Equation of State of Strongly Interacting Matter for Hydrodynamical Simulations of Heavy-Ion Collisions

Oleksandr Vitiuk¹, David Blaschke^{1,2,3}

¹University of Wroclaw, Poland ²Helmholtz-Zentrum Dresden-Rossendorf, Germany ³Center for Advanced Systems Understanding, Germany

63rd Cracow School of Theoretical Physics September 18th, 2023, Zakopane, Poland

Motivation

We need good models and tools for simulations, comparison with experimental data and analysis!

[Figures: Universe 4 (2018) 52 & PoS (KMI 2013) 025]

The main goal of heavy-ion collisions experiments is to gain a better understanding of the theory of strong interactions – QCD, by detecting critical phenomena.

Exploring of the QCD phase diagram:

- Detect signals of deconfinement PT
- Detect signals of (partial) chiral symmetry restoration
- Locate (tri)critical endpoint(s) if such exists

Motivation

(Is needed to build closed system of equations Contains all the information about the thermodynamic properties of the system

Modelling heavy-ion collisions with different EoS, one can perform a-posteriori analyses of the QCD matter properties in the unsolvable regions of the phase diagram

EoS

EoS Construction: Idea

Oleksandr Vitiuk

EoS Construction: pQCD EoS

pQCD EoS known up to the $O(g^{6}\ln g)$ [PRD 68, 054017 (2003)]

$$P_{pQCD} = \sum_{i=0}^{6} g^i F_i(T,\mu)$$

 g^{6} contribution is a free parameter [PRD 67, 105008 (2003)]

$$P_{pQCD} = \sum_{i=0}^{6} g^{i} F_{i}(T,\mu) \longrightarrow P_{pQCD} = \sum_{i=0}^{6} g^{i} F_{i}(T,\mu) + g^{6}C_{6}$$

Fastest apparent convergence renormalization scale:

$$\Lambda = 1.8688 \times \mathbf{C}_{\Lambda} \pi T e^{-\frac{1}{27} \sum_{f} \aleph(\hat{\mu}_{f})}, \qquad \hat{\mu}_{f} = \frac{\mu_{f}}{2\pi T}, \qquad \aleph(\hat{\mu}_{f}) = \Psi\left(\frac{1}{2} + i\hat{\mu}_{f}\right) + \Psi\left(\frac{1}{2} - i\hat{\mu}_{f}\right)$$

Three-loop running coupling: $t = \ln \Lambda^2 / \Lambda_{MS}^2$

$$\alpha_s = \frac{1}{b_0 t} \left(1 - \frac{b_1 \ln t}{b_0^2 t} - \frac{b_1^2 (\ln^2 t - \ln t - 1) + b_0 b_2}{b_0^4 t^2} - \frac{b_1^3 (\ln^3 t - 2.5 \ln^2 t - 2 \ln t + 0.5) + 3b_0 b_1 b_2 \ln t}{b_0^6 t^3} \right)$$

EoS Construction

pQCD and HRG EoS are very close to each other over the wide range of chemical potentials

Extract "distance of closest approach" as the function of μ_B

 $F(T, \mu_B) = T_0 - a^2 \mu_B^2 - b^4 \mu_B^4$ $T_0 = 190.7 \text{ MeV}, a = 0.00115 \text{ MeV}^{-1/2},$ $b = 0.000256 \text{ MeV}^{-3/4}, \Delta T = 7.5 \text{ MeV}$

Results

pQCD and HRG EoS are very close to each other over the wide range of chemical potentials

Extract "distance of closest approach" as the function of μ_B

 $F(T, \mu_B) = T_0 - a^2 \mu_B^2 - b^4 \mu_B^4$ $T_0 = 190.7 \text{ MeV}, a = 0.00115 \text{ MeV}^{-1/2},$ $b = 0.000256 \text{ MeV}^{-3/4}, \Delta T = 7.5 \text{ MeV}$ Results

EoS Construction: TZIS

$$P = \begin{cases} \tilde{P}_h, & \mu_h < \mu_B < \mu_c \\ \tilde{P}_q, & \mu_c < \mu_B < \mu_q \\ P_{Smooth}, & \text{otherwise} \end{cases}$$

Taylor expansion:

$$\tilde{P}_i \approx a_i + (\mu_B - \mu_i)b_i + (\mu_B - \mu_i)^2 c_i,$$

$$\tilde{n}_i \approx b_i + 2(\mu_B - \mu_i)c_i, \quad i = h, q$$

Boundary conditions:

$$\tilde{P}_i(\mu_i) = P_i(\mu_i) \Rightarrow a_i = P_i(\mu_i) = P_i$$

$$\tilde{n}_i(\mu_i) = n_i(\mu_i) \Rightarrow b_i = n_i(\mu_i) = n_i$$

1st order phase transition:

$$\begin{split} \tilde{P}_{h}(\mu_{c}) &= \tilde{P}_{q}(\mu_{c}) \Rightarrow (\mu_{c} - \mu_{h})^{2} c_{h} - (\mu_{c} - \mu_{q})^{2} c_{q} = P_{q} - P_{h} + (\mu_{c} - \mu_{q}) n_{q} - (\mu_{c} - \mu_{h}) n_{h} \\ \tilde{n}_{h}(\mu_{c}) &= \tilde{n}_{q}(\mu_{c}) - \Delta n \Rightarrow 2(\mu_{c} - \mu_{h}) c_{h} - 2(\mu_{c} - \mu_{q}) c_{q} = n_{q} - n_{h} - \Delta n \quad \Delta n = n_{0} \left| \frac{T - T_{c}}{T_{c}} \right|^{0.3265} \end{split}$$

T [MeV]

μ_B [MeV]

EoS Construction: TZIS

$$P = \begin{cases} \tilde{P}_h, & \mu_h < \mu_B < \mu_c \\ \tilde{P}_q, & \mu_c < \mu_B < \mu_q \\ P_{Smooth}, & \text{otherwise} \end{cases}$$

Taylor expansion:

$$\begin{split} \tilde{P}_i &\approx a_i + (\mu_B - \mu_i)b_i + (\mu_B - \mu_i)^2 c_i, \\ \tilde{n}_i &\approx b_i + 2(\mu_B - \mu_i)c_i, \quad i = h, q \\ \text{Boundary conditions:} \\ \tilde{P}_i(\mu_i) &= P_i(\mu_i) \Rightarrow a_i = P_i(\mu_i) = P_i \\ \tilde{n}_i(\mu_i) &= n_i(\mu_i) \Rightarrow b_i = n_i(\mu_i) = n_i \\ 1^{\text{st}} \text{ order phase transition:} \end{split}$$

$$\tilde{P}_{h}(\mu_{c}) = \tilde{P}_{q}(\mu_{c}) \Rightarrow (\mu_{c} - \mu_{h})^{2} c_{h} - (\mu_{c} - \mu_{q})^{2} c_{q} = P_{q} - P_{h} + (\mu_{c} - \mu_{q}) n_{q} - (\mu_{c} - \mu_{h}) n_{h}$$

$$\tilde{n}_{h}(\mu_{c}) = \tilde{n}_{q}(\mu_{c}) - \Delta n \Rightarrow 2(\mu_{c} - \mu_{h}) c_{h} - 2(\mu_{c} - \mu_{q}) c_{q} = n_{q} - n_{h} - \Delta n \qquad \Delta n = n_{0} \left| \frac{T - T_{c}}{T_{c}} \right|^{0.3265}$$

Conclusions & Outlook

Conclusions:

- We presented an effective equation of state of strongly interacting matter based on switching function approach
- The transition from hadrons to quark-gluon EoS tuned to describe the IQCD Data
- The obtained equation of state shows good behaviour at sufficiently high values of μ_B and can be used for hydrodynamic simulations of relativistic heavy ion collisions
- 1st order phase transition and critical endpoint was added to background EoS using two zone interpolation scheme

<u>Outlook:</u>

 Goal: Construct a tool to investigate the correlation between the existence and position of the critical endpoint and observables in heavy ion collisions