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History

Cagniard de la Tour (1822): discovered continuos transition from liquid
to vapour by heating water, alcohol, etc. in a sealed container.
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What’s in a name?

Faraday (1844) – liquefying gases:

“Cagniard de la Tour made an experiment some years ago which gave
me occasion to want a new word.”

". . . the beauty of the experiment & its general results has always in my
eyes been so great that I have constantly regretted we had not a word
wherewith we might talk & write freely about it."

“Cagniard de la Tour point”

Mendeleev (1860) – measured vanishing of liquid-vapour sur-
face tension: “Absolute boiling temperature”.

Andrews (1869) – systematic studies of many substances es-
tablished continuity of vapour-liquid phases as a universal phe-
nomenon. Coined the name “critical point”.
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Theory

van der Waals (1879) –
“On the continuity of the gas and liquid state”
(PhD thesis) – e.o.s. with a critical point.

Law of corresponding states.

Smoluchowski, Einstein (1908,1910) –
explained critical opalescence as a fluctuation phenomenon.

Landau – classical theory of critical phenomena.

Fisher, Kadanoff, Wilson – fluctuation theory, scaling, RG (QFT).

Universality extends also to ferromagnets (Curie point).
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Critical opalescence

T > Tc T < Tc

https://www.youtube.com/watch?v=cSliO89x7UU
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Cagniard de la Tour experiment as a density scan

!
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Critical point
– end of phase coexistence –
is a ubiquitous phenomenon

Water:

Is there one in QCD?
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Physics of QCD

QCD is an inherently relativistic theory of a fundamental force.
Part of the Standard Model.

Constituents of QCD – quarks and gluons – are (almost) mass-
less. But hadrons (quantum excitations of QCD) are massive.

mproton = EQCD/c
2

This is the origin of almost all of the visible mass in the Universe.

Color charges are “confined” and color forces are “hidden” within
hadrons.

High-energy collisions expose color degrees of freedom and
high T environment “liberates” color forces (gluons) and color
charges.

The resulting new form of matter is Quark-Gluon Plasma.
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Is there a CP between QGP and hadron gas phases?

Q1: Can the two phases continuously transform into each other? Yes.
Lattice QCD at µB = 0 – a crossover.
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QCD in crossover region: no quasiparticles (not hadrons, not quarks/gluons).
Strongly interacting matter (sQGP). More a liquid than a gas.
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Is there a CP between QGP and hadron gas phases?

Q2: Is there phase coexistence, i.e., 1st order transition? Likely.

Unfortunately, lattice QCD cannot reach beyond µB ∼ 2T .
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But 1st order transition (and thus C.P.) is ubiquitous in models of QCD:
NJL, RM, Holography, Strong coupl. Lattice QCD, . . .
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How can one discover the QCD critical point?

Essentially two approaches to discovering the QCD critical point.
Each with its own challenges.

Lattice simulations.

The sign problem restricts reliable lattice calculations to µB = 0.

Under different assumptions one can estimate the position of the
critical point, assuming it exists, by extrapolation from µ = 0.

Not reliable (yet).

Recent results put the point at µB > 500 MeV and T < 130 MeV.

Heavy-ion collisions. Non-equilibrium.
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Heavy-ion collisions vs the Big Bang

Similarity: expansion, accompanied by cooling, followed by freezeout.

CMB vs particles detected after h.i.c. – both thermally distributed.

more
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Scanning the QCD phase diagram

Difference: tunable parameter µB via
√
s.
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Fluctuations in heavy-ion collisions

Another difference: single Event vs many repeated events
(cosmic variance vs event-by-event fluctuations)

Heavy-ion collision fireballs are large (thermodynamic),
but not too large (N ∼ 102 − 104 particles)

The fluctuations are small
(1/
√
N ), but measurable.

Close to Gaussian, but non-
Gaussianity is also measurable.

If there is a critical point fluctuation measures
must be non-monotonic vs

√
s [PRL81(1998)4816]
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Fluctuations and the critical point
Equilibrium = maximum entropy.

P (σ) ∼ eS(σ) (Einstein 1910)

At the critical point P (σ) “flattens”. And χ→∞ as V →∞.

CLT?

δσ is not an average of∞ many uncorrelated contributions: ξ →∞

In fact, 〈δσ2〉 ∼ ξ2/V .
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Higher order cumulants

n > 2 cumulants (shape of P (σ)) depend stronger on ξ.

E.g., 〈σ2〉 ∼ ξ2 while κ4 = 〈σ4〉c ∼ ξ7 [PRL102(2009)032301]

For n > 2, sign depends on which side of the CP we are.

This dependence is also universal. [PRL107(2011)052301]

Using Ising model:
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Beam Energy Scan I: intriguing hints

κ4 vs µB and T :

freezeout

more
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κ4 vs µB and T :

freezeout

more
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Beam Energy Scan I: intriguing hints

κ4 vs µB and T :

freezeout

more
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Theory: beyond the equilibrium assumption

Predictions assume equilibrium, but in heavy-ion collisions

non-equilibrium physics is essential,
especially near the critical point.

Critical slowing down: certain slow degrees of freedom are further
away from equilibrium. These degrees of freedom are directly related
to fluctuations.

Challenge: develop hydrodynamics with fluctuations capable of
describing non-equilibrium effects on fluctuation signatures of CP.
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What is hydrodynamics and why randomness

Fluid left alone tends to equilibrium.

There are two time scales:

1) local thermodynamic equilibration – fast;

2) achieving homogenious conditions – slow.

Hydrodynamics describes the slower process:
transport of conserved quantities.

It is a coarse-grained (effective) theory.
The faster (microscopic) d.o.f. act as the (thermal) “noise”,
responsible for fluctuations in thermo- and hydrodynamics.

Scale hierarchy in heavy-ion collisions:
fireball size ∼ 10− 15 fm vs microscale ∼ 0.5− 1 fm
– enough for hydrodynamics, but fluctuations are important.
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Randomness in hydrodynamics

Hydro variables obey conservation eqs (∂µTµν = 0, ∂µJµ = 0):

∂tψ = −∇ · Flux[ψ];

where ψ is an averaged conserved density, e.g., T i0, J0,
and Flux[ψ] is the corresponding averaged flux, T ij , J i.

Operators T i0, J0 coarse-grained over “hydrodynamic cells” b,
`wave � b� `mic, are stochastic variables and obey

∂tψ̆ = −∇ ·
(

Flux[ψ̆] + Noise
)

(Landau-Lifshits)
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Randomness in hydrodynamics

Stochastic description

Random hydro variables: ψ̆

∂tψ̆ = −∇ ·
(

Flux[ψ̆] + Noise
)

+ fewer variables and eqs.

− stochastic

− cutoff dependence
(infinite noise)

Landau-Lifshits, Kapusta et al,
Gale et al, Nahrgang et al, . . .

Deterministic description

ψ ≡ 〈ψ̆〉, G ≡ 〈ψ̆ψ̆〉, etc.

∂tψ = −∇ · Flux[ψ;G];

∂tG = −2Γ(G− Ḡ[ψ]);

− more variables and eqs.

+ deterministic

+ no cutoff dependence
after renormalization

Andreev, Akamatsu et al, Yin et al,
An et al, Martinez et al, . . .
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Hydro+

Yin, MS, 1712.10305

Near CP, for some d.o.f., τequilibration � τmicro ∼ 1/T .
Hydrodynamics proper breaks down at τequilibration ∼ ξ3.

But it can be extended to shorter times by adding additional d.o.f.

At the CP, the slowest (i.e., most out of equilibrium) new d.o.f. is
the 2-pt function 〈δmδm〉 of the slowest hydro variable m ≡ s/n:

φQ(x) =

∫
∆x
〈δm (x1) δm (x2)〉 eiQ·∆x

where x = (x1 + x2)/2 and ∆x = x1 − x2.

In equilibrium fluctuations are determined by thermodynamics:
φ̄Q =

cp
n2
f(Q) (f(0) = 1).

more
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Relaxation of fluctuations towards equilibrium

As usual, equilibration maximizes entropy S =
∑

i pi log(1/pi):

s(+)(ε, n, φQ) = s(ε, n) +
1

2

∫
Q

(
log

φQ

φ̄Q
−
φQ

φ̄Q
+ 1

)
︸ ︷︷ ︸
entropy relative to equilibrium

more

The equation for φQ is a relaxation equation with rate

Γ(Q) ≈ 2DQ2 for Q� ξ−1, D ∼ 1/ξ.

Impact of fluctuations on hydrodynamics:

“Renormalization” of bulk viscosity ζ ∼ 1/Γξ ∼ ξ3.

(Non-analytic) frequency dependence of ζ(ω) for ω � Γξ.
“Long-time tails”
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General covariant formalism

An, Basar, Yee, MS, 1902.09517, 1912.13456, 2212.14029

Hydro+ is part of a more general theory for critical as well as
non-critical fluctuations we would like to formulate.

Expand stochastic hydro eqs. in {δm, δp, δuµ} ∼ φ

Flux[ψ̆] = Flux[ψ + φ] = Flux[ψ] + Flux’[ψ]φ+ 1
2Flux”[ψ]φφ+ . . .

and then average,
using equal-time correlator G = 〈φφ〉 as a new variable

What is “equal-time” in relativistic hydro?

〈φ(x)φ(x)〉 is singular (cutoff dependent). Renormalization?
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Local equal time and confluent derivative

G = 〈φ(t,x1)φ(t,x2)〉. In which frame?

Natural choice is local rest frame, u(x) at midpoint x ≡ x1+x2
2 .

Let y ≡ x1 − x2. How should we take (∂/∂x)G(x; y) at “fixed y”?

not asG(x+∆x; y)−G(x; y)

But as G(x+ ∆x; Λ(∆x)y)−G(x, y) – confluent derivative.

more
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Renormalization

Expansion of 〈Tµν〉 in fluctuations φ contains more

〈φ(x)φ(x)〉 = G(x; 0) =

∫
d3q

(2π)3
W (x; q).

The integral is divergent (in equilibrium G(0)(x; y) ∼ δ3(y)).

Such short-distance singularities can be absorbed into redefin-
ion of EOS (i.e., pressure) and transport coefficients:

〈Tµν(x)〉 = εuµuν + p(ε, n)∆µν + Πµν +
{
G(x; 0)

}
= εRu

µ
Ru

ν + pR(εR, nR)∆µν
R + Πµν

R +
{
GR(x; 0)

}
.

more
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Phonon kinetics

An et al 1902.09517

What is the meaning of W (x; q) – Wigner transform of G(x; y)?

The ’longitudinal’ components WL(x, q), corresponding to pres-
sure and velocity fluctuations at δ(s/n) = 0 (i.e., sound-sound),
obey relativistic kinetic equation for phonons.
E = cs(x)|q| – dispersion relation in local rest frame.
WL(x, q) corresponds to phase space phonon density (times E).

In a non-homogeneous fluid, the phonons experience gradient
as well as inertial, Coriolis and Hubble forces. Due to accelera-
tion, rotation and expansion of the fluid respectively.

more
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non-Gaussian fluctuations are sensitive signatures of the critical point
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Deterministic approach to non-Gaussian fluctuations

An et al 2009.10742, PRL

Infinite hierarchy of coupled equations
for cumulants Gc

n ≡ 〈δψ̆ . . . δψ̆︸ ︷︷ ︸
n

〉c:

∂tψ = −∇ · Flux[ψ,G,Gc
3, G

c
4, . . .];

∂tG = F[ψ,G,Gc
3, G

c
4, . . .];

∂tG
c
3 = F3[ψ,G,Gc

3, G
c
4, . . .];

...
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Controlled perturbation theory

Small fluctuations are almost Gaussian

Introduce expansion parameter ε, so that δψ̆ ∼
√
ε.

Then Gc
n ≡ εn−1 and to leading order in ε:

∂tψ = −∇ · Flux[ψ] +O(ε);

∂tG = −2Γ(G− Ḡ[ψ]) +O(ε2);

...

∂tG
c
n = −nΓ(Gc

n − Ḡc
n[ψ,G, . . . , Gc

n−1]) +O(εn);

To leading order, the equations are iterative and “linear”.

In hydrodynamics the small parameter is (q/Λ)3, i.e.,
fluctuation wavelength 1/q � size of hydro cell 1/Λ (UV cutoff).
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Diagrammatic representation

Systematically expand in ε and truncate at leading order:

Leading order in ε ⇔ tree diagrams.

In higher-orders, loops describe feedback of fluctuations (e.g., long-time tails).
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Generalizing Wigner transform

Definition:

Wn(x; q1, . . . , qn) ≡
∫
dy3

1 . . .

∫
dy3

nGn (x + y1, . . . ,x + yn)

δ(3)
(y1 + . . .+ yn

n

)
e−i(q1·y1+...+qn·yn);

Gn (x1, . . . ,xn) =

∫
dq3

1

(2π)3
. . .

∫
dq3
n

(2π)3
Wn(x, q1, . . . , qn)

δ(3)
(q1 + . . .+ qn

2π

)
ei(q1·x1+...+qn·xn) .

Properties similar to the usual (n = 2) Wigner transform.

Takes advantage of the scale separation:
long-scale x-dependence and short-scale yn-dependence.
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Example: expansion through a critical region

An et al 2009.10742, PRL

Two main features:

Lag, ”memory”.

Smaller Q – slower evolution.
Conservation laws.

Critical point signatures depend
on the scale of fluctuations
probed.

equilibrium
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Experiments measure particles, not hydro variables
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Freezing out (critical) hydrodynamic fluctuations

Cooper-Frye deals with with 1-particle observables.
We need 2-particle (and n-particle) correlations.
Critical contribution to fluctuations of f(x, p): 1104.1627, PRL

δf =
∂f

∂σ
δσ, via δm = gδσ.

〈δσδσ〉 ∼ F.T. φQ

Critical contribution to observables

〈δN2〉 =

∫
p1

∫
p2

〈δf1δf2〉 ∼
∫
p1

∫
p2

∂f1

∂σ

∂f2

∂σ
F.T. φQ︸︷︷︸

Hydro+

EOS, transport coeffs. −→ Hydro+ −→ Observables

An example of implementation: Pradeep et al, 2204.00639, PRD
more
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How do the non-gaussian fluctuations freeze out?
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Maximum entropy freezeout of fluctuations
Pradeep, MS, 2211.09142, PRL

Freezeout: translation of correlators of hydrodynamic fluctua-
tions (n-point functions) Hn = 〈δε . . . δε〉
to particle correlators Gn = 〈δf . . . δf〉. more

Conservation laws relate momentum space integrals of Gn to
Hn, but there are∞many possibilities/solutions for Gn matching
these constraints. Because f and Gn are functions of p’s in
addition to x’s.

There is a special solution which maximizes the entropy!

for n = 1 equivalent to Cooper-Frye
for critical fluctuations equivalent to the σ field coupling
but applies much more generally

Work in progress – implement in a hydro model and estimate
nonequilibrium expectations for multiplicity cumulants in BES

(Karthein, Pradeep, MS, Rajagopal, Yin)
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Some open questions in fluctuation hydrodynamics

Fluctuation feedback – loops, renormalization, etc.

Relation to path-integral (Schwinger-Keldysh) formulation of hy-
drodynamics.

First-order phase transition and fluctuations

. . .
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Summary

Is there a critical point between QGP and hadron gas phases?

Heavy-Ion collision experiments may answer.

The quest for the QCD critical point challenges us to creatively
apply existing concepts and develop new ideas.

Non-monotonic behavior of fluctuation measures (especially
non-Gaussian) – universal signatures of a critical point.

In H.I.C., the signatures of criticality are subject to non-
equilibrium effects. The interplay of fluctuations and non-
equilibrium dynamics opens interesting questions.
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More
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QCD and observables near CP

backκ4 vs µB and T :

(r, h)→ (µ− µCP, T − TCP)

Experiments do not measure σ.
Fluctuations of σ are “imprinted” on
hadron multiplicity fluctuations:

κn(N) = N +O(κn(σ))

MS, 1104.1627
Pradeep et al 2109.13188
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Heavy-Ion Collisions. Thermalization. Freezeout.

STAR ALICE

“Little Bang”

The final state looks thermal.

Similar to CMB.
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(Becattini et al) back

Assumption for the next part of this talk
H.I.C. are sufficiently close to equilibrium that we can study
thermodynamics at freezeout T and µB — as a first approximation.
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What are the additional slow modes?

An equilibrium thermodynamic state is completely back

characterized by average values ε̄, n̄, . . ..

Fluctuations of ε, n are given by eos: P ∼ exp(Seq(ε, n)).

Hydrodynamics describes partial-equilibrium states,
i.e., equilibrium is only local, because equilibration time ∼ L2.

Fluctuations in such states are not necessarily in equilibrium.

Thus measures of fluctuations, e.g., 2pt functions, are additional
variables needed to characterize a partial-equilibrium state.
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New variables in Hydro+

At the CP the new variable is 2-pt function 〈δmδm〉:

φQ(x) =

∫
∆x

〈
δm

(
x +

∆x

2

)
δm

(
x− ∆x

2

)〉
eiQ·∆x

where m ≡ n/s (“baryon asymmetry”) – the slowest mode.

Wigner transformed because dependence on x (∼ L) is much
slower than on ∆x (∼ ξ,

√
L).

back
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Relaxation of fluctuations towards equilibrium

As usual, relaxation toward equilibrium, or maximum of entropy:

s(+)(ε, n, φQ) = s(ε, n) +
1

2

∫
Q

(
1−

φQ

φ̄Q
+ log

φQ

φ̄Q

)

Entropy = log # of states, which depends on
the width of P (mQ), i.e., φQ:

Wider distribution – more microstates
– more entropy: log(φ/φ̄)1/2 ;

vs
Penalty for larger deviations from
peak entropy (at δm = 0): −(1/2)φ/φ̄.

- - - equilibrium (variance φ̄)

—- actual (variance φ)

Maximimum of s(+) is achieved at φ = φ̄. back
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Hydro+ mode kinetics

The equation for φQ is a relaxation equation:

(u · ∂)φQ = −γπ(Q)πQ, πQ = −
(
∂s(+)

∂φQ

)
ε,n

γπ(Q) is known from mode-coupling calculation in ‘model H’
(Kawasaki). It is universal.

Characteristic rate: at Q ∼ ξ−1, γπ(Q) ∼ ξ−3.

Vanishes at CP, leading to breakdown of hydrodynamics.
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Confluent derivative, connection and correlator

Take out dependence of components of φ due to change of u(x):

∆x · ∇̄φ = Λ(∆x)φ(x+ ∆x)− φ(x)

Confluent two-point correlator:

Ḡ(x, y) = Λ(x1 − x) 〈φ(x1)φ(x2)〉Λ(x2 − x)T

(boost to u(x) – rest frame at midpoint)

∇̄µḠAB = ∂µḠAB − ω̄CµAḠCB − ω̄CµBḠAC − ω̊bµa ya
∂

∂yb
ḠAB .

Connection ω̄ corresponds to the boost Λ. back

Connection ω̊ makes sure derivative is independent of the choice of
basis triad ea(x) needed to express y ≡ x1 − x2 in local rest frame.

We then define the Wigner transform WAB(x; q) of ḠAB(x; y).
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Renormalization

Expansion of 〈Tµν〉 contains 〈φ(x)φ(x)〉 = G(x; 0) =
∫ d3q

(2π)3 W (x; q).

This integral is divergent (equilibrium G(0)(x; y) ∼ δ3(y)). back

W (x, q) ∼ W (0)︸ ︷︷ ︸
Tw

+ W (1)︸ ︷︷ ︸
∂u/q2

+ W̃

(∼“OPE” or gradient expansion)

〈Tµν(x)〉 = εuµuν + p(ε, n)∆µν + Πµν +
{
G(x, 0)

}
= εRu

µ
Ru

ν + pR(εR, nR)∆µν
R + Πµν

R +
{
G̃(x, 0)

}
.
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Renormalized e.o.s. and transport coefficients

Fluctuation corrections to kinetic coefficients are positive. back

Corrections to pressure and bulk viscosity vanish for conformal e.o.s.

pR(εR, nR) = p(εR, nR) +
TΛ3

6π2

(
(1− c2s − 2Ṫ + ċs) +

1

2
(1− ċp)

)
,

ηR = η +
TΛ

30π2

(
1

γL
+

7

2γη

)
,

ζR = ζ +
TΛ

18π2

(
1

γL
(1− 3Ṫ + 3ċs)

2 +
2

γη

(
1− 3

2
(Ṫ + c2s)

)2

+
9

4γλ
(1− ċp)2

)
,

λR = λ+
T 2n2Λ

3π2w2

(
cpT

(γη + γλ)w
+

c2s
2γL

)
.

γη ≡
η

w
, γζ ≡

ζ

w
, γλ ≡

κ

cp
= D , Ẋ ≡

(
∂ logX

∂ log s

)
m

.
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Phonon kinetic equation

The components of W (x, q), corresponding to p and uµ fluctua-
tions at δ(s/n) = 0, obey (NL ≡WL/(wcs|q|))[

(u+ v) · ∇̄+ f · ∂
∂q

]
NL︸ ︷︷ ︸

L[NL] – Liouville op.

= −γLq2

(
NL −

T

cs|q|︸ ︷︷ ︸
N

(0)
L

)

Kinetic eq. for phonons with E = cs|q|, v = ∂E/∂q

fµ = −E(aµ + 2vνωνµ)︸ ︷︷ ︸
inertial + Coriolis

−qν∂⊥µuν︸ ︷︷ ︸
“Hubble”

−∇̄⊥µE .

NL – phonon distribution function, relaxes to Bose-distribution.

Note: Lots of algebra with many miraculous cancellations.
back
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Freeze out in Hydro+: model calculation and lessons

Pradeep et al, 2204.00639, PRD

Effect of conservation laws:

particle (anti)correlations

suppression relative to equilib-
rium critical expectations

D0 = 1 fm

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

Δy

C˜
p

critical point

(ξmax – how close fireball gets to CP; Tf – how long it evolves after passing CP.)

Signal less sensitive to Tfreezeout due to noneq. effects. back
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Earlier work, problems and questions

“Fluctuating Cooper-Frye:” Kapusta-Muller-MS 2011

δfA =
(
δα ∂

∂α + δβ ∂
∂β + δu ∂

∂u

)
fA(α, β, u)

Then, multiplicity fluctuation correlator:

〈δfAδfB〉 = 〈δαδα〉︸ ︷︷ ︸
from hydro

(
∂
∂αfA

) (
∂
∂αfB

)
+ . . . (∗)

Problem:
consider ideal gas, no correlations, i.e. 〈fAfB〉 = δABfA

but there are fluctuations of δα, δβ, etc. even in ideal gas ⇒
equation (∗) produces incorrect result: spurious correlations.
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Source of the problem and a solution

Pairs of correlated particles erroneously include “pairs” made of
the same particle counted twice.

A solution Li-Springer-MS ’13, Plumberg-Kapusta ’20
for charge fluctuations – subtract the contribution of ideal gas
to 〈δnδn〉 in hydrodynamics and apply equation (∗) only to the
remainder:

〈δnδn〉 ≡ 〈δnδn〉ideal + ∆〈δnδn〉

〈δfAδfB〉 = δABfA + ∆〈δnδn〉
(
∂

∂n
fA

)(
∂

∂n
fB

)
︸ ︷︷ ︸

balance function

Similarly, for critical contribution to fluctuations,
〈δσδσ〉critical ∼ ξ2 translates into deviation from baseline:

〈δfAδfB〉 = δABfA︸ ︷︷ ︸
baseline

+ O(ξ2)︸ ︷︷ ︸
critical contribution

MS-Rajagopal-Shuryak 1999
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Thermal smearing and “self-correlations”
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Open questions

How to deal with

Temperature, velocity fluctuations?

Non-critical fluctuations?

Non-gaussian fluctuations?

Maximum entropy freezeout: Pradeep-MS 2211.09142
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Revisit one-point/single-particle observables

Locally matching conserved quantities before/after freezeout:

n(x) =
∑

A qAfA(x) and ε(x)uµ(x) =
∑

A p
µ
AfA(x).

Problem: these equations for fA have infinitely many solutions.

Which solution maximizes Bolzmann entropy?
S0 = −

∑
A fA log fA

Answer: fA = eαAqA+βu·pA — Cooper-Frye.

Matching also dissipative viscous stress and diffusive current
gives fA = eαAqA+βu·pA + ∆fA︸︷︷︸

non-equilibrium
correction

. (Everett-Chattopadhyay-Heinz 2021)

Fluctuations? Pradeep-MS 2022
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Revisit one-point/single-particle observables

Locally matching conserved quantities before/after freezeout:

n(x) =
∑

A qAfA(x) and ε(x)uµ(x) =
∑

A p
µ
AfA(x).

Problem: these equations for fA have infinitely many solutions.

Which solution maximizes Bolzmann entropy?
S0 = −

∑
A fA log fA

Answer: fA = eαAqA+βu·pA — Cooper-Frye.

Matching also dissipative viscous stress and diffusive current
gives fA = eαAqA+βu·pA + ∆fA︸︷︷︸

non-equilibrium
correction

. (Everett-Chattopadhyay-Heinz 2021)

Fluctuations? Pradeep-MS 2022
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Maximum entropy freezeout of fluctuations

We want to match fluctuations of {n, ε, uµ} ≡ Ψa,
to fluctuations of fA so that Ψa =

∑
A P

A
a fA event-by-event

i.e., GAB ≡ 〈δfAδfB〉 must obey (PAa = {qA, pA, . . . })

〈δΨaδΨb〉︸ ︷︷ ︸
Hab

=
∑
AB

PAa P
B
b 〈δfAδfB〉︸ ︷︷ ︸

GAB

Again, for GAB, there are infinitely many solutions.

Entropy? Is a functional of fluctuations, i.e., of GAB, GABC , etc.
E.g,

S2 = S0 +
1

2
Tr [logGC +GC + 1]︸ ︷︷ ︸

relative entropy, G = −C−1 ≡ Ḡ

, where CAB = δ2S
δfAδfB

.
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Maximum entropy solution

Relative entropy is maximized (subject to constraints) by

G−1
AB = Ḡ−1

AB + (H−1 − H̄−1)abP
a
AP

b
B

Also for non-gaussian correlators (Pradeep-MS 2022).

Note: when H = H̄ → GAB = ḠAB = fAδAB.

Linearizing in ∆H ≡ H−H̄ we obtain the desired generalization
of earlier results:

G = Ḡ︸︷︷︸
baseline

+ (H̄−1PḠ)T∆H(H̄−1PḠ)︸ ︷︷ ︸
correlations
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Non-gaussian correlators (n ≥ 3 particles)

Linearied equations are simple and intuitive:

GAB = ḠAB + ∆GAB, Hab = H̄ab + ∆Hab,

GABC =
[
ḠABC︸ ︷︷ ︸+ 3∆GADδDBC︸ ︷︷ ︸+ ∆̂GABC︸ ︷︷ ︸

irreducible
correlation

]
ABC← permutation average

Habc =
[
H̄abc + 3∆Hadδdbc + ∆̂Habc

]
abc

Maximum entropy method gives:

∆GAB = ∆Hab(H̄
−1PḠ)aA(H̄−1PḠ)bB

∆̂GABC = ∆̂Habc(H̄
−1PḠ)aA(H̄−1PḠ)bB(H̄−1PḠ)cC
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Critical fluctuations

The contribution of critical fluctuations matches the simple model
often used in the literature (MS 2011):

δf critical
A = δσ

(
∂

∂σ
fA

)
where critical field σ couples to mass so that δmA = gAδσ.

Thus 〈δfAδfB〉 = δABfA︸ ︷︷ ︸
Poisson baseline

+ 〈δσδσ〉
(
∂

∂σ
fA

)(
∂

∂σ
fB

)
︸ ︷︷ ︸

critical contribution ∼ gAgB

Now, within maximum entropy approach, we can determine the
couplings gA of the critical mode from the equation of state.
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Concluding summary (ME freezeout)

Maximum entropy approach for single-particle observables
= traditional Cooper-Frye freezeout.

Maximum entropy approach solves the problem of freezing out
of hydrodynamic fluctuations.

The method is very general and works for gaussian and non-
gaussian, for critical and non-critical fluctuations.

Agrees with existing methods where such are available.

Allows determination of critical field coupling parameters crucial
to predicting the magnitude of CP signatures in terms of the EOS
parameters.

back
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