Gravitational wave resonance in ultralight dark matter halos

Based on Phys. Rev. D 108 (2023) 12, 123539

Paola C. M. Delgado

Faculty of Physics, Astronomy and Applied Computer Science

Jagiellonian University

Cracow School of Theoretical Physics, June 2024

Image: geralt (pixabay.com)

Parametric resonance

$\ddot{x(t)} + Ax(t) - 2q\cos(2t)x(t)=0$

Why does this exponential instability take place?

$$x(\ddot{t}) + Ax(t) - 2q\cos(2t)x(t) = 0$$
$$\pi \equiv \dot{x} \qquad X \equiv (x,\pi)^T \qquad \dot{X} = UX$$
$$U \equiv \begin{pmatrix} 0 & 1\\ -A + 2q\cos(2t) & 0 \end{pmatrix}$$

Fundamental matrix of solutions: $O(t, t_0)$

Solve
$$O(t, t_0) = UO(t, t_0)$$
 from t_0 to $t_0 + T$
 $O(t_0, t_0) = I$

Eigenvalues $o^{\pm} \rightarrow$

$$Re(\mu^{\pm}) = \frac{1}{T} \ln |o^{\pm}|$$
$$x(t) \propto \exp(\mu t)$$

Bands centered around:
A=1
A=4
A=9
...

$$\mu \propto \begin{cases} q \ if \ A \subset (1-q, 1+q) \\ q^2 if \ A \subset (4-q^2, 4+q^2) \end{cases}$$

 $q \ll 1$: narrow band resonance
 $x(t) \propto \exp(\mu t)$

In light of GW physics,

- Non-linear order: interactions between cosmological perturbations might lead to resonance.
- GWs are damped via resonance with photons: Phys.Dark Univ. 40 (2023) 101202, R. Brandenberger, PCMD, A. Ganz, C. Lin.

Are there scenarios where gravitational waves are amplified via parametric resonance?

Why Ultra-Light Axions (ULAs) as dark matter?

• Incompatibilities between the CDM description and the observed data on sub-galactic scales.

The halo description (ground state):

$$ds^{2} = -(1+2U)dt^{2} + (1-2\bar{U})(dx^{2} + dy^{2} + dz^{2}) \qquad U, \bar{U} \ll 1$$

$$\phi(t) = \phi_{0} \cos(mt)$$

$$\rho = \frac{1}{2}m^{2}\phi_{0}^{2}, \qquad T = T_{0} + \delta T$$

$$U = U_{0} + \delta U$$

$$\bar{U} = \bar{U}_{0} + \delta \bar{U}$$

$$R = R_{0} + \delta R$$

$$R = -6\ddot{U} + 2\nabla^{2}(2\bar{U} - U)$$
Einstein equations
$$\bar{U}_{0} = U_{0}$$

$$2\nabla^{2}U_{0} = \rho$$

$$\delta T = 6\delta\ddot{\bar{U}} \qquad \delta U = -\delta\bar{U}$$
Oscillating gravitational potentials
$$\Phi(t) = 0$$

Gravitational Wave and ULDM halo interaction

Gravity bends gravity

From gravitational wave lensing:

includes oscillating

gravitational potentials

$$h_{\mu\nu} = h\epsilon_{\mu\nu}$$

 $g^{\mu\nu},g$

$$\partial_{\mu}(\sqrt{-g}g^{\mu\nu}\partial_{\nu}h) = 0$$

In the context of ULDM:

Interaction that might lead to a Mathieu equation!

Expanding the equation of motion,

$$\ddot{h} - (1 + 2U + 2\bar{U})\nabla^2 h - \dot{U}\dot{h} - 3\dot{\bar{U}}\dot{h} + + \partial_i h \partial_i \bar{U} - \partial_i h \partial_i U = 0$$

$$\bar{h}_{k}'' + \frac{k^{2}}{m^{2}}\bar{h}_{k} - \frac{4}{m^{2}}\int d^{3}x \exp\left(-i\vec{k}\cdot\vec{x}\right)U_{0}\nabla^{2}\bar{h} + \\ - \frac{1}{2}\frac{\rho}{m^{2}}\cos\left(2\tau\right)\bar{h}_{k} = 0$$

$$\tau \equiv mt$$

$$\bar{h} \equiv \exp(\delta U)h$$

$$\downarrow$$
To kill friction terms

$$\begin{aligned} A\bar{h}_k &\equiv \frac{k^2}{m^2}\bar{h}_k - \frac{4}{m^2}\int d^3x \exp{(-i\vec{k}\cdot\vec{x})U_0\nabla^2\bar{h}} \\ &\simeq \frac{k^2}{m^2}\bar{h}_k \\ \end{aligned}$$

$$\bar{h}_{k}^{\prime\prime} + A\bar{h}_{k} - 2q\cos(2\tau)\bar{h}_{k} = 0$$

$$q \equiv \rho/m^{2}/4 \quad \ll 1$$

$$A\bar{h}_{k} \equiv \frac{k^{2}}{m^{2}}\bar{h}_{k} - \frac{4}{m^{2}}\int d^{3}x \exp(-i\vec{k}\cdot\vec{x})U_{0}\nabla^{2}\bar{h}$$

$$\simeq \frac{k^{2}}{m^{2}}\bar{h}_{k}$$

$$k^{2} = m^{2}$$
Floquet instability theory:
$$h_{k} \simeq \bar{h}_{k} \propto \exp(q\tau/2)$$

$$exp(\delta U) \simeq 1$$

$$p_{3rametric resonance}$$

$$m = 10^{-22} eV$$

$$\rho = 10^{16} \times 0.4 GeV/cm^{3}$$

Amplification estimates

 $ho=f
ho_{DM}$ f=1 \longrightarrow ULAs constitute the totality of dark matter

density in the
solar region
$$\rho = 0.4 \text{GeV/cm}^3 \rightarrow 3.9 \times 10^{17}$$
 years
 $m \simeq 10^{-22} \text{eV}$ time estimated via Floquet theory to

11

achieve O(1) amplification

Amplification estimates

 $ho=f
ho_{DM}$ f=1 \longrightarrow ULAs constitute the totality of dark matter

Higher densities are required to reduce the time scale, e.g.

- arXiv:2212.05664 [astro-ph.HE], Man Ho Chan, Chak Man Lee.
- arXiv:2103.12439 [astro-ph.HE], Sourabh Nampalliwar, Saurabh K., Kimet Jusufi, Qiang Wu, Mubasher Jamil, Paolo Salucci.

In dense regions the amplifications might reach very high values: $\rho \simeq 1.4 \times 10^7 GeV/cm^3$

What about the constraints already imposed to the ULA fraction as dark matter?

- CMB+BOSS: Planck and LSS bounds from galaxy clustering.
- SPARC: bounds from galaxy rotation curves.
- Eridanus-II: bounds from Ultrafaint Dwarf Galaxy Eridanus II.
- Lyman-α: bounds from Lyman-α forest.
- +DES: bounds from galaxy weak lensing and Planck.

Implicitly considered:

- bounds from the UV luminosity function and optical depth to reionization.
- bounds from the M87 black hole spin.

Summary and future work

- Gravitational waves are amplified via parametric resonance with the oscillating gravitational potentials of ULDM halos.
- Significant amplifications nowadays can be achieved in dense regions in the halo.
- Possible **GW sources**: primordial perturbations and supermassive black hole binaries $(10^{-8}$ Hz to 10^{-13} Hz).
- Upper bound on the amplifications (h

 1).

Can modified gravity or the GW background boost the resonance?
Can we detect the resonant amplification (e.g. PTA) to test ULDM?

Summary and future work

- Gravitational waves are amplified via parametric resonance with the oscillating gravitational potentials of ULDM halos.
- Significant amplifications nowadays can be achieved in dense regions in the halo.
- Possible
hole binThank you for your attention!
- Upper bound on the amplifications (h

 1).
- Can modified gravity or the GW background boost the resonance?
 Can we detect the resonant amplification (e.g. PTA) to test ULDM?

ssive black

Gravitational wave and gauge field interaction

Set-up: gravitational wave in a medium with subluminal speed of light interacting with an electromagnetic field.

$$g_{\mu\nu} = \tilde{\eta}_{\mu\nu} + h_{\mu\nu}$$

$$\tilde{\eta}_{\mu\nu} = (-1, 1/c_s^2, 1/c_s^2, 1/c_s^2)$$

$$0 = g_{i\alpha}\partial_{\mu} (F_{\rho\sigma}g^{\alpha\rho}g^{\mu\sigma})$$

$$= \partial_t^2 A_i - c_s^2 \partial_t h_{ij} \cdot \partial_t A_j + c_s^2 \partial_j F_{ij}$$

$$-c_s^4 h_{jk} \partial_j F_{ik} - c_s^4 F_{kj} \partial_j h_{ik}$$

$$\begin{split} \mathcal{S} &= \begin{pmatrix} \frac{k_x}{k_z} & \frac{k_y}{k_z} & 1\\ -\frac{k_z}{k_x} & 0 & 1\\ -\frac{k_y}{k_x} & 1 & 0 \end{pmatrix} \quad \mathcal{SY} \equiv \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix} \\ \mathcal{S} &\left(\ddot{\mathcal{Y}} + c_s^2 \mathcal{G} \mathcal{Y} + c_s^2 \mathcal{F} \dot{\mathcal{Y}} + c_s^4 \mathcal{M} \mathcal{Y} \right) = 0 \\ \mathcal{Y}'' + c_s^2 \tilde{\mathcal{F}} \mathcal{Y}' + c_s^2 \tilde{k}^2 \mathcal{Y} + c_s^4 \tilde{\mathcal{M}} \mathcal{Y} = 0 \\ \mathcal{Y} &= (a_y, a_z)^T \quad \tau \equiv \frac{\omega t}{2} \quad \tilde{k}^2 \equiv 4k^2 / \omega^2 \\ \tilde{\mathcal{F}} &= h_0 \sin 2\tau \begin{pmatrix} \frac{\omega^2 (k_x + k_y)}{4k_x k^2} & -\frac{\omega (k_x^2 - k_x k_y + k_z^2)}{2k_x k^2} \\ \frac{\omega (-k_x^2 + 2k_x k_y + k_y^2)}{2k_x k^2} & -\frac{4k_x k_s^2 - \omega^2 (k_x + k_y)}{4k_x k^2} \end{pmatrix} \end{split}$$

 $\tilde{\mathcal{M}} = h_0 \cos 2\tau \begin{pmatrix} \frac{2\kappa_e}{\omega^2} + 1 + \frac{\kappa_y}{k_x} & \frac{-2\kappa_x + 2\kappa_y}{\omega} - \frac{\omega}{2k_x} \\ \frac{2k_y}{\omega k_x} - \frac{2k_x - 4k_y}{\omega} & \frac{-2\epsilon_{ij}k_ik_j}{\omega^2} - 1 - \frac{k_y}{k_x} \end{pmatrix}$

— to get the 2 dynamical dof

20

Therefore,

- The GW is converted to photons (damping).
- The extension to many GW modes boosts the resonance.
- Challenges: high refractive index and long time intervals.
- Can we use this conversion mechanism to detect GWs?

Less dense regions are possible for the smaller masses: $\rho \simeq 5.9 \times 10^2 GeV/cm^3$

22

