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Introduction

Boson stars

Localized complex scalar field configurations with a finitie
energy, bounded by gravity.
Simplest example: (3+1)–dimensional massive
Einstein-Klein-Gordon theory with a mass term and without
self-interaction.

Q-balls

Arise as a flat spacetime limit of the boson star configuration.
They exist only within a restricted interval of values of the
angular frequency ω.
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Toy model

We consider massive Klein-Gordon equation for a complex
scalar field in 3+1 dimensions

φtt = ∆φ− φ+ |φ|2φ− α|φ|4φ, φ(x, t) ∈ C, x ∈ R3. (1)

We assume α > 0.

E =

∫ (
1

2
|φt|2 +

1

2
|∆φ2|+ 1

2
|φ|2 − 1

4
|φ|4 +

α

6
φ|6
)
d3x.

Q = Im

∫
φφ̄t d

3x.
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U(1) global gauge symmetry φ −→ eiϑφ

Standing wave solutions

We consider φ(x, t) = eiωtf(r), ω ∈ (0, 1)

f ′′ +
2

r
f ′ − (1− ω2)f + f3 − αf5 = 0, 0 ≤ α ≤ 3

16
.

E =

∫ (
1

2
f ′2 +

1

2
(1− ω2)f2 − 1

4
f4 +

α

6
f6
)
r2 dr,

Q = ω

∫
f2r2 dr.
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Let us consider a rescaling P (r) = α1/2f(α1/2r) of the equation

f ′′ +
2

r
f ′ − (1− ω2)f + f3 − αf5 = 0.

Equivalent equation

Solutions to the equation (1) are rescaled solutions to the
equation

∆P − ν P + P 3 − P 5 = 0. (2)

where

ν = α(1− ω2), fω,α(r) = α−1/2Pν(α−1/2r).
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Space of solutions with equivalence classes
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Spectral stability analysis

We linearize around a standing wave solutions

φ(t, x) = eiωt (f(x) + v(t, x)) ,

where v : R×R3 → C is a complex perturbation of the solution.

Ignoring all the O(v2) terms we arrive at

vtt+ 2iωvt+ (1−ω2)v−∆v+ (f2−αf4)v+ (2f2−4αf4)<v = 0,

We decompose v into its real and imaginary part

v = (<v, =v).
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Linearization of the equation

vtt + 2ωJvt +Hv = 0,

J =

(
0 −1
1 0

)
, H =

(
L+ 0
0 L−

)
,

Operators L+ and L− are given by

L+ = −∆ + (1− ω2)− 3f2 + 5αf4,

L− = −∆ + (1− ω2)− f2 + αf4.
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Hamiltonian operator

The Hamiltonian operator on a phase space takes the form

H̃ =

(
0 1
−H −2ωJ

)
.

Spectral stability

The system is spectrally stable, if the spectrum of H̃ lies in the
closed left half-space

σ(H̃) ⊆ {z : <z ≤ 0}.
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Vakhitov-Kolokolov stability criterion [3]

Let ω ∈ (−1, 1) and assume that the equation (1) has a possitive
smooth solution fω(|x|) in both x and ω variables, such that

i) limr→∞ fω(r) = 0,

ii)
n(L+) = #{λ ∈ σ(L+) : λ < 0} = 1,

iii) ker[L−] = span[fω].

Then the wave is spectrally stable if and only if

d

dω
Qω ≤ 0.
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A limit ν → 0

When ν → 0, then α→ 0 or ω → 1. Let us note, that taking
f(r) = βu(βr), β =

√
1− ω2 in equation (1), we get

u′′ +
2

r
u′ − u+ u3 − α(1− ω2)u5 = 0.

Perturbative expansion

Let g be a unique nonnegative radially symmetric solution to

−∆g + g − g3 = 0.

Then the linearized operator L : h 7→ −∆h+ h− 3g2h is an
isomorphism from H1

rad onto H−1rad. Thus, by the implicit
function theorem there exists an expansion

u(x) = g(x)− α(1− ω2)[L−1g5](x) +O(α2).
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Charge expansion near α = 0 or ω = 1

We have
Q(fω) =

ω√
1− ω2

||u||2L2 .

Using L(g + x · ∇g) = −2g, we get

Q(fω) =
ω√

1− ω2
||g||2L2 +

1

2
αω
√

1− ω2||g||6L6 +O(α2).

Looking for the inflection point on the curve (ω,Qω) we solve
the equations

d

dω
Qω = 0,

d2

dω2
Qω = 0,

for ω and α, which gives us

α =
16||g||2L2

||g||6
L6

, ω =
√

3/2. (α∗, ω∗) = (0.0902, 0.657).
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A limit ν → 3
16

When ν = α(1− ω2)→ 3
16 , the solutions become more and

more step-like and the support of the solutions grows. One can
take advantage of asymptotics Q(ω) provided in [1]∫

R3

|Pν |2 ∼ (
3

16
− ν)−3, as ν → 3

16
.

Using the equivalence relationship we can write

Q(ω) ∼ ω
∫
R3

α−1 |Pν(α−1/2r)|2 r2 dr

Performing the coordinate change and solving the equation
Q′(ω) = 0 we obtain the following relation

α =
3

16(5ω2 + 1)
.
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Stability island of the stationary solutions
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Thank you for your attention
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