$	$0.042^{+0.048}_{-0.029}$
MACSJ0717	$1.79\substack{+0.46 \\ -0.38}$	$2.54\substack{+0.63 \\ -0.55}$	$1.53_{-0.52}^{+0.46}$	$2.40\substack{+0.74 \\ -0.80}$	$1.09^{+1.69}_{-0.94}$	(0.17, 0.20, 1.61)	(0.02, 0.05, 1.24)	$3.62^{+0.71}_{-0.82}$	$0.008^{+0.022}_{-0.017}$	$0.002^{+0.037}_{-0.030}$
MACSJ0647	$4.61\substack{+2.26 \\ -1.54}$	$1.21\substack{+0.47 \\ -0.37}$	$3.94^{+1.91}_{-1.49}$	$1.15\substack{+0.45 \\ -0.36}$	$1.50^{+0.75}_{-0.82}$	$2.86^{+2.57}_{-2.58}$	$1.00\substack{+0.55\\-0.56}$	> 2.46	$0.041^{+0.023}_{-0.020}$	$0.046\substack{+0.038\\-0.034}$
MACSJ0744	$4.58\substack{+2.09 \\ -1.41}$	$1.31\substack{+0.45 \\ -0.36}$	$3.84^{+1.19}_{-1.42}$	$1.45\substack{+0.45 \\ -0.41}$	$1.18^{+0.73}_{-0.87}$	(0.16, 0.22, 4.15)	$\left(0.002, 0.005, 1.267\right)$	(2.97, 3.54, 3.62)	$-0.002^{+0.021}_{-0.023}$	$-0.003\substack{+0.032\\-0.048}$

	(GR	MOD (marg.)			MOD (PD)			$\log \mathcal{B}_j^i$	$\log S_j^i$
Cluster	C200	M_{200}	C200	M_{200}	$\log L$	c200	M_{200}	$\log L$		
		$(10^{15}\mathrm{M}_\odot)$		$(10^{15}M_\odot)$	(kpc)		$(10^{15}M_\odot)$	(kpc)		
A383	$6.49\substack{+2.65\\-1.89}$	$0.70\substack{+0.29 \\ -0.22}$	$5.71^{+2.41}_{-1.65}$	$0.74\substack{+0.30 \\ -0.25}$	$1.15\substack{+0.47 \\ -0.49}$	$4.41^{+3.47}_{-3.56}$	$0.60^{+0.37}_{-0.30}$	(0.84, 2.13, 2.50)	$0.005\substack{+0.024\\-0.023}$	$-0.010\substack{+0.035\\-0.038}$
A209	$2.46\substack{+0.69 \\ -0.58}$	$1.57\substack{+0.48\\-0.39}$	$1.85_{-1.13}^{+0.78}$	$1.35\substack{+0.57 \\ -0.89}$	$2.24_{-0.60}^{+0.90}$	(0.21, 0.38, 2.35)	$\left(0.005, 0.078, 1.285\right)$	(1.57, 3.42, 3.50)	$0.006\substack{+0.022\\-0.022}$	$-0.025^{+0.038}_{-0.052}$
A2261	$3.93\substack{+1.19 \\ -0.92}$	$1.98\substack{+0.56 \\ -0.46}$	$2.69^{+1.04}_{-1.33}$	$1.67\substack{+0.71 \\ -0.76}$	$2.31\substack{+0.62\\-0.39}$	(0.65, 0.87, 3.99)	< 1.43	$2.28^{+0.61}_{-0.61}$	$-0.0005\substack{+0.0190\\-0.0202}$	$0.011^{+0.034}_{-0.037}$
RXJ2129	$6.52^{+2.41}_{-1.83}$	$0.47^{+0.17}_{-0.13}$	$5.37^{+2.17}_{-1.77}$	$0.47\substack{+0.18 \\ -0.15}$	$1.50\substack{+0.51\\-0.54}$	$3.97^{+3.36}_{-3.45}$	$0.38^{+0.23}_{-0.21}$	$2.17^{+0.72}_{-0.72}$	$0.014^{+0.022}_{-0.023}$	$0.005^{+0.040}_{-0.037}$
A611	$4.28\substack{+1.74 \\ -1.24}$	$1.37\substack{+0.51 \\ -0.41}$	$4.00^{+1.55}_{-1.20}$	$1.37\substack{+0.53 \\ -0.41}$	$1.32\substack{+0.53\\-1.34}$	$3.18^{+1.94}_{-1.91}$	$1.19\substack{+0.59\\-0.57}$	$\left(2.18, 2.27, 2.74 ight)$	$-0.013^{+0.021}_{-0.022}$	$-0.021\substack{+0.046\\-0.041}$
MS2137	$3.45^{+3.40}_{-1.67}$	$0.96\substack{+0.70 \\ -0.44}$	$3.22^{+2.72}_{-1.45}$	$0.96\substack{+0.64 \\ -0.42}$	$0.50^{+1.21}_{-2.49}$	(0.11, 2.26, 3.89)	$0.96^{+0.59}_{-0.74}$	(1.85, 2.30, 2.43)	$0.057^{+0.021}_{-0.025}$	$0.084^{+0.031}_{-0.043}$
RXJ2248	$4.58^{+2.34}_{-1.67}$	$1.24\substack{+0.60\\-0.42}$	$4.06^{+2.80}_{-1.58}$	$1.28\substack{+0.72 \\ -0.47}$	$-0.17\substack{+1.16 \\ -1.73}$	$3.18^{+3.13}_{-3.10}$	$1.04^{+0.67}_{-0.62}$	$\left(1.97, 2.29, 2.55\right)$	$-0.049^{+0.017}_{-0.025}$	$-0.077^{+0.035}_{-0.044}$
MACSJ1115	$3.01^{+1.05}_{-0.78}$	$1.44\substack{+0.44 \\ -0.38}$	$2.70^{+1.05}_{-0.88}$	$1.36\substack{+0.45 \\ -0.42}$	$1.32^{+1.09}_{-3.06}$	(0.35, 0.41, 3.14)	(0.02, 0.07, 1.44)	(2.73, 3.38, 3.42)	$0.014^{+0.023}_{-0.022}$	$0.008^{+0.032}_{-0.037}$
MACSJ1931	$4.85\substack{+3.26 \\ -1.93}$	$1.21\substack{+0.79 \\ -0.48}$	$3.55^{+1.86}_{-1.45}$	$1.35\substack{+0.90 \\ -0.54}$	$1.49_{-2.44}^{+0.81}$	(0.11, 3.52, 6.02)	$1.98^{+0.80}_{-0.80}$	$\left(2.09, 2.21, 2.80 ight)$	$-0.025^{+0.027}_{-0.020}$	$-0.056^{+0.038}_{-0.037}$
MACSJ1720	$5.08^{+2.02}_{-1.48}$	$1.06\substack{+0.40 \\ -0.31}$	$2.16\substack{+0.76 \\ -0.57}$	$0.78\substack{+0.43 \\ -0.34}$	$2.56\substack{+0.19\\-0.16}$	(0.57, 1.28, 3.77)	(0.02, 0.25, 0.82)	$\left(2.52, 2.92, 3.01 ight)$	$0.009^{+0.023}_{-0.022}$	$-0.016^{+0.046}_{-0.032}$
MACSJ0416	$3.13\substack{+0.90 \\ -0.73}$	$0.91\substack{+0.28 \\ -0.23}$	$3.19^{+1.54}_{-0.82}$	$0.84\substack{+0.27 \\ -0.26}$	$-1.89\substack{+1.47\\-3.43}$	(0.26, 0.29, 3.03)	$\left(0.010, 0.014, 0.850\right)$	(3.06, 3.42, 3.44)	$-0.075^{+0.026}_{-0.022}$	$-0.143^{+0.046}_{-0.037}$
MACSJ0429	$5.77^{+2.75}_{-1.85}$	$0.71_{-0.23}^{+0.31}$	$2.09\substack{+0.80\\-0.55}$	$0.50\substack{+0.36 \\ -0.24}$	$2.56_{-0.21}^{+0.15}$	(0.28, 2.17, 3.82)	$\left(0.002, 0.319, 0.752\right)$	$\left(2.58, 2.59, 2.96 ight)$	$-0.083^{+0.020}_{-0.025}$	$-0.154^{+0.038}_{-0.046}$
MACSJ1206	$4.77^{+2.01}_{-1.43}$	$1.28\substack{+0.43 \\ -0.34}$	$4.48^{+1.98}_{-1.51}$	$1.27\substack{+0.43 \\ -0.35}$	$0.63^{+1.16}_{-1.23}$	$3.10^{+2.47}_{-2.51}$	$1.08^{+0.49}_{-0.53}$	$\left(2.26, 2.32, 2.79 ight)$	$0.004^{+0.020}_{-0.022}$	$-0.0004\substack{+0.0355\\-0.0402}$
MACSJ0329	$8.53^{+2.71}_{-2.26}$	$0.66\substack{+0.18 \\ -0.15}$	$7.10^{+2.68}_{-2.52}$	$0.62\substack{+0.20 \\ -0.19}$	$1.29^{+0.82}_{-2.30}$	$0.98^{+0.61}_{-0.83}$	$\left(0.006, 0.035, 0.568\right)$	$\left(2.95, 3.04, 3.18 ight)$	$0.009^{+0.020}_{-0.024}$	$0.0004^{+0.0374}_{-0.0455}$
RXJ1347	$3.16^{+1.14}_{-0.89}$	$2.96\substack{+0.97 \\ -0.80}$	$2.83^{+1.19}_{-0.94}$	$2.82\substack{+0.98 \\ -0.92}$	$1.62\substack{+0.74\\-0.53}$	(0.36, 0.87, 3.37)	(0.04, 0.66, 1.40)	$\left(2.79, 3.16, 3.43 ight)$	$0.008^{+0.029}_{-0.026}$	$0.005^{+0.053}_{-0.045}$
MACSJ1149	$2.57\substack{+0.97 \\ -0.73}$	$1.79_{-0.49}^{+0.58}$	$2.21_{-0.72}^{+0.92}$	$1.73_{-0.55}^{+0.62}$	$0.83^{+1.61}_{-0.52}$	(0.37, 0.58, 2.76)	(0.02, 0.27, 1.41)	$\left(2.01, 3.22, 3.23 ight)$	$0.033^{+0.023}_{-0.021}$	$0.042^{+0.048}_{-0.029}$
MACSJ0717	$1.79\substack{+0.46 \\ -0.38}$	$2.54^{+0.63}_{-0.55}$	$1.53_{-0.52}^{+0.46}$	$2.40\substack{+0.74 \\ -0.80}$	$1.09^{+1.69}_{-0.94}$	(0.17, 0.20, 1.61)	(0.02, 0.05, 1.24)	$3.62^{+0.71}_{-0.82}$	$0.008^{+0.022}_{-0.017}$	$0.002^{+0.037}_{-0.030}$
MACSJ0647	$4.61\substack{+2.26 \\ -1.54}$	$1.21\substack{+0.47 \\ -0.37}$	$3.94^{+1.91}_{-1.49}$	$1.15\substack{+0.45 \\ -0.36}$	$1.50\substack{+0.75\\-0.82}$	$2.86^{+2.57}_{-2.58}$	$1.00\substack{+0.55\\-0.56}$	> 2.46	$0.041^{+0.023}_{-0.020}$	$0.046^{+0.038}_{-0.034}$
MACSJ0744	$4.58\substack{+2.09\\-1.41}$	$1.31\substack{+0.45 \\ -0.36}$	$3.84^{+1.19}_{-1.42}$	$1.45\substack{+0.45 \\ -0.41}$	$1.18\substack{+0.73 \\ -0.87}$	(0.16, 0.22, 4.15)	(0.002, 0.005, 1.267)	$\left(2.97, 3.54, 3.62 ight)$	$-0.002^{+0.021}_{-0.023}$	$-0.003^{+0.032}_{-0.048}$

SUMMARY & CONCLUSION

- Disformally NMC Dark matter
- Modified Poisson equation \Rightarrow depend to gradiant of the density
- CLASH \Rightarrow NFW + Modified β -model
- · Volume effects \Rightarrow Narrow minimum \Rightarrow Marg. + PD

- \cdot Marginal analysis results \Rightarrow more close to GR
- · L $\Rightarrow 0.1$ $10^2 \text{ kpc} \Rightarrow \text{average value} \sim 10 \text{ kpc}$
- + PD: c_{200} , $M_{200} < {\rm GR}$
- Marginalised to $\mathsf{PD} \Rightarrow L \ll r_s$ to $L \sim r_s$

THANK YOU!

THEORETICAL BACKGROUND: NMC - NEWTONIAN LIMIT

Modified Poisson equation:

$$\nabla^2 \Phi = 4\pi G_N \left[\rho - \epsilon \, L^2 \, \nabla^2 \rho_{\rm DM} \right]$$

$$\nabla^2 \Psi_{ij} = 4\pi G \eta_{ij} \left[\rho - \epsilon L^2 \nabla^2 \rho_{\rm DM} \right] \tag{9}$$

(8)

- * $\Phi = \Psi \Rightarrow$ no anisotropic stress
- + Density $\rho = \rho_{\rm DM} + \rho_{gas}$
- Polarity $\Rightarrow \epsilon = -1$
- · characteristic Length of NMC model \Rightarrow L

- + Fritz Zwicky \Rightarrow 1930s Dark Matter
- + 95% of Universe
 - \Rightarrow DE: $\sim 68\%$
 - \Rightarrow DM: $\sim 27\%$

STATISTICS: THE BAYESIAN APPROACH

- Evidence: Highly prior dependent (Nesseris & Bellido 2013, 1210.7652)
- Kullback-Leibler divergence (KL) (Kullback & Leibler 1951)

$$\mathcal{D}_{KL,i} = \int d\boldsymbol{\theta} \, \frac{\mathcal{L}(d|\boldsymbol{\theta}, \mathcal{M}_i)}{\mathcal{E}(d|\mathcal{M}_i)} \log \frac{\mathcal{L}(d|\boldsymbol{\theta}, \mathcal{M}_i)}{\mathcal{E}(d|\mathcal{M}_i)}$$

 $\mathcal{D}_{\mathit{KL},\mathit{i}}$: prior-dependent as $\mathcal{B}_{\mathit{ij}}$

Suspiciousness (Handley & Lemos 2019, 1903.06682, Handley & Lemos 2019, 1902.04029, Joackimi et al. 2021, 2102.09547)

$$\log S_{ij} = \log B_{ij} + D_{KL,i} - D_{KL,j}$$

 $\log S_{ij}$ prior-independent

$\log \mathcal{S}_{ij} < 0$	Tension
$\log \mathcal{S}_{ij} > 0$	Consistency