From Skyrmions to holographic exotics

Maciej A. Nowak

Mark Kac Center for Complex Systems Research, and Institute of Theoretical Physics Jagiellonian University

64th Cracow School of Theoretical Physics Zakopane June 19th, 2024

Dedicated to Michał Praszałowicz, on the occasion of His 70th birthday

- 1974 Close encounter with Michał
- 1977-1983 Period of unlimited appreciation of pQCD
- 1983-1985 Lost illusions, farewell to pQCD
- [MAN, M Praszałowicz, W Słomiński; A practical guide to the next-to-leading order of the perturbation expansion in QCD, Annals of Physics 166, 433, 1986]
- 1983 Revelation: M. Peskin brings preprints by E. Witten on Skyrme model to Zakopane School

Skyrmion revisited

• Skyrme idea (1961): **Baryon as topological soliton** (isospin-space hedgehog) of the mesonic (pionic) fields

$$L = L_{\sigma} + L_{Skyrme}$$

- Witten, Adkins, Nappi (1982-83):
 - Link to large N
 - Anomalous term

$$L = L_{\sigma} + L_{Skyrme} + L_{WZW}$$

- Quantization of collective modes from symmetries (moduli space) leads to

$$H = M_0 + \frac{\vec{I}^2}{2\Omega_{sol}}$$

where $\vec{l} (= \vec{J})$ are isospin (angular momentum) respectively. (Technically, equivalent to algebraic hydrogen atom quantization done W. Pauli in 1921 (!))

[PO Mazur, MAN, M Praszałowicz, SU (3) extension of the Skyrme model, Physics Letters B 147, 137, 1984]

- Quantization of the symmetric top with some local symmetry included
- States superselected by **triality zero** condition for representations of SU(3) (octet, decuplet)
- Challenges: third triality zero representation is antidecuplet: Michał notes that leads to a light pentaquark. Consequences for elusive Θ⁺.
- Challenges: Explicit chiral symmetry breaking does not work.

- Already at the level of strange quarks symmetry breaking is so bad, so collective method fails.
- Proper way is to use Born-Oppenheimer approximation fast vibration of the kaon in the SU(2) solitonic background.
 Then slow rotation of the bound state happens in the presence of non-Abelian Berry phase originating from kaons.

$$H = M_0 + \text{binding} + \frac{(\vec{J} - (1 - c_k)tr(\vec{K}\vec{I}\vec{K}^{\dagger}))^2}{2\Omega_{sol}}$$

([isospin-spin transmutation in Callan-Klebanov 1985])

• Bound kaon behaves as s-quark, modulo baryon number

 For c(b) baryons, similar picture, but with two Berry phases from D and D*, so one gets

$$H_{1} = \frac{[(\vec{J} - \vec{S}_{H}) - (1 - c_{D})tr(D\vec{I}D^{\dagger}) - (1 - c_{D^{*}})tr(D^{*}\vec{I}D^{*\dagger})]^{2}}{2\Omega_{sol}}$$

• In the infinitely heavy mass Berry phases *exactly* **cancel** Then

$$\mathcal{H}_1 = rac{(ec{J}-ec{S}_H)^2}{2\Omega_{sol}} = rac{ec{I}^2}{2\Omega_{sol}}$$

(Realization of Isgur-Wise symmetry at the baryonic level)

• Also, soliton can capture more than one meson (double heavy baryons, exotica).

Combining chiral symmetry with heavy-spin symmetry leads to novel feature [MAN, Rho, Zahed (1992), Bardeen-Hill (1993)] Both symmetries enforce the **presence of opposite parity** $(0^+, 1^+)$ multiplet $G = \frac{1+\psi}{2} (\tilde{D} + \gamma^{\mu} \gamma_5 \tilde{D}^*_{\mu})$ in addition to standard $(0^-, 1^-)$ one $H = \frac{1+\psi}{2} (\gamma_5 D + \gamma^{\mu} D^*_{\mu})$

- Consequence of chiral symmetry $[{\it v},\gamma_5]_+=0$
- Doublers communicate only through axial current
- Physical split in axial couplings and masses, $m_G - m_H \sim O(\Sigma_I) \sim 350 MeV$
- Chiral doublers do not double the number of states in quark model, but *reorganize* them in different way.

(i) soliton captures H meson (heavy baryon) (ii) soliton captures G meson (doubler of heavy baryon) (iii) soliton captures \overline{H} (heavy pentaquark) (iv) soliton captures \overline{G} (doubler of heavy pentaquark) (v) soliton captures more mesons.....

- Short, unhappy life of $\tilde{\Theta}_c(3099)$
- [MAN, M. Praszałowicz, M. Sadzikowski, J. Wasiluk; Chiral doublers of heavy-light baryons, Phys. Rev. D70, 031502, 2004]

... In particular, we interpret the state recently reported by the H1 experiment at HERA as a chiral partner $\tilde{\Theta}_c(3099)$ of yet undiscovered ground state pentaquark $\Theta_c(2700)$.

Desperately seeking exotics ...

Experimental revolution: Post-Babar-ian era

Abundance of exotic heavy-light particles

- **cdus** :*X*(2866), *X*₁(2904)
- $c\bar{c}q\bar{q}$: $\chi_{c1}(3872)$
- cc̄uđ: $Z_c(3900)$, $Z_c(4020)$, $Z_c(4050)$, X(4100), $Z_c(3985)$, $Z_c(4430)$, $R_{c0}(4240)$
- ccus: Z_{cs}(3985), Z_{cs}(4000), Z_{cs}(4220)
- **bbud**: Z_b(10610), Z_b(10650)
- **cccc**: *X*(6900)
- ccūd: $T_{cc}^+(3875)$, also T_{cc}^0 , T_{cc}^{++} (preliminary)
- Pentaquarks cc̄uud: P_c((4380), (4450) → [(4440), (4457)], (4312)], P_c(4337) (3σ) significance
- cc̄uds: *P*_{cs}(4459)
- possibilities of further heavy-light "chemistry": many more expected (?)

Input from lattice

Theoretical revolution: Gravity/Gauge duality (holography, AdS/CFT)

- In the 70' QCD became fundamental theory of quarks and gluons, strings (flux tubes) appear as effective, e.g. Lund model
- Maldacena pointed that gauge theory is 4 dim is equivalent to string theory in higher dimensions: Towards two fundamental theories of strong interactions (?!)
- Various versions conformal window, lower-dimensions (solid state physics)
- Witten (1998) applied duality to QCD: pure YM in 3 + 1 at large N and $\lambda = g_{YM}^2 N$ Surprising similarity to spectrum of glueballs at large N lattice

Sakai-Sugimoto breakthrough 2005

- Adding N_f massless fermions geometric SB χ S
- Low energy limit $S = S_{YM} + S_{CS}$ where $S_{YM} \sim \int d^4x dz \operatorname{Tr} \left(\frac{1}{2}k(z)^{-1/3}F_{\mu\nu}^2 + k(z)F_{\mu z}^2\right)$ where $k(z) = 1 + z^2$
- Mode expansion: $A_{\mu}(x^{\mu}, z) = \sum_{n} B_{\mu}^{(n)}(x_{\mu}) \Psi_{n}(z)$, $A_{5}(x^{\mu}, z) = \sum_{n} \phi^{(n)}(x^{\mu}) \Phi_{n}(z)$
- Keeping only $\phi^{(0)}$ yields $L = L_{\sigma} + L_{Skyrme} + L_{WZW}$. Adding $B^{(1)}_{\mu} \sim \rho$ and $B^{(2)}_{\mu} \sim a_1$ yield hidden gauge model
- Successful phenomenology with very few parameters

- 4 dim pion \rightarrow Skyrmion (static solution)
- 5 dim gauge field \rightarrow **BPST** instanton in x_1, x_2, x_3, z in flavor
- Topological number \equiv baryon number
- Direct realization of 1989 Atiyah-Manton idea $U(\vec{x}) = P \exp(i \int dz A_z(\vec{x}, z))$
- 8 zero modes lead to moduli space quantization $M = M_0 + \left(\sqrt{\frac{(l+1)^2}{6} + \frac{2}{15}N^2} + \sqrt{\frac{2}{3}}(n_\rho + n_Z + 1)\right)M_{KK}$ where l = 2I = 2J = 1, 3, 5...

HL baryons in holographic scenario: Liu, Zahed, 2017

• CK-like scheme with heavy-spin symmetry

•
$$M = M_0 + (N_Q + N_{\bar{Q}})m_H + (\sqrt{\frac{(l+1)^2}{6} + \frac{2}{15}N^2(1 - \frac{15(N_Q - N_{\bar{Q}})}{4N} + \frac{5(N_Q - N_{\bar{Q}})^2}{3N^2})^2})M_{KK} + \sqrt{\frac{2}{3}}(n_\rho + n_Z + 1))M_{KK}$$

• Various combinations of q-numbers give all types of HL hadrons

$$N_Q = 1, N_{\bar{Q}} = 0$$
 yield **hll**
 $N_Q = 2, N_{\bar{Q}} = 0$ yield **hhl**
 $N_Q = N_{\bar{Q}} = 1$ yield pentaquarks **hhlll**
 $n_Z \neq 0$ yield excited (Roper-like), $n_\rho \neq 0$ yield odd parity

• Three parameters: $M_{KK}, M_0, m_H \sim M_D(M_B)$

Adding spin effect (subleading in m_H^{-1}) Liu, MAN, Zahed, 2021

- 3 parameters, $M_0
 ightarrow m_N, \ M_{KK}
 ightarrow m_{\Lambda_c}, \ m_H \sim M_D(M_B)$ for c(b)
- 3 pentaquarks $\frac{1}{2}, \frac{1}{2}^{-}(S = 1), \frac{1}{2}, \frac{1}{2}^{-}(S = 0), \frac{1}{2}, \frac{3}{2}^{-}(S = 1), IJ^{\pi}$ $(\frac{1}{2}, \frac{5}{2}^{\pm} \text{ ruled out})$, consistent with $P_c(4312, 4440, 4457)$ [LHCb]
- Recently reported $P_c(4337)$ at 3σ significance is not supported
- Open and hidden decay widths (Liu, MAN, Zahed, 2021) e.g. $P_c \rightarrow \Lambda_c + \overline{D}$, $\Gamma(S = 0, J = \frac{1}{2}) : \Gamma(S = 1, J = \frac{1}{2}) : \Gamma(S = 1, J = \frac{3}{2}) = \frac{1}{2} : \frac{5}{6} : \frac{1}{3}$
- Formfactors (Liu, Mamo, MAN, Zahed; 2021), consistent with recent GLUEX results on $\gamma p \rightarrow (P_c^+) \rightarrow J/\psi p$

Tetraquark puzzle

- **hhll** several predictions (positive/negative ±200 *MeV*)
- Measurement of Ξ⁺⁺_{cc}(3621) fixed the normalization for bbūd̄ tetraquark (Karliner, Rosner (2017); Eichten, Quigg (2017)), bound up

to 200*MeV* (!)

- ${\cal T}^+_{cc}$ (01⁺) (LHCb), narrow, bounded at $-360 \, keV$, $\Gamma \sim 50 \, keV$
- Holographic picture: instanton-antiinstanton "molecule" binds two mesons (Liu, MAN, Zahed (2019)), b(c) tetraquarks bounded by 80(40) MeV
- Normalizing mass to T_{cc}^+ , (Liu, MAN, Zahed (2022)) predict mass of T_{bc} and T_{bb} , and estimate very narrow width.
- Stronger bindings in chiral quark soliton model [Michał Praszałowicz, 2023-2024]

- Strongly coupled QCD could be approached via duality from string theory in large N and large λ limit, including spectra of heavy-light hadrons
- Few parameters and very restrictive predictions, so models are confutable
- Approach based on confinement, SB χ S and heavy spin symmetry, in the limit of large N and λ .
- "High brow" theory boils down to relatively simple QM in moduli space (top-down approach)
- Astonishing and deep analogies to "old" physics, including joint work with Michał!

Happy Birthday, Michał !!!!!!