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Introduction & Motivations

The perturbative expansion of quantum field theories
inevitably leads to the appearance of Feynman diagrams
containing loops which diverge at large k
Example: main contributions to the full scalar propagator of
the Higgs come from the one-loop corrections respectively
given by the Higgs self-interaction, the fermionic loop and the
loop of a Gauge field:
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Introduction & Motivations

Consider the action for scalar theory with interaction g4ϕ
4

S =

∫
d3xdt

(
(∂µϕ)

2 +m2ϕ2 + g4ϕ
4)

Cut-off regularization method by introducing a Λ cutoff →
evaluate the divergent character of tadpole graph (first order):

−iΠs = −i
g4

32π2

(
Λ2 −m2 log

Λ2 +m2

m2

)
G (k0, k⃗) =

1
k2
0−k⃗2−m2

Renormalization procedure through the introduction of counter
terms
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Introduction & Motivations

Smoothen the UV divergences and improve the
renormalizability of a QFT by an enhanced number of space
and time derivatives of the field
Presence of a novel Renormalization Group fixed point known
in condensed matter as Lifshitz points

R. Hornreich, M. Luban, and S. Shtrikman, Phys.Rev.Lett. 35, 1678 (1975).

Especially important in the context of renormalizable
anisotropic gravitational theory → Horava-Lifshitz gravity

P. Horava, Phys. Rev. D 79, 084008 (2009). [arXiv:0901.3775].
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Introduction & Motivations

We divide the coordinates in two groups, x⃗ = (x⃗∥, x⃗⊥) that
respectively belong to a m and d −m dimensional (with
m ≤ d) subspace whose scaling behavior is different.

O(lθx⃗∥, l x⃗⊥) = l−∆OO(x⃗)

with θ different from unity.
Anisotropic scaling law near the ultraviolet fixed point

t = bz t ′, x⃗ = bx⃗ ′

Choice z = 3 dictated by the requirement of maximizing the
powers of momentum in the propagator and maintain the
presence of a Gaussian-Lifshitz point.
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Introduction & Motivations

The upper critical dimension (UCD) du(m) obtained by
[λ4] = 0 → du(m) = 4 + 2m

3 .
The lower critical dimension (LCD) dl(m) obtained by [ϕ] = 0
→ dl(m) = 2 + 2m

3 .
In the region between these two lines of the (m, d) plane we
can find non-trivial Lifshitz points.
d

m

Figure: md plane showing upper and lower critical dimension for z = 3.
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Scalar Fields
The derivative sector of the action:

SD =

∫
d3xdt

{
1
2
(∂tϕ)

2 −
z∑

k=1

3∑
i=1

ak
2M2k−2

(
[∂i ]

k ϕ
)2
}

where z is the anisotropic critical exponent.
The dispersion relation reads:

E 2 = k⃗2

[
a1 + a2

(
k

M

)2

+ a3

(
k

M

)4
]
+ g2M

2

Astrophysical observations pose the energy scale of Lorentz
violating effects above 1010 GeV

J. Ellis, N. Mavromatos, D.V. Nanopoulos, A.S. Sakharov Astron. Astrophys. 402, 409 (2003).

[arXiv:astro-ph/0210124].

Theories that contain more than two time derivatives are
affected by the Ostrogradski instability, associated with
violation of unitarity

R. P. Woodard, Lect. Notes Phys. 720, 403 (2007). [astro-ph/0601672].
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Scalar Fields

The scaling dimension of the field [ϕ]s =
3−z
2

∣∣∣∣
z=3

= 0

determines the structure of the interaction sector:

SI =−
∫

d3xdt
∞∑
n=2

gnϕ
n

n!M(n−4)+

+
3∑

k=1

3∑
i=1

[ ∞∑
m=1

wm,kϕ
m

M2k−2+m

](
[∂i ]

k ϕ
)2

We neglect terms like:

wmsϕ
m(∂si ϕ∂

s
i ϕ)

Two interacting scalar fields show a potentially detectable
difference of their speed of light where logarithmic corrections
∝ wms modify the "speed of light" a1.
Experimentally forbidden → unless one fixes a fine-tuning
between the bare couplings but unnatural.
R. Iengo, J. G. Russo, and M. Serone, Renormalization group in Lifshitz-type theories, JHEP 11
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Scalar Fields

The degree of divergence of a loop diagram DΛ is:

DΛ = 6

(
1 −

∑
n

Vn

)

where Vn is the number of vertices with n legs (proportional to
gn ).
Diagrams (a) are those with one vertex, an arbitrary number
of external legs, and an arbitrary number of tadpoles:

p

k

p

Propagator → G (k0, k⃗) =
1

k2
0−a3k⃗6−a2k⃗4−a1k⃗2−g2
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Scalar Fields
It can be regularized by adopting the non-Lorentz invariant
cutoff on the modulus of the tri-momentum.
We integrate the tadpole between two momentum scales Λ1
and Λ2 , with Λ1 » Λ2 » M

I1 (Λ1,Λ2,M) =
M2

√
a3(2π)2

ln

(
Λ1

Λ2

)
+ O

(
M4

Λ2
2
,
M2Λ2

2
Λ2

1

)
The quantum corrections of a generic coupling gn yield the
following series:

gn (Λ2) =
∞∑

m=0

gn+2m (Λ1)

m!

[
I1 (Λ1,Λ2,M)

2M2

]m
Divergent diagram series for the 4-point vertex:

= + + ...

g4R = g4+g6

(
I1
2

)
+
g8

2

(
I1
2

)2

+ ...+
gn̄

(n̄/2 − 2)!

(
I1
2

)(n̄/2−2)
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Scalar Fields

If one assumes that the theory has only one coupling, i.e.
gn = g for all n:

g (Λ2) = g (Λ1) exp

[
I1 (Λ1,Λ2,M)

2M2

]
≃ g (Λ1)

(
Λ1

Λ2

)1/(8π2)

In the limit Λ1 → ∞, at fixed g (Λ2), g (Λ1) → 0
The theory shows a Liouville-like potential and quantum
corrections are exactly summable, giving an asymptotically free
theory.
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Fermionic Fields

The higher derivative part of the 3 + 1 dimensional action,
with z = 3, is

SF =

∫
d3xdtψ̄

[
iγ0∂0 −

(
b1 +

∂j∂
j

M2

)(
iγ i∂i

)
−mf

]
ψ

The scaling dimension of the fermion field turns out to be
equal to its canonical dimension, [ψ]s = 3/2.
If we assume a Yukawa-like interaction with the scalar
excitations, the renormalizable interaction sector of the action
is:

SY = −
∫

d3xdt
∞∑
n=1

yn
ψ̄ψϕn

n!Mn−1

We did not include 2n-fermion vertices. The only vertex that
is renormalizable is the 4 -fermion vertex. Through
Hubbard-Stratonovich transformation reduce to a Yukawa-like
interaction.
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Fermionic Fields

The degree of divergence of the diagrams generated by SY
yields:

DΛ = 6 − 3
∑
n

Yn −
3
2
Ef

where Yn is the number of vertices proportional to yn and Ef

is the number of external fermionic legs.
Diagrams (b) with a fermionic tadpole if Ef = 0 and∑

n Yn = 1 and Diagrams (c) with two vertices, a fermionic
loop and n scalar loops Ef = 0 and

∑
n Yn = 2:

p

k

p p p
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Fermionic Fields

Yukawa sector where all couplings are equal: y = yn, the sum
of all diagrams contributing to the renormalization of y gives:

y (Λ2) = y (Λ1) exp

[
I1 (Λ1,Λ2,M)

2M2

]
≡ y (Λ1) E

i.e. the coupling y is asymptotically free.
The renormalization of the scalar sector is more involved. By
keeping different gn for different n and by retaining the leading
divergences only, we find:

gn (Λ2) =
∞∑

m=0

gn+2m (Λ1)

m!

[
I1 (Λ1,Λ2,M)

2M2

]m
− cny (Λ1)

2 E4I1

(1)
where cn > 0 is associated with the combinatorial weight of
the diagrams in (c)
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Fermionic Fields

Heuristic argument:
The stability of the scalar potential requires gn ≥ 0, at least
for all n larger than some n̄, then for n ≥ n̄ the first term in
the rhs must be larger than the second
The coupling y is asymptotically free and it grows when the
momentum scale is lowered
In case the gn are not sufficiently large at the scale Λ1 to
ensure a negative β-function, then gn could become negative
at the infrared scale Λ2, yielding an unstable potential
This is avoided if the values of gn (Λ1) are sufficiently large, at
least for all gn with n ≥ n̄.
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Gauge Fields

The inclusion of gauge fields can be realized by defining the
appropriate covariant derivative D̂µ = ∂̂µ − iqAµ where

∂̂0 = ∂0, ∂̂i =

(
1 +

∂j∂
j

M2

)
∂i

Accordingly, the generalized electromagnetic tensor is
F̂µν = ∂̂µAν − ∂̂νAµ.
One-loop contribution to the photon propagator correction:

p

k

p

p
k

p

k − p
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Gauge Fields

D̂µ, which is non-linear in the derivatives → under gauge
transformations we have gauge violating contributions to the
amplitudes, proportional to powers of k2

M2 .
Different higher derivative formulation , that is gauge
invariant, appears in the form (DhDjFik)

2 (where Di are the
space components of the standard covariant derivative), which
contains terms analogous to those proportional to wm,k .

P. Horava, Phys. Lett. B 694, 172 (2011). [arXiv:0811.2217].

The effect of the dynamics of Aµ in Eq. (1) is, from an
effective point of view, equivalent to the presence of additional
scalar degrees of freedom, with the consequence of modifying
only some coefficients in (1) but not the overall structure of
the equation.
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Hierarchy problem

We get a finite non-vanishing correction to the scalar mass
from the momentum region between Λ1 and Λ2, proportional
to the scale g4M

2, that is very large if compared for instance
to the Higgs square mass.
The fermionic contribution to the correction of scalar square
mass g2M

2 occurs with opposite sign with respect to the
scalar.
An exact cancellation of the two would be quite unnatural.
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Conclusions

By discarding from the action all momentum dependent vertex
operators, we find:

Drastic reduction of the degree of divergence of the diagrams
from quadratic to logarithmic (tadpole).
Renormalizable scalar self-interaction and Yukawa-like
couplings are asymptotically free (under the hypothesis of
stability of the potential).
Correspondence with Liouville’s theory in the hypothesis of
equal couplings at the scale M.
Incompatibility with Gauge symmetry, recovered as an
emergent law energy symmetry (below M).
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Thanks for the attention
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Back-up slides
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Relevant and marginal operators in a Lorentz invariant
theory of a single scalar field

Figure: Relevant and marginal operators in a Lorentz invariant
theory of a single scalar field in various dimensions and whose terms
of the Lagrangian are invariant for the global symmetry group
G = Z2.
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Anisotropic Scale Invariance (ASI)

In the case of ASI, we divide the coordinates in two groups,
x⃗ = (x⃗∥, x⃗⊥) that respectively belong to a m and d −m
dimensional (with m ≤ d) subspace whose scaling behavior is
different.

O(lθx⃗∥, l x⃗⊥) = l−∆OO(x⃗)

with θ different from unity.
We can start from a generalization of the Landau model ϕ4:

Γ[ϕ] =

∫
dd−mx⊥d

mx∥

(
W∥(∂

2
∥ϕ)

2 +W⊥(∂
2
⊥ϕ)

2+

+
Z∥

2
(∂∥ϕ)

2 +
Z⊥
2
(∂⊥ϕ)

2 + V (ϕ)

where V (ϕ) = m2|ϕ|2 + λ4|ϕ|4.
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Anisotropic Scale Invariance (ASI)

A critical line is observed when Z∥ > 0 that respectively
correspond to a disordered and an ordered phase, while for
Z∥ < 0 a critical value of the minimum of V separates the
disordered phase from a modulated one with an oscillating
ground state. The Lifshitz point, where the three phases meet,
is located at Z∥ = 0.

Figure: Schematic phase diagram with a Lifshitz point L and a
typical example of a system that exhibits this type of behavior.
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Scalar Fields - Flow of the derivative terms

The coefficients a1,2,3 take contributions from diagrams with
at least two vertices:

R1 ∝

p

k

p

k − p
R2 ∝

p

k2

p

k1

k1 + k2 − p

Corrections given by:

δaj =
1

(2j)!
∂2j

(∂|p⃗|)2j

[
ig2

3
2
R1 −

g2
4
6
R2

] ∣∣∣∣
p=0
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Scalar Fields - Flow of the couplings

For the evolution of the couplings gn(µ) with µ going toward
the IR region, we can write a set of first-order coupled
differential equations:

−µ∂µg4(µ) = g6(µ)
2

µ3

(2π)2
1

D(µ) −
3
4g

2
4 (µ)

µ3

(2π)2
1

D(µ)3

−µ∂µg3(µ) = g5(µ)
2

µ3

(2π)2
1

D(µ) −
3
4g4(µ)g3(µ)

µ3

(2π)2
1

D(µ)3

−µ∂µg6(µ) = g8(µ)
2

µ3

(2π)2
1

D(µ) −
15
4 g4(µ)g6(µ)

µ3

(2π)2
1

D(µ)3

where we denote
D(µ) =

√
a3(µ)µ6 + a2(µ)µ4 + a1(µ)µ2 + g2(µ) and set the

mass scale M = 1.
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Scalar Fields - Flow of the couplings

UV flow of the coupling g4 and m2 with respect to
t = ln (M/µ) with µ the running scale:

D. Zappala, Eur. Phys. J. C 82, 341 (2022). [arXiv:2111.08385].

t
Truncated series up to the term n̄ = 6 (dashed lines) →
logarithmic trend
Series in the limit n̄ → ∞ (solid lines) → Exponential trend
Boundaries fixed at t = 0 where g4 = 0.1 and m2 = 0.001
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Scalar Fields - Flow of the couplings

Flow of the coupling a3 and m2 in the intermediate region.

t
Boundaries fixed at t = −3 where g4 = g3 = 0.1 and
m2 = 0.007 in one case (solid lines) and g4 = 0.1, g3 ≃ 10−17

and m2 ≃ −0.004 in the other (dashed lines).
Appropriate fine-tuning to avoid the emergence of singularities
in the analysis of RG flow equations of parameter a3.
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Scalar Fields - Flow of the couplings

Flow of the coupling a1 and a2 in the intermediate region.

t
Flow of a1 (left panel) and a2 (right panel) in the region
t ∈ [−3, 20] with the same initial conditions adopted in the
previous cases.
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Scalar Fields - Flow of the couplings

Flow of the coupling g4 and g6 in the intermediate region.

t
Boundaries fixed at t = −3 where g4 = 0.1 and g6 = 0.001.
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Scalar Fields - Flow of the couplings

Flow of the coupling g3,4,5,6 in the intermediate region in the
hypothesis of equal couplings at the scale M.

t
Boundaries fixed at t = −3 where g3 (red line), g4 (black), g5
(red dashed) and g6 (black dashed) are all equal to
g3,4,5,6 = 0.1 .
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