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What am I working on

▶ Constructing consistent thermodynamics of black holes for
various non-extensive entropies.
▶ Tsallis-q Renyi
▶ Sharma-Mital
▶ Barrow
▶ Tsallis-Cirto
▶ Kaniadakis

▶ Finding the effect of these entropies on the sparsity of the
radiation under generalised uncertinity principle.

▶ Bounding the variables introduced by these variables through
cosmological data, mainly through the idea of holographic
dark energy,.



▶ The laws of black hole thermodynamics are analogous to the
laws of classical thermodynamics.

▶ Entropy scales with area, as well known from Bekenstein’s
Area Law (Bekenstein 73) whereas temperature scales with
surface gravity (Hawking 74).

Sbh =
kBAc

3

4Gℏ
, Tbh =

ℏκ
2πkbc

.

A = 4πr2+, r+ = 2GM/c2, κ =
1

2
∂rgtt = c4/4GM (1)

4-Laws of Black Hole Thermodynamics

▶ The surface gravity is constant on the event horizon of
stationary black holes. It is proportional to the black hole’s
temperature.

dE =
κ

8π
dA+ΩHdJ + VdQ (2)

▶ Horizon Area is strictly increasing with time

▶ One can not reach to zero temperature in a physical process.



Postulate 1
There exist equilibrium states characterized by state functions Xi ;
time independence is our equilibrium creteria.

Postulate 2
There exists a first-order homogeneous function of the extensive
macroscopic variables called entropy S . States for which
(∂E/∂S)N,V = 0 have zero entropy.

Postulate 3
S is additive over subsystems. It is a continuous, differentiable,
and increasing function of total internal energy E .

In Gibbs statistical mechanics, entropy is defined as

S = −kB
∑
i

pi log pi → S = kB logW (3)



The additivity of subsystems is only valid when one has shot-range
interactions, i.e.

E = E1+E2, so that S(E ,V ,N) = S1(E1,V1,N1)+S2(E2,V2,N2)
(4)

But more generally

E = E1 + E2 + E12, E12 → Interraction Term (5)

but Ei ≈ Vi volume of the subsystem, and if interaction is short
range, E12 ≈ A, area seperating subsystems, as V → ∞,
A/V → 0, so the energy is additive.

Thus In classical Gibbs SM
When this assumption fails (such as gravitational long-range
interactions), the thermodynamic limit (V → ∞) may depend on
the shape of the system.



Definition: Extensivity

Let us define a function f , the fundamental relation of
thermodynamic variables (X0, X1,X2,...,Xk) such that
X0 = f (X1,X2, ...,Xk). Here, f is homogeneous first order function
of X1,X2,...,Xk . If f (aX1, aX2, ..., aXk) = af (X1,X2, ...,Xk) for
every positive real numbers a for all X1, X2, ...Xk then X0 is
extensive. The thermodynamic variables Xi can be the energy U,
entropy S and mole number N and expressing f in differential form
will give the first law of thermodynamics.

In Gibbs thermodynamics, the fundamental relation f for the
entropy S can be written as S = f (U,V ,N) for an ideal case and
and f (aU, aV , aN) = af (U,V ,N), hence S is extensive.



Factorasibility of Non-Extensivity
Non-extensive statistical mechanics is the given names to
formalisms that aims to generalise the Gibbs entropic form to
account for long range interactions.
These in general deforms the composition rule

ST = S1 + S2 + f (S1, S2) (6)

However, in order to be able to define a physical temperature
scale, the first law has to be factorizable. 1 This strictly limits the
form of the functional f (S1,S2).

Ex: For a power law f (S1, S2) = λ1(S1 S2)
λ2 , possible

functionals;

▶ λ1 = 0 → β = ∂S/∂U

▶ λ2 = 1/λ1 = 1/2 → β∗ = ∂S/∂U × 1/
√
S

▶ λ1 ̸= 0, λ2 = 1 → ∂S/∂U × 1/(1 + λ1S)
1In other words, while minimizing the composition rule via the Lagrange

multiplier method, the thermodynamic quantities of different bodies need to be
seperable. (Biró et al. 2011), (2301.00609).



If a system is composed of N elements and these elements are
independent, we have

W (N) ≈ AξN(A > 0, ξ > 1;N → ∞) → SBG ≈ logW (N) ≈ N (7)

W (N) ≈ BNτ (B > 0, τ > 0;N → ∞) → Sq ≈ logq W (N) ≈ N

(for q = 1− 1

τ
) (8)



Tsallis and Rènyi

C. Tsallis, in his 98 paper 2 proposed the following generalization
to Gibbs entropy as

Sq = kB
1−

∑
i p

q
i

q − 1
= kB

∑
i

pi
1− pq−1

i

q − 1
(9)

where the new form of q-entropy scales with pqi instead of pi as
q ∈ R. The parameter q determines the degree of nonextensivity.
Extremizing Sq under

∑
i pi = 1 with the Lagrange multiplier

method under equiprobability (i.e., pi = 1/W ) yields the
micro-canonical entropy.

Sq = kB
W q−1 − 1

q − 1
where lim

q→1
Sq = S (10)

2for a brief review check (cond-mat/0406178v5)



In general, we can define the following q-functions as

logq χ =
χλ − 1

λ
expq χ = (1 + λχ)1/λ (11)

where χ > 0 and λ, χ ∈ R. These q-logarithm and q-exponential
are generalizations of the standard logarithm and exponential
functions, where in the λ → 0 limit; they reduce to their standard
forms.3

Since

logq W1W2 = logq W1 + logq W2 + λ logq W1 logq W2 (12)

We end up with the following modified first law.

Sq(WTot) = Sq(W1) + Sq(W2) +
λ

kB
Sq(W1)Sq(W2) (13)

3We also use q − 1 → λ interchangeably, q → 1 implies λ → 0.



Now assume two independent systems A and B with configurations
ΩA = {1, ...,WA} and ΩB = {1, ...,WB}. Let pA∪Bij be joint

probability, independence means pA∪Bij = pAi p
B
j , ∀(i , j) most

generally one can write

WA,WB∑
i ,j

(pA∪Bij )q =

WA∑
1

(pAi )
q×

WB∑
1

(pBi )
q → S

A∪B
q = S

A
q+S

B
q (additivity)

(14)

For arbitraty q parameter, Sq reproduces Rényi entropy
(A.Rényi 70),(Tsallis 98)

.
Sq =

1

1− q
log

∑
i

(pi )
q → Sq = k

log(1 + (1− q)Sq/k)

1− q
(15)

Rényi entropy and Tsallis q entropy are related to each other, and
by minimizing their respective first laws we end up with the same
physical temperature (2301.00609),(cond-mat/0011012).

Renyi additive Systems are independent

Tsallis q non-additive Interraction dependent





Application of q-Entropy

▶ HEP → (PRD 87,114007), (PRL 105,022002), (EPJC
71,1655), (PRD 83,052004)

▶ Spin Glasses (PRL 102, 097202)

▶ Cosmic Ray Fluxes (PLA 310, 372)

▶ Anamolous Diffusion (PRL 105, 260601), (PRL 107, 088901)

▶ Cold atom in optical latices (PRL 96, 110601)

▶ Solar Physics (Astrophys J. 644, L83), (Astrophys J. 737, 35)



Why and where people are using it

▶ Physically, q is the result of the introduction of a bias in the
microstates due to the presence of long-range interraction or
strong coupling in the system. (Due to gravity, for example.)
(cond-mat/0612032)

▶ Blackhole entropy is not extensive (1202.2154)

▶ In the cosmological context this statistics is used via the
assumption that SBH ≈ Sq.

▶ Mainly it is used in Cosmological models such as holographic
dark energy, for tensions.(1804.02983), (2312.16901)

▶ In LQG, with the help of Sq, area law can also be calculated
from the available microstates,
γ = (log 2/π

√
3)× (1− q)A/4 log[1 + (1− q)A/4]

4(1703.09355).

4lim q → 1 = log 2/π
√
3



We investigate the aforementioned entropies tied to the Tsallis-q
entropy 5 near the evaporation phase with the help of the
Generalized Uncertinity Principle (GUP).6

∆x∆p ≥ ℏ[1 + α0

l2p
ℏ2

(∆p)2] (16)

The thermodynamic quantities with GUP correction are:

TGup = THK(α,M) where, K(α,M) =
2

1 +
√

1− α
4GM2

(17)

SGup =
SB
K

− απ

2
log

[
4M

m0K

]
and CGup = CSc

[
2−K
K2

]
(18)

5And the other non-extensive entropic forms as well
6For a nice rewiev (2305.16193v2), also (Scardigli 99), (1203.6191) and

(hep-th/9309034).



Sparsity of Radiation

Another important aspect of the Hawking radiation is that it is
extremely sparse (1506.03975). The sparsity can be found by
integrating the flux of radiated particles through the cross-sectional
area.
We can define sparsity as:

η =
C

g

(
λ2
thermal

Aeff

)
(19)

where C is a dimensionless constant, g is the spin degeneracy
factor. Aeff is not the horizon, but it is related to it as
Aeff = 27A/4.
For massless bosons, λthermal/Aeff = 64π3/27 is much larger than
the classical range, which is generally unity.



SRGUP =
kB

λ
log

(
πλ

M2

m2
p

H(M) −
1

2
παλ log

(
M

M0

(√
4 − αm2

p + 2
))

+ 1

)
where H(M) =

√4 −
αm2

p

M2
+ 2

 (20)

TRGUP =
c2
(
2
(
πλM2H(M) + m2

p

)
− παλm2

p log
(

M
M0

H(M)
))

4πkBMH(M)
(21)

ηRGUP =
128π3Cm4

pM
2H(M)2

27g
(
2M2H(M) − αm2

p log
(

M
M0

H(M)
)) (

παλm2
p log

(
M
M0

H(M)
)
− 2

(
πλM2H(M) + m2

p

))2 (22)
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Implications
▶ For all analytic solutions λ → 0 limit yields Bekenstein

entropy with GUP corrections, while α → 0 limit gives the
classical version of the entropy.

▶ Entropy suppressed logarithmically (mimics an AdS blackhole)
for 0 < λ < 1.

▶ Like in the GUP corrected Bekenstein case around
M = αm2

p/4 there is a cut-off to the approach of GUP.
▶ The solutions yield complex values behind this value. This

”object” is called a black hole remnant
(gr-qc/0511054),(1908.03498). There are a lot of hypotheses
about their nature and existence, but for us, it is a relic of the
cutoff we use. The object after this point is up to QG to solve.

▶ There is a characteristic mass scale MRGUP where the black
hole becomes thermodynamically stable. It is the solution to
the following identity for the GUP case:.

λ ≈
m2

p

4πM2
+

3αm4
p

64πM4
+

αm4
p log(

4M
mp

)

32πM4
(23)



▶ The mass scale (or energy in a general sense) is a property of
Rényi entropy; however, Gup modifies this length scale.

▶ We see that introducing the non-extensivity parameter λ
decreases the sparsity profile of the black hole.

▶ That is the time frame between each successive photon in
lower, The thermal wavelength of associated photons is much
smaller, and black hole radiation is more classical (like a black
body).

ηRGUP =
128π3Cm4

pM
2H(M)2

27g
(
2M2H(M) − αm2

p log
(

M
M0

H(M)
)) (

παλm2
p log

(
M
M0

H(M)
)
− 2

(
πλM2H(M) + m2

p

))2 (24)



Conclusion

What have we done so far:
I. Çimdiker, M. P. Dabrowski and H. Gohar, “Equilibrium
temperature for black holes with nonextensive entropy,”
Eur. Phys. J. C 83 (2023) no.2, 169
doi:10.1140/epjc/s10052-023-11317-0
[arXiv:2208.04473 [gr-qc]].

There were inconsistencies in the non-extensive thermodynamics of
the black hole framework in many papers in the field.

▶ The main approach in the field was generalizing entropy while
using Hawking temperature to arrive at thermodynamic
quantities.

▶ By not using consistent thermodynamic quantities, many
authors would arrive at non-physical internal energies and
mass values, which are rich (!) from the physics side but
inconsistent in their foundations.



In our second paper

I. Cimidiker, M. P. Dabrowski and H. Gohar, “Generalized
uncertainty principle impact on nonextensive black hole
thermodynamics,”
Class. Quant. Grav. 40 (2023) no.14, 145001
doi:10.1088/1361-6382/acdb40
[arXiv:2301.00609 [gr-qc]].
We found and analyzed thermodynamic quantities with GUP
correction for all entropies that I (could not) mentioned in this talk.

Which are

▶ Tsallis-q Renyi

▶ Sharma-Mital

▶ Barrow

▶ Tsallis-Cirto

▶ Kaniadakis



Thank you for listening.



Heuristic approach to Thermodynamics
We can heuristically deduce the Hawking temperature through the HUP.

E = c∆p = kBT (25)

We can find the corresponding temperature around ∆x = 2GM/c2 as

T =
c2m2

p

8πMkB
where, mp =

√
ℏc
G

(26)

We can also find the associated entropy by following the Clausius formula.

S =

∫
c2

T (M)
dM → SB =

4πM2kB

m2
p

(27)

From here, using usual thermodynamic relations, we can find heat capacity as

C(M) = −
S′2(M)

S′′(M)
→ −

8kBM2π

m2
p

(28)

Furthermore, we can define thermal wavelength and sparsity as the separation between the successive quantas as

λt = 2π

(
ℏc
kBT

)
, η = C

(
λ2
t

gAeff

)
ηH =

64π3c4

27
(29)

For a Schwarzchild BH we got ηH , Which is constant and larger than a classical body sparsity, i.e. the sparsity of
Hawking radiation do not fit to a classical description.



GUP Corrected Shwarzchild Case

∆p = ∆x
ℏ

αl2p

1 ±

√√√√1 −
αl2p

(∆x)2

 →

TGup = THK(α,M) where, K(α,M) =
2

1 +
√

1 − α
4GM2

(30)

SGup =
SB

K
−

απ

2
log

[
4M

m0K

]
(31)

CGup = CSc

[
2 − K
K2

]
, ηGup =

ηH

K2

[
A

AGup

]
(32)



Generalised Uncertinity Principle

The generalized uncertainty principle (GUP) is a low-energy approach to Quantum Gravity. QM revolves around
non-commutative algebra of the position and momentum operators.

[x̂i , p̂k ] = iℏδik (33)

With the help of the deviation of the expectation values of two operators as

∆A∆B ≥
1

2
|⟨[Â, B̂]⟩| (34)

one can deduct the Heisenberg uncertainty relation (HUP).

∆p∆x ≥
ℏ
2

(35)

GUP can be invoked by deforming the regular QM algebra with a deformation parameter κ as

[x̂i , x̂j ] = −
( ℏ

κc

)2

iϵijk Jk , [x̂i , p̂j ] = iℏδij

√
1 +

p2

κ2c2
(36)

∆x∆p ≥ ℏ[1 + α0

l2p

ℏ2
(∆p)2] (37)

At the α0 → 0 limit, and also at the low-energy levels where O(∆p)2 ≈ 0, we obtain HUP.



What q stands for → Bias
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Figure: pq for several values of q. A larger value of q biases the
probability, while smaller value of q unbiases it.



Sharma-Mittal Entropy

SSMGUP =
kB

R

(πλM2H(M)

m2
p

−
1

2
παλ log

(
M

M0

H(M)

)
+ 1

)R/λ

− 1

 (38)

TSMGUP =

c2m2
p

(
πλM2H(M)

m2
p

− 1
2
παλ log

(
M
M0

H(M)
)
+ 1

)1− R
λ

2πkBMH(M)
(39)

ηSMGUP =

16π4CkBM2H(M)2

(
πλM2H(M)

m2
p

− 1
2
παλ log

(
M
M0

H(M)
)
+ 1

) 2R
λ

−2

27gm2
p

(
πkBM2H(M)

m2
p

− 1
2
παkB log

(
M
M0

H(M)
)) (40)



Sharma-Mittal Entropy
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Sharma-Mittal Entropy

▶ This time in R → 0 is limit Rènyi entropy, while in R → λ is
Tsallis-q entropy (which was assumed to be in the form of
Bekenstein entropy).

▶ Depending on the parameters,
▶ λ− 2R < 0 leads to an exponential decrease in temperature as

a function of M.
▶ λ− 2R > 0 mimics Renyi temperature. In this case, there is a

turning point in temperature LSM∗ where it differentiates two
different regions. Above LSM∗ the temperature increases
(exponentially or sub linearly depending on the parameters),
and below it decreases exponentially with energy.

▶ Depending on the relation between R and λ, the sparsity
profile either mimics Rènyi or Tsallis-q.



Tsallis-Cirto and Barrow

Tsallis and Cirto in (81202.2154) argued for another form of
generalization in order to sustain the Legendre structure of
thermodynamics. We are interested in the microstate dependence
of

W (N) ≈ CνN
γ
(C > 0, ν > 1; 0 < γ < 1) (41)

where the following holds

BNτ << CνN
γ
<< AξN (42)

where entropy associated with γ → 1 is associated with Boltzman
Gibbs entropy. For 0 < γ < 1 following entropy can be written as:

Sδ = kB

W∑
i

pi (log
1

pi
)δ where (δ > 0) (43)



Which results under equiprobability in

Sδ = kB logδ W (44)

Which has the following composition rule:

1

kB
Sδ(A+ B) = ([

Sδ
kB

]1/δ + [
Sδ(B)

kB
]1/δ)δ (45)

Notice that one can get the physical temperature by minimizing
the composition rule (equilibrium happens at maximized entropy).
Thus, the dependence of the entropy on microstates is different.



Also, Barrow in (2004.09444) creates a three-dimensional analog
of a ”Koch Swowflake” to fractalize the surface of the black hole.
Consider that the black hole surface would contain bubbles like a
fractal. In each iteration, we would have N new black hole bubbles
with radius scales with a factor of λ. The total area would yield.

AT = 4πr2+

∞∑
0

(Nλ2)n →
4πr2+

1− Nλ2
(46)

If the surface is a pure fractal, the area will vary with the radius as
r∆+2, which yields an entropy in the form.

SB = (A/Ap)
1+∆

2 (47)

Which has the same form if the former one is Bekenstein entropy.



Tsallis Cirto and Barrow (∆ = 1 + δ/2)

SδGUP = kB

(
πM2kBH(M)

m2
p

−
1

2
πα log

(
MkBH(M)

M0

))δ

(48)

TδGUP =

c2m2
p

(
πM2kBH(M)

m2
p

− 1
2
πα log

(
MkBH(M)

M0

))1−δ

2πδkBMkBH(M)
(49)

ηδGUP =

64π3Cδ2

(
πM2kBH(M)

m2
p

− 1
2
πα log

(
MkBH(M)

M0

))2(δ−1)

27g
(50)



Tsallis Cirto and Barrow (∆ = 1 + δ/2)
δ=0.4

δ=0.7

δ=1.5

δ=0.4

δ=0.7

δ=1.5

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

M

S
δ

(a) Entopy

δ=0.4

δ=0.7

δ=1.5

δ=0.4

δ=0.7

δ=1.5

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M

T
δ

(b) Temprature

δ=0.8

δ=1

δ=1.1

δ=0.8

δ=1

δ=1.1

0.0 0.5 1.0 1.5 2.0
0

50

100

150

200

M

η
δ

(a) sparsity

δ=0.4

δ=0.7

δ=1.5

δ=0.4

δ=0.7

δ=1.5

0.0 0.5 1.0 1.5 2.0
-20

-10

0

10

20

M

C
δ

(b) Heat Capacity



Tsallis Cirto and Barrow (∆ = 1 + δ/2)

▶ δ → 1 limit yields the Tsallis-q entropy.
▶ δ characterizes the profile as follows,

▶ δ > 1/2 → Quadratic
▶ δ < 1/2 → Sublinear

▶ Altought there is no characteristic length scale in Tsallis-Cirto
type entropy in the classical case, there is one in the GUP
corrected case.

▶ It can be found for the energy solution for δ = SδGUP/CδGUP

where C is the heat capacity.

▶ It is interesting that a small deviation in δ below the natural
value of 1 can lead to less sparse radiation for classical black
holes.


