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This wonderful set of notes will have a wonderful abstract wonderfully soon.

I. PREFACE

You may have heard that Quantum Field Theory is a well-developed, mature discipline.

That all the easy problems have been done long ago.

That there is nothing left to discover.

That is not true.

Welcome to QFT in large N wonderland!
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II. INTRODUCTION

The aim of these lecture notes is to provide an accessible introduction to the physical

applications of large N solution techniques for quantum field theory. They are aimed at

advanced graduate students and early-career postdocs in theoretical physics, but they do

contain new material that occasionally puzzles more senior researchers. The main guiding

principle behind the lectures is that they offer techniques to obtain direct first-principle

quantitative answers to physics problems of interest, with minimal specialized mathematical

knowledge.

To keep the lecture notes readable, I have chosen to keep references at a minimum, with

an emphasis on recent rather than older results.

That said, the use of large N techniques as opposed to perturbation theory has a long

history in field theory, with many of the key results already obtained in the 1970s [1–3].

Unfortunately, subsequent research showed that large N techniques are not sufficient to solve

specific non-abelian gauge theories of interest, such as QCD. As a consequence, the main

theoretical tools for the study of QCD presently are perturbative (weak-coupling) expansions

(e.g. [4–6]), lattice QCD (e.g.[7, 8]), as well as effective non-relativistic expansions (e.g. [9]).

In contradistinction to QCD, large N does play an important role in holographic con-

jectures of supersymmetric gauge theories, such as the conjectured dual of N = 4 Super-

Yang-Mills theory in the large N limit to classical Einstein gravity in asymptotically AdS5

spacetimes [10].

Coming full circle, the holographic conjectures for large N gauge theories did lead to

conjectures for large N scalar theories, such as the conjectured dual of the O(N) model in 3

dimensions to higher-spin gravity in asymptotically AdS4 spacetimes [11]. Unlike the case

of gauge theories, where a proof of the gravity dual seems out of reach, the solvability of

scalar field theories in the large N limit suggests the gravity dual theory can be derived,

rather than conjectured [12, 13].

Despite the attractive feature of large N solvability, applications of large N techniques for

scalar and fermionic theories has remained somewhat dormant since the 1970s. This provides

opportunity for using large N techniques to solve problems of interest, such as calculation of

transport coefficients [14–16], finite temperature correlators [17, 18], finite-density systems

[19], as well as real-time evolution in quantum field theory [20].
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Many problems which are intractable using standard perturbation theory surprisingly

become ... [to be continued]

III. LECTURE 1: QUANTUM MECHANICS

Let’s start with a simple test case where we can check our methods: quantum mechanics.

Quantummechanics concerns itself with the spectrum of a Hamiltonian. For concreteness,

let us consider the case of a one-dimensional system with Hamiltonian

H =
p2

2
+ λx4 , (1)

where p, x are the momentum and position operator, respectively. The spectrum En of the

Hamiltonian is defined through the time-independent Schrödinger equation,

⟨x|H|n⟩ = Hψn(x) = Enψn(x) , (2)

where ψn(x) are the wave-function eigenstates of H.

What is the ground-state energy E0 for the Hamiltonian (1) ?

It so happens that E0 for the Hamiltonian (1) is not known analytically. I’ve chosen

(1) deliberately partly because of this property, otherwise it would be too easy. However,

note that no Hamiltonian with potential V (x) ∝ xα for α ∈ (2,∞) has analytically known

ground state energies, so the problem of finding E0 is not contrived, but rather generic.

However, (1) shares certain important properties with Hamiltonian of the harmonic os-

cillator V (x) ∝ x2, in that it’s spectrum for λ > 0 is real, discrete, and positive definite. It’s

just hard to calculate E0.

Since our goal is to learn something about quantum field theory rather than quantum

mechanics, let’s cast quantum mechanics into field theory language by using path integrals.

A rigorous way to do this from first principles is to consider the canonical partition function

Z = Tre−βH =
∞∑
n=0

⟨n|e−βH|n⟩ =
∞∑
n=0

e−βEn , (3)

where β = 1
T
and T the temperature of the system. By inserting complete sets of states,

one can turn the trace of the Boltzmann operator into a path integral (see the steps leading

from (1.27) to (1.37) in the excellent open-access textbook [21])

Z =

∫
Dϕe−SE , SE =

∫ β

0

[
1

2
ϕ̇2(τ) + λϕ4(τ)

]
, (4)
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where SE is the Euclidean action of the theory and the field ϕ(τ) lives on the Euclidean

circle τ ∈ [0, β] with periodic boundary conditions.

Unfortunately, trying to solve the path integral in (4) is just as hard (or maybe even

harder) than trying to directly solve the eigenvalue problem (2). Some new idea is needed.

To develop this idea, let’s do something counter-intuitive: instead of considering the quan-

tum mechanics problem in one dimension (which was hard), how about quantum mechanics

in higher dimensions? At first glance, if the problem was hard in one dimension, it seems

unlikely that could make progress by trying to to solve it in two, three, etc. dimensions, but

let’s see.

Using the odd symbol N to denote the number of dimensions, the equivalent Hamiltonian

to (1) is given by

H =
p⃗ 2

2
+
λ

N

(
x⃗2
)2
, (5)

where p⃗ = (p1, p2, . . . pN) and x⃗ = (x1, x2, . . . , xN) are again the momentum and position

operators for quantum mechanics in N dimensions. The appearance of N in the denominator

of the coupling λ may appear arbitrary at first sight, but if one considers that x⃗ 2 = x21 +

x22 + . . . x2N are N contributions of the operator x2 it becomes clear that λ
N

is the right

normalization so that H scales appropriately with N . (Alternatively, or rather equivalently,

think of λ as the appropriate ’t Hooft coupling [1] for this theory).

The path integral for quantum mechanics in N dimensions follows the same steps as

for one-dimensional quantum mechanics, except that there is a quantum field for every

dimension, so we end up with

Z =

∫
Dϕ⃗e−SE , SE =

∫ β

0

[
1

2

(
∂τ ϕ⃗
)2

+
λ

N

(
ϕ⃗2
)2]

, (6)

and ϕ⃗ = (ϕ1, ϕ2, . . . , ϕN).

Instead of a hard path integral over a single field ϕ as in (4), we now have a path integral

over multiple fields ϕ⃗ which are all coupled together. If anything, this seems much harder

than our original hard problem, so it doesn’t look like we’ve made any progress here.

Don’t despair yet, I have a trick down my sleeve!

The trick is that I can solve an integral over a Dirac δ function:∫
dσδ(σ − f) = 1 , (7)
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for any real f . I can write a product of these integrals, and obtain a ’path-integral δ’:∏
τ

∫
dσ(τ)δ (σ(τ)− f(τ)) =

∫
Dσδ (σ − f) = 1 . (8)

Since this is true for any function f(τ) on the Euclidean circle, I can take f(τ) = ϕ⃗2(τ) and

thus re-write the partition function (6) as

Z =

∫
Dϕ⃗Dσδ(σ − ϕ⃗2)e−SE , SE =

∫ β

0

dτ

[
1

2

(
∂τ ϕ⃗
)2

+
λ

N
σ2

]
. (9)

Having a delta function inside a path integral is un-field theorist, so I use

δ(x) =

∫
dζeiζx , (10)

to rewrite the path integral again as

Z =

∫
Dϕ⃗DσDζe−SE , SE =

∫ β

0

dτ

[
1

2

(
∂τ ϕ⃗
)2

+
λ

N
σ2 − iζ

(
σ − ϕ⃗2

)]
. (11)

In this form, we have a path integral with two auxiliary fields σ, ζ, but since the action

for σ is quadratic, we can integrate out σ explicitly:

Z =

∫
Dϕ⃗Dζe−SE , SE =

∫ β

0

dτ

[
1

2

(
∂τ ϕ⃗
)2

+ iζϕ⃗2 +
Nζ2

4λ

]
. (12)

As a side remark, rewriting of the path integral for quartic potential using an auxiliary

field is known as a Hubbard-Stratonovic transformation in the literature. When I started

working on this, I didn’t know about Hubbard-Stratonovic, so I came up with this version

which works for other potentials of the form V (x) ∝ xα as well, not just α = 4 [22].

Apparently, sometimes ignorance is an advantage when working on a new subject.

The partition function (12) is quadratic in the field ϕ⃗, so we can formally integrate out

those fields as well, giving

Z =

∫
Dζe−SE , SE =

N

2
Tr ln

[
−∂2τ + 2iζ

]
+

∫ β

0

dτ
Nζ2

4λ
. (13)

So far, everything has been exact.

Splitting the auxiliary field ζ into zero-mode and fluctuations

ζ(τ) = ζ0 + ζ ′(τ) , (14)

we have

SE =
N

2
Tr ln

[
−∂2τ + 2iζ0

]
+
Nβζ20
4λ

+O(ζ ′2) . (15)
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The path integral over the fluctuations ζ ′ cannot be calculated analytically in closed form.

However, since it is a single field, the integral over the fluctuations cannot give a contribution

of order eO(N) to the path integral. So in the limit of large N, the (complicated) contribution

from the fluctuations are sub-dominant.

The calculation simplifies in the large N limit!

For N ≫ 1, we thus have

lim
N≫1

Z =

∫
dζ0e

−SR0 , SR0 =
N

2
Tr ln

[
−∂2τ + 2iζ0

]
+
Nβζ20
4λ

. (16)

Instead of a path integral, the large N partition function is given in terms of a single

integral, but the expression in the action still needs some work.

Since ζ0 is τ -independent, it effective acts as a mass term, and we can calculate the trace

of the logarithm of the operator as

Tr ln
[
−∂2τ + 2iζ0

]
=
∑
n

⟨n| ln
[
−∂2τ + 2iζ0

]
|n⟩ =

∑
n

ln
[
ω2
n + 2iζ0

]
, (17)

when using ⟨τ |n⟩ = eiωnτ with ωn = 2πnT the bosonic Matsubara frequencies. The “ther-

mal” sum can be calculated using methods from thermal quantum field theory [21], or by

straightforward comparison to the partition function of the harmonic oscillator. Let’s do

the latter: for the harmonic oscillator, the partition function is

ZHO =

∫
Dϕe−

1
2

∫ β
0 [ϕ̇2+m2ϕ2] = e−

1
2
Tr ln[−∂2τ+m2] , (18)

because it is a Gaussian integral. But we know the spectrum of the harmonic oscillator is

En = m
(
n+ 1

2

)
, so we can calculate the harmonic oscillator partition function as

ZHO =
∞∑
n=0

e−βEn =
1

2 sinh
(
mβ
2

) . (19)

Comparing the last two equation leads to

1

2
Tr ln

[
−∂2τ +m2

]
= ln

[
2 sinh

(
mβ

2

)]
(20)

As a consequence, we get for (16)

lim
N≫1

Z =

∫
dζ0e

−N ln

[
2 sinh

(√
2iζ0β

2

)]
−Nβζ20

4λ . (21)



7

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  0.2  0.4  0.6  0.8  1

E
0
/(

N
 λ
1
/3

)

1/N

Ground State Energy in N-dimensional QM with quartic potential

Numerical fixed N
LO Large N

NLO Large N
NNLO Large N

FIG. 1. Ground state energy E0

λ
1
3N

as a function of components N . Shown are numerical results

from table I for n = 31, and the analytic results in the large N limit: LO from (25), NLO from

(30, and NNLO is left as an exercise.

This is the expression for the partition function of quantum mechanics in N ≫ 1 dimensions

at finite temperature. If we care about the ground state energy, we want to consider the low

temperature limit β → ∞. In this limit, the result simplifies to

lim
β≫1

lim
N≫1

Z =

∫
dζ0e

−Nβ
√

2iζ0
2

−Nβζ20
4λ . (22)

For large N , the exponential is typically very small, except for the regions of the integral

where the action is at a minimum. This is formally encoded in the saddle point method, so

that integrals such as (22) can be evaluated exactly in closed form at large N. We find

lim
β≫1

lim
N≫1

Z = e−βE(ζ∗) , (23)

where ζ0 = ζ∗ is the solution to the saddle point condition

dE(ζ∗)

dζ∗
= 0 =

N

2
√
2iζ∗

+
Nζ∗

2λ
−→ iζ∗ =

(2λ)
2
3

2
. (24)

Plugging this saddle point back into the partition function, we get

E(ζ∗) =
3(2λ)

1
3N

8
≃ λ

1
3N × 0.47247 . . . (25)

Comparison between (23) and (3) shows that this is the ground state energy for quantum

mechanics in N ≫ 1 dimensions interacting via quartic potential. It is exact in the large
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N limit, and is smoothly connected to the ground state energy for finite, but large N , cf.

Fig. 1. But even if we boldly extrapolate this result to N = 1, we find that it only differs from

the numerically calculated ground state energy of the one-dimensional quartic anharmonic

oscillator

E0 = λ
1
3 × 0.66799 . . . (26)

by only about 30 percent (see Tab.I in the appendix and Ref. [23]).

We can add a 1
N

improvement to the large N result of the ground state energy without

too much trouble. Expanding SE in the exact partition function (13) to second order in

fluctuations around the saddle: ζ = ζ0 + ζ ′(τ) and performing a Fourier-transform

ζ ′(τ) =

∫
dk

2π
eikτζ ′(k) . (27)

In the zero temperature limit, we obtain

lim
β≫1

lim
N≫1

Z = e−
3(2λ)

1
3

8
Nβ

∫
Dζ ′e−

∫
dk
2π

N|ζ′(k)|2
4λ

−2N
∫

dk
2π

|ζ′(k)|2Π(k) , (28)

with

Π(k) =
1

2

∫
dp

2π

1

(p2 + (2λ)
1
3 )((p+ k)2 + (2λ)

1
3 )

=
1

2

1

(2λ)
1
3 (k2 + 4(2λ)

2
3 )
. (29)

Performing the path integral over ζ ′ leads to the large N ground state energy given by

E0 =
3(2λ)

1
3

8
N+

1

2

∫
dk

2π
ln

(
1 +

2(2λ)
2
3

k2 + 4(2λ)
2
3

)
= (2λ)

1
3

(
3

8
N +

√
6− 2

2

)
+O(N−1) . (30)

Calculating the NNLO large N correction is possible with similar techniques, and obtaining

the result (31) is left as an exercise (see below).

Extrapolating the NLO ground state energy for N=1 and comparing to the numerically

calculated result for the N=1 theory (26), one finds that the NLO result is off by only about

13 percent. Agreement with quantum mechanics in higher dimensions is better, as can be

seen in Fig. 1. Clearly, large N expansion techniques work quantitatively well in capturing

the ground state energy for quantum mechanics at fixed and not too small N.

As a final note, let me point out that the fact that the NNLO correction does not improve

on the disagreement for N=1, but helps with larger N, is in agreement with the expectation

that the large N series expansion is asymptotic, just like the perturbative series expansion.
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Guide to further reading

Considering N-component field theory in dimension less than four is an interesting appli-

cation of the above techniques. Here are a few suggestions for further reading

� The scalar O(N) model in 2+1 dimensions was studied at finite temperature in [17].

In this case, the field theory is super-renormalizable, and the large N expansion allows

solution of this field theory for all values of the coupling. In particular, this includes

a calculation of the exact large N shear viscosity coefficient [16].

� Theories with fermions, as well as certain supersymmetric theories in 2+1 dimensions

can also be solved with the same technique, see [24, 25].

� Three dimensional QED with many flavors of electrons does not suffer from the prob-

lems encountered in four dimensions and can also be solved with similar techniques.

The thermodynamics of large Nf QED3 was worked out in Ref. [26], and the curious

’fractional photon’ in the strong coupling limit was pointed out in Ref. [27]. While it

is possible to calculate transport coefficients in the strong coupling and large Nf limit

of QED3/QCD3 along the lines of Ref. [14, 15], no such results currently exist in the

literature.

� The O(N) model in 2+1 dimensions was conjectured to have a gravity dual in the

strong coupling limit, cf. Ref. [11]. There are encouraging works on reconstructing

the bulk geometry from the boundary field theory in Refs. [12, 13].

� Higher dimensional O(N) models are not thought to be perturbatively renormalizable.

However, O(N) models in odd dimensions (in particular in five dimensions) may be

non-perturbatively renormalizable [28]. This has led to recent studies of O(N) models

in odd dimensions, e.g. in Refs. [29–31].

Homework Problems Lecture 1

1. Calculate E0 in one-dimensional quantum mechanics with Hamiltonian (1) using per-

turbation theory λ≪ 1. Compare your result to the numerically obtained result (26)

and discuss.
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2. Calculate E0 in N-dimensional quantum mechanics with Hamiltonian (5) to order

NNLO (including terms of order N−1 in E0) in a large N expansion. Show that

ENNLO
0 ≃ −0.1689N−1λ

1
3 . (31)

3. Instead of quantum mechanics, now consider quantum field theory in 2+1 dimensions

with Euclidean action

SE =

∫ β

0

dτ

∫
d2x

[
1

2
∂µϕ⃗ · ∂µϕ⃗+

λ

N

(
ϕ⃗2
)2]

. (32)

Using the same techniques as for quantum mechanics, find the expression for the LO

large N partition function Z at finite temperature equivalent to (21). Defining the

entropy density as s = d
dT

lnZ
βV

, evaluate it at infinite coupling s∞ ≡ limλ→∞ s. Show

that
s∞
sfree

=
4

5
, (33)

where sfree is the thermal entropy density of N free bosons in 2+1 dimensions.

4. Consider again quantum field theory in 2+1 dimensions with Euclidean action (32).

In Fourier space, the propagator for the scalar field ϕ at zero temperature can be

parametrized as G(k) = (k2)−1+ η
2 with η the critical exponent. Calculate the first

non-vanishing term of the critical exponent in a large N expansion and show that in

the strong coupling limit λ→ ∞

η =
8

3Nπ2
+O

(
N−2

)
. (34)
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LECTURE 2: NON-RELATIVISTIC NEUTRONS

Consider the QCD phase diagram, sketched in Fig. 2. Most regions of this phase diagram

are hard to access using first-principles QCD calculations, and this is especially true for the

region of low temperature and finite baryon density relevant for neutron stars.

I only know of one exception to this statement: effective field theory (EFT).

EFTs are bona-fide field theories that are constructed out of the known symmetries,

relevant degrees of freedoms, and a derivative expansion. Some well-known EFTs are chiral

effective theory [32] and relativistic fluid dynamics [33].

EFTs have distinct advantages: they correspond to controlled, improvable first-principles

calculations, and are often possible in regions where other approaches fail.

The main disadvantage to EFTs is that they invariably contain a finite number of free

parameters that need to be fixed by other means, e.g. from experiment.

In the following, I will consider a particular EFT for QCD at low temperature and finite

baryon density relevant for neutron stars: pionless EFT, denotes as /π EFT [34].

To build /π EFT, consider the energy scales relevant for low-temperature QCD: the nucleon

masses M ∼ 940 MeV, the pion masses mπ ∼ 135 MeV and the deuteron binding energy

B ∼ 2.2 MeV. If we aim at a theory that only captures the deuteron, we need to include the

nucleons, but can neglect excitations with energies much less than the pion mass. Hence we

are driven to consider a theory of non-relativistic nucleons with kinetic energy Ekin ≪ mπ,

so pions are not needed in this description, hence the name.

/π EFT for interacting nucleons has been fleshed out in a series of papers [36–38], but for

this lecture I want to focus on an even simpler version of /π EFT: pure neutron /π EFT. While

inappropriate for describing nuclei such as the deuteron, this theory would be relevant for a

very neutron rich environment. Can you think of one?

To build the EFT, we note that neutrons are fermions, and since we consider non-

relativistic neutrons, we describe them as two-component spinors ψ =

 ψ↑

ψ↓

. Only neu-

trons, no anti-neutrons are included, because the energy scales for pair-production are much

above the relevant scale of the theory. Free non-relativistic neutrons obey the Schrödinger
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FIG. 2. Sketch of what we know about the QCD phase diagram, adapted from Ref. [35]. Axis are

the equilibrium temperature T , baryon chemical potential µB and the parameter ξ corresponding to

deviations from equilibrium. Deconfinement cross-over and liquid-gas first order phase transitions

are marked. Areas relevant to neutron stars and relativistic heavy ion collisions – such as gold ion

collisions at center-of-mass energies of
√
s = 200 GeV per nucleon pair at the Relativistic Heavy

Ion Collider (RHIC) as well as their projection on the equilibrium T, µB plane (grey dashed lines)

– are indicated. See original reference for details.

equation, which can be turned into a Lagrangian density:

L = ψ†

(
i∂t +

∇⃗2

2M

)
ψ . (35)

Field theorists accustomed to relativistic fields will find that this form also arises from

taking the non-relativistic limit of the free Dirac fermion Lagrange density Ψ̄i/∂Ψ.

The above Lagrangian describes free (non-interacting) non-relavistic neutrons. This is

boring. In order to have something of interest, we need to include interactions. In an EFT,

one writes down all possible interactions allowed by symmetry, such as two-neutron, three-

neutron, four-neutron, etc. interactions. All of these come with unknown coefficients that

need to be fixed by other means, e.g. experiment. However, the lowest-order interaction is

that of a two-neutron singlet “contact term” (no derivatives), such that [34]

LI = −C0

4
(ψσyψ)

† (ψσyψ) , (36)
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where σy =

 0 −i

i 0

 is the second Pauli matrix. As promised, C0 is a coefficient that

needs to be fixed by other means. In the present case, this can be done by calculating

the scattering amplitude and comparing to the corresponding scattering amplitude resulting

from solving the Schrödinger equation (see appendix B for the explicit matching in the case

of bosons). One finds

C0 =
4πa0
M

, (37)

where a0 is the s-wave scattering length for neutrons. Fortunately, the s-wave scattering

lengths for neutrons is well known experimentally [39] as

a0 ≃ −18.5 fm , (38)

which together with the known nucleon mass M fixes the parameters of the theory. We are

now ready to calculate!

Let’s jump right in and write down the grand-canonical partition function for pure-

neutron /π EFT with spin-singlet interaction:

Z =

∫
Dψe−SE+(µB−M)N , (39)

where

SE =

∫ β

0

dτ

∫
d3x

[
ψ†

(
∂τ −

∇⃗2

2m

)
ψ +

C0

4
(ψσyψ)

† (ψσyψ)

]
, (40)

is the Euclidean action corresponding to analytically continuing the Lagrangian density L

above to Euclidean time τ ∈ [0, β], µB is the baryon chemical potential, and

N =

∫ β

0

dτ

∫
d3xψ†ψ , (41)

is the neutron number. Since the baryon chemical potential only appears in the combination

µB −M , it is useful to denote this ’excess’ chemical potential as

µ ≡ µB −M . (42)

With the theory defined by the grand-canonical partition function (39), obtaining ob-

servables such as the pressure p ≡ lnZ
βV

, the baryon density n ≡ ∂
∂µ
p and the excess energy

density (equal to energy density minus nucleon rest mass) ϵ = µn− p is ‘”just” a matter of

solving the many-body partition function.
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However, even for this admittedly simple EFT, exact solutions for Z are hard because of

the 4-fermi interaction term in (39):

(ψσyψ)
† (ψσyψ) = 4 (ψ↓ψ↑)

† (ψ↓ψ↑) . (43)

But we learned in lecture 1 how to deal with such quartic interactions in a large N

framework! Let’s make use of this knowledge!

Instead of a single neutron species, considerN neutron species ψ → ψf = (ψ1, ψ2, . . . , ψN).

You may think of these either as fictitious extra particles, or for N = 2, as a very crude

way of including the proton into the description. In either case, we will use 1
N

≪ 1 as a

small expansion parameter unrelated to any other parameter in the theory, which allows us

to perform non-perturbative calculations of the theory.

In complete analogy to the case of quantum mechanics studied in lecture 1, we generalize

the interaction term to the N-component case as

C0 (ψ↓ψ↑)
† (ψ↓ψ↑) →

C0

N
(ψ↓,fψ↑,f )

† (ψ↓,gψ↑,g) , (44)

where the “flavor” indices f, g run from 1 to N and Einstein sum convention is used to

suppress the summation symbols.

Next, introduce the complex auxiliary field ζ through inserting the identity

1 =

∫
DζeN

∫
x

ζ∗ζ
C0 (45)

(note that this makes sense because C0 ∝ a0 is negative for neutrons, cf. (38)). Now shifting

ζ → ζ − iC0

N
ψ↓,fψ↑,f (46)

then leads to the auxiliary-field formulation for N-component pure-neutron /π EFT:

Z =

∫
DψDζe−

∫
x

[
ψ†
f

(
∂τ− ∇⃗2

2M
−µ

)
ψf+iζ

∗ψ↓,fψ↑,f−iζψ†
↑,fψ

†
↓,f−

Nζζ∗
C0

]
. (47)

In this form, all the fermions enter as bilinears into the path integral action. They can be

compactly brought into the form

Ψ†
fG

−1Ψf , (48)

with the two-component composite (Nambu-Gorkov) spinor

Ψ =

 ψ↑

ψ†
↓

 , (49)
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and the inverse propagator in matrix form

G−1 =

 ∂τ − ∇⃗2

2M
− µ −iζ

iζ∗ ∂τ +
∇⃗2

2M
+ µ

 . (50)

Since the fermions enter the action quadratically, they can be integrated out:

Z =

∫
DζeN ln detG−1+ N

C0

∫
x ζ

∗ζ
. (51)

So far, everything has been exact. However, in the large N limit, the remaining path

integral simplifies considerably because of the same reason outlined in quantum mechanics

after Eq. (14): the leading large N saddle corresponds to constant ζ, or equivalently the zero

mode ζ0. In the literature, it is customary to denote iζ∗0 ≡ ∆, and (with hindsight) assume

∆ to be real. Then the large N partition function becomes

lim
N≫1

Z =

∫
d∆eNβV p(T,∆) , (52)

with

p(T,∆) =
∆2

C0

+ T
∑
n

∫
d3k

(2π)3
ln
[
ω̃2
n + (ϵk − µ)2 +∆2

]
, (53)

where ω̃n = πT (2n+ 1) the fermionic Matsubara frequencies and ϵk = k2

2M
the non-

relativistic kinetic energy.

In the zero temperature limit, the thermal sum in (53) becomes an integral which is

straightforward to solve:

p(0,∆) =
∆2

C0

+

∫
d3k

(2π)3

√
(ϵk − µ)2 +∆2 . (54)

The remaining integral over momenta k can likewise be calculated in closed form when

using dimensional regularization. Expanding the square root and using the identities from

Ref. [40], one finds [19]

p(0,∆) =
∆2

C0

+
2µ

5

(2Mµ)
3
2

3π2
g

(
µ√

µ2 +∆2

)
, (55)

where the function g(y) = y−
5
2

[
(4y2 − 3)E

(
1+y
2

)
+ 3+y−4y2

2
K
(
1+y
2

)]
is expressed using

E,K, the complete elliptic integrals of the first and second kind, respectively.

To leading order in the large N and low temperature limit, the grand-canonical path

integral is then given as

lim
β≫1

lim
N≫1

Z = eNβV p(0,∆) , (56)
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with ∆ being the solution of the saddle point condition

0 =
dp(0,∆)

d∆
. (57)

We have a solution!

Now let’s see if the solution is any good. We need the neutron density, which we can

calculate as

n =
dp(0,∆)

dµ
=

(2Mµ)
3
2

3π2
g(y) , (58)

where y = µ√
µ2+∆2

and we have used the saddle point condition (57) to simplify the ex-

pression. Using n and the zero-temperature pressure p(0,∆) we can construct the energy

density ϵ, and in particular the energy per particle

E

N
=
ϵ

n
= µ

(
3

5
+

3π∆2

8µ2g(y)
√
2Mµa2s

)
. (59)

For a given value of µ, we can numerically calculate the value of ∆ from solving the

saddle point condition (57). With µ,∆, we can then calculate n and E
N
. How do our leading

order large N results compare to other methods?

The relevant comparison is shown in Fig. 3, where the lO large N result for the energy

per particle for pure neutron matter is compared to the results from three other groups.
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One finds that the LO large N result for E
N

is about 30 percent higher than the considerably

more complex calculations from Refs. [41–45].

The 30 percent difference is surprisingly similar to what we found when comparing the

LO large N result to the N=1 ground state energy for the quartic oscillator in quantum

mechanics in the first lecture. In that lecture, we found that going to NLO in the large

N expansion was straightforward, and just involved a Gaussian integral, yet reduced the

difference with the N=1 value by a factor of two.

Not surprisingly, calculating the NLO large N correction to the grand-canonical partition

function can be done with similar ease here [46]. What is surprising, though, is that the

equivalent NLO large N result for Fig. 3 is not available in the literature!

Maybe you can help?

Guide to further reading

� Transport coefficients can be calculated for the pure neutron matter theory in the

large N limit for any coupling/density. Currently, only the LO large N result for so-

called thermodynamic transport coefficients are known [19, 47], but calculating shear

viscosity along the lines of Ref. [14, 15] is doable.

� Calculating the zero temperature limit of the grand canonical partition function to

NLO in the large N limit exhibits a concrete example of non-commutative limits that

was uncovered in Ref. [48].

Homework Problems Lecture 2

1. In the literature, the strong coupling limit a0 → −∞ is called the ’Unitary Fermi Gas’

limit, whereas the weak coupling limit a0 → 0 is called the ’Free Fermi Gas’ limit.

Calculate the large N ’superfluid gap’ ∆ from solving (57) in both of these limits and

show that

lim
a0→−∞

∆ ≃ 1.1622× µ , lim
a0→0

∆ ≃ e
− π√

8Mµa20

−2+3 ln 2

× µ . (60)

2. In the Unitary Fermi Gas limit, the energy density can be expressed as

lim
a0→−∞

ϵ =
3

5
n

5
3
(3π2)

2
3

2M
× ξ , (61)
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with ξ a pure number (the ’Bertsch parameter’). Calculate ξ in the large N approxi-

mation and show that

lim
N≫1

ξ ≃ 0.59 . (62)
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LECTURE 3: NEGATIVE COUPLING AND TRIVIALITY

In lecture 1, we considered large N techniques for N-dimensional quantum mechanics,

and found that the large N calculations gave improvable and reasonably accurate results for

finite N, including down to N=1.

In lecture 2, we considered large N techniques for a four-dimensional (non-relativistic)

quantum field theory of interacting neutrons, and we found that also here large N gave

reasonable results even for N=1.

There are plenty of other examples I could cite about successes of large N calculations

applied to observables at finite (and sometimes quite small) N.

It seems the method is sound and the math is trustworthy.

So how about we trust the math, even if its implications are non-intuitive?

Let’s see where this ’trust the math’ axiom leads in the case of four-dimensional scalar

field theory.

To be concrete, let’s consider N-component scalars ϕ⃗ = (ϕ1, ϕ2, . . . , ϕN) interacting via a

quartic coupling with Euclidean action

SE =

∫
d4x

[
1

2
∂µϕ⃗ · ∂µϕ⃗+

λ

N

(
ϕ⃗2
)2]

. (63)

This theory referred to as the O(N) model in the literature.

If you want to have a concrete physical system in mind, consider the Standard Model

Higgs field is a two-component complex scalar Φ =

 ϕ1 + iϕ2

ϕ3 + iϕ4

, which is equivalent to

considering the O(N) model for N = 4. Since N = 4 is not that small, we might even expect

our large N techniques to be quantitatively better in describing the Higgs sector than for

instance the pure neutron case in lecture 2.

The Euclidean action then defines the partition function for the theory in terms of a path

integral Z =
∫
Dϕ⃗e−SE . Using exactly the same steps as in lecture 1, we can introduce an

auxiliary field ζ to make the action quadratic in the field ϕ⃗, so the path integral over ϕ⃗ can

be done in closed form:

Z =

∫
Dϕ⃗Dζe−

∫
x

1
2
ϕ⃗[−∂µ∂µ+2iζ]ϕ⃗− N

4λ

∫
d4xζ2 =

∫
Dζe−

N
2
Tr ln[−∂µ∂µ+2iζ]− N

4λ

∫
d4xζ2 . (64)

Also, again just as in the case of quantum mechanics, when splitting the auxiliary field

into a global zero mode ζ0 and fluctuations ζ ′, the path integral over fluctuations does not
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contribute to the LO large N partition function, hence

lim
N≫1

Z =

∫
dζ0e

−N
2
Tr ln[−∂µ∂µ+2iζ0]− N

4λ

∫
d4xζ20 , (65)

where the quantum field theory partition function is now given in terms of a single integral

(and not a path integral!).

Because ζ0 does not depend on position, it is a constant as far as the operator [−∂µ∂µ + 2iζ0]

is concerned. Hence we can treat 2iζ0 = m2 as a constant mass term and directly evaluate

the trace of the operator, e.g. via dimensional regularization [21, Eq. 2.72]

1

2vol
Tr ln

[
−∂µ∂µ +m2

]
=

1

2

∫
d4−2εk

(2π)4−2ε
ln
[
k2 +m2

]
= − m4

64π2

(
1

ε
+ ln

µ̄2e
3
2

m2

)
, (66)

where vol =
∫
d4x denotes the spacetime volume and µ̄ is the MS renormalization scale. (Of

course, using any other consistent regularization scheme for the ultraviolet divergencies of

the integral gives equivalent results, see e.g. Ref. [49] for cut-off regularization.)

The large N partition function then is given by

lim
N≫1

Z =

∫
dζ0e

−vol×Nζ20
4

[
1
λ
+ 1

4π2ε
+ 1

4π2 ln µ̄2e
3
2

2iζ0

]
. (67)

After regularization, the expression for the partition function still has an uncanceled UV

divergence for ε → 0. This divergence can be canceled by introducing a suitable coupling-

constant counterterm to the bare coupling λ in a renormalization procedure. For the case

at hand, we can non-perturbatively renormalize the theory by introducing the renormalized

(running) coupling λR as
1

λ
+

1

4π2ε
≡ 1

λR(µ̄)
. (68)

Note that this renormalization procedure is non-perturbative because λ contains an infi-

nite number of terms with powers of λR. Also note that this renormalization procedure does

not recover the LO perturbative renormalization when expanded in powers of the coupling,

because the LO large N theory does not contain the full LO perturbative contribution (ac-

tually only one third of it, whereas the remaining 2/3 originate at NLO in the large N limit,

cf. R1/R2 level resummation in cf. Refs. [50]).

Given the renormalization (68), one obtains the running coupling as

λR(µ̄) =
4π2

ln
Λ2
LP

µ̄2

, (69)
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where ΛLP is an emergent scale of the theory. It is defined by the value of the scale µ̄ at

which λR diverges, e.g.

λR(ΛLP ) = ∞ . (70)

The scale ΛLP is commonly referred to as the ’Landau pole’ of the theory, even though

it is clear from (69) that λR does not have a pole, but rather a logarithmic singularity at

µ̄ = ΛLP .

A plot of the running coupling is shown in Fig. 4. In particular, note that in the UV

limit, the running coupling approaches zero from below:

lim
µ̄→∞

λR(µ̄) = 0− . (71)

It is straightforward to calculate the β function for this theory as

β ≡ dλR(µ̄)

d ln µ̄2
=

4π2

ln2 Λ2
LP

µ̄2

=
λ2R(µ̄)

4π2
≥ 0 ∀ λR ∈ R . (72)

Obviously, the β function is positive, consistent with an ever-increasing running coupling,

cf. Fig. 4.

Before trying to make sense of these results, let me stress that the running coupling (69),

its negative value in the UV (71, the Landau pole (70) and the β function (72) are exact

results in the large N limit. In particular, their validity is not limited to a weak coupling

domain, because we did not use a weak coupling expansion in obtaining them.
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Let’s review the prevailing interpretation for these findings first, before heeding my advice

of ’trust the math, even if it’s non-intuitive’.

By far the majority opinion of theoretical physicists is that a negative coupling, a positive

β function and/or a Landau pole are all fatal flaws of a continuum interacting quantum field

theory. Reviewing these one-by-one, it is possible to understand how the verdict ’fatal’ arises

in each case. However, in the interest of keeping the lecture to its allotted time frame, I

relegate this to the guide to further reading at the end.

For now, let’s ignore ’fatal flaw’ majority opinion, trust the math, and see where it leads

us.

So instead of giving up, we can ask the question: is there actually something wrong with

the theory?

In order to answer this question, we better calculate observables, so let’s do that.

The first observable we can look at is the mass of the field ϕ⃗, which for N = 4 would

be nothing else but the Higgs boson mass. The large N Euclidean Green’s function for ϕ⃗ is

given by [−∂µ∂µ + 2iζ0], so at large N, the vector mass is determined through

m2 = 2iζ0 , (73)

where ζ0 is the location of the saddle point. After renormalization, the large N partition

function (67) is given by

lim
N≫1

Z =

∫
dζ0e

−vol×Nζ20
4

[
1

4π2 ln
Λ2
LP e

3
2

2iζ0

]
, (74)

from which the saddle point condition becomes1

ζ0
8π2

ln
Λ2
LP e

1

2iζ0
= 0 . (75)

This saddle point condition implies two solutions for the vector mass squared:

m2 = 0 , m2 = eΛ2
LP . (76)

The first of these corresponds to a vanishing vector mass expectation value, which corre-

sponds to the prevailing assumption for the perturbative vacuum for the theory defined

1 As an aside, note that any physical observable O must be renormalization-scale independent, dO
dµ̄ = 0. It

is gratifying to find that both the large N partition function (74) and the saddle point condition for the

vector mass are explicitly renormalization scale independent.
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by (63). In the perturbative setup of the Electroweak sector of the Standard Model, one

introduces a ’negative mass squared’ term −m2ϕ⃗2 into the action in order to get spon-

taneous symmetry breaking, and one obtains a non-vanishing vector mass only after this

construction.

By contrast, the second solution (76) corresponds to a non-perturbative vacuum where

the vector mass is non-vanishing even though O(N) symmetry remains unbroken. This is

clearly different from the Standard Model, already because the mass does not get put in ’by

hand’ through the addition of a tachyon to the theory. In this situation, the Higgs mass

becomes a prediction of the theory, not a parameter.

But which of the two solutions (76) is the right one?

There is an easy way to decide this question, and hinges on calculating a second ob-

servable, the free energy F of the theory. Namely, each of the two solutions will lead to a

different value of the large N partition function, and hence the large N free energy. The

correct solution to (76) then is the one that has the lower free energy.

Let’s calculate: in the two cases, we get for the large N free energy

Fm2=0 = 0 , Fm2=eΛ2
LP

= −vol× Ne2Λ4
LP

128π2
. (77)

Clearly, the non-perturbative solution has the lower free energy, and hence the perturbative

vacuum must be unstable.

We thus find for the two observables (vector mass and free energy density) in the O(N)

model:

m =
√
eΛLP ,

F

vol
=
Ne2Λ4

LP

128π2
. (78)

Both of these are finite, non-vanishing and renormalization scale independent, despite the

decidedly weird properties of the theory (71), (70), (72). Even better, they are parameter-

free predictions for the Higgs mass and Higgs free energy in the case of N=4!

How’s that for a theory that doesn’t exist/is trivial/is fatally flawed?

Maybe trusting the math is not such a crazy suggestion after all.

Could it be that the ’fatal flaw’ reveals itself only when we look at scattering?

So let’s calculate scattering cross-sections at large N. To this end, consider the connected,

amputated four-point function

M = −⟨ϕa(x1)ϕb(x2)ϕc(x3)ϕd(x4)⟩conn.,amp. (79)



24

 0

 20

 40

 60

 80

 100

 0.5  1  1.5  2  2.5

σ
 x

 N
2
 Λ

2
LP

/(
4

 π
)3

Ecm/ΛLP

s-channel cross-section for O(N) model at large N

FIG. 5. s-channel cross section for scattering in the 4d O(N) model to LO in large N, reproduced

from Ref. [51].

at large N. From (64), this becomes for the s-channel amplitude in momentum space

M(k) = D(k) , (80)

where D(x−y) = ⟨ζ(x)ζ(y)⟩ is the auxiliary field propagator. The auxiliary field propagator

can be calculated by again integrating out the vector field ϕ⃗, and then expanding the action

to second order in the fluctuation field ζ ′. In complete analogy to Eq. (29), one finds

D(k) =
1

N
8λ

+NΠ(k)
, Π(k) =

1

2

∫
d4−2εp

(2π)4−2ε

1

p2 +m2

1

(p+ k)2 +m2
, (81)

where m is the large N vector mass for the dominant saddle (78). The momentum integral

can be done in closed form in dimensional regularization, the UV divergence for ε → 0

cancels when using the renormalization condition (68). One finds [51]

D−1(k) =
N

32π2

[
ln

Λ2
LP e

2

m2
− 2

√
1 +

4m2

k2
atanh

√
k2

k2 + 4m2

]
. (82)

The s-channel scattering amplitude is then simply found by analytically continuing D(k) to

Minkowski space as k2 → −E2 + k2 − sgn(E)i0+. A plot of the s-channel cross section is

shown in Fig. 5. Note again the explicit independence of M from the renormalization scale

µ̄, as expected for a physical observable.

No pathologies are observed for scattering in the LO large N limit. The only curious

finding is the presence of a stable bound state with a mass of m2 ≃ 1.84m.
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Where are all the pathologies hiding that everyone is so scared about?

I do not know....

Guide to further reading

� Obtaining a non-vanishing Higgs mass without introducing a negative mass squared

term into the theory was considered a long time ago by Coleman and Weinberg in

a famous paper on radiative corrections [52]. The prediction for the Higgs mass in

the so-called Coleman-Weinberg mechanism came out wrong, but that may be partly

a consequence of doing the calculation perturbatively and throwing away terms ’not

under perturbative control’.

� For many people, the Landau pole is a showstopper because perturbation theory breaks

down, which on the other hand is not an issue if using techniques not limited to weak

coupling (such as large N). Other people co-mingle the Landau pole with Landau’s

ghost, a tachyonic excitation that appears in perturbative QED. However, as discussed

in Ref. [53], the large N O(N) model in four dimensions does not have a Landau ghost

(even though it has a Landau pole), in contradistinction to perturbative QED.

� The original studies of the O(N) model in four dimensions date back to the 1970s

[2, 3, 54], with Ref. [2, 3] pointing out that the tachyon (Landau’s ghost) found in

Ref. [54] simply was a consequence of expanding around the wrong vacuum, namely

the m = 0 solution in (76).

� There are mathematical proofs of triviality of scalar field theories in four dimensions,

in particular by Aizenman and Duminil-Copin in Ref. [55]. Note that these proofs are

limited to N ≤ 2 and positive bare coupling, so they do not apply to the O(N) model

in the large N limit. Using analytic continuation of the path integral contour, it is

possible (but numerically challenging) to study negative coupling field theory on the

lattice [49].

� The proof by Coleman and Gross [56] that only non-abelian gauge theories in four

dimensions can have asymptotic freedom rests on the same assumption as quantum

triviality, namely that the bare coupling is positive.
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� Scalar field theory with negative coupling was considered a long time ago by Symanzik

[57]. For quantum mechanics, there is a whole literature surrounding negative coupling

Hamiltonians which was opened up by Bender and Böttcher in Ref. [58]. In quantum

mechanics, strong numerical evidence for the equivalence of so-called PT-symmetric

spectra and contour-deformed partition functions can be obtained [59].

Homework Problems Lecture 3

1. Consider the 4d O(N) model with Euclidean action (63) at finite temperature. Cal-

culate the finite-temperature corrections to the saddle point condition (75) and show

that real-valued solutions for 2iζ0 = m2 of this equation cease to exist for

T > Tc ≃ 0.616ΛLP . (83)
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Appendix A: Numerically calculating the spectrum of quartic oscillator in

multi-dimensional quantum mechanics

In this appendix, I review a simple numerical scheme to solve for the eigenvalue spec-

trum (really mostly the ground-state energy E0) of the Hamiltonian operator for quantum

mechanics in N dimensions,

H =
p⃗ 2

2
+
λ

N

(
x⃗ 2
)2
. (A1)

I assume a discrete eigenspectrum for the Hamiltonian H|n⟩ = En|n⟩. Using spherical

coordinates, the angular part of the Laplace operator may be separated off whereas the

radial part of the Schrödinger equation becomes

−ψ′′(r)− N − 1

r
ψ′(r) +

l(l +N − 2)

r2
ψ(r) +

2λ

N
r4ψ(r)− 2Eψ(r) = 0 , (A2)

with l the angular quantum number using the eigenvalues of the Laplacian on a N − 1-

dimensional sphere [31, Eq. (3.3)]. The boundary condition at r = 0 for the wave function
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N 1 2 3 4 5 6 7 8 9 10

n = 3 0.209987 0.276277 0.500798 0.847447 1.30688 1.87549 2.55159 3.33429 4.22307 5.21761

n = 7 0.781176 0.591071 0.472416 0.429663 0.438973 0.486257 0.564257 0.669113 0.79867 0.951676

n = 11 0.657241 0.602466 0.583693 0.544103 0.498688 0.469752 0.461883 0.47327 0.501472 0.544575

n = 15 0.668003 0.581889 0.552725 0.543857 0.536674 0.520139 0.498165 0.480726 0.473021 0.476145

n = 19 0.668383 0.586494 0.551802 0.533517 0.524978 0.521291 0.516602 0.507002 0.494293 0.483397

n = 23 0.667887 0.586368 0.553458 0.534786 0.522767 0.51547 0.511692 0.50933 0.505614 0.498988

n = 27 0.667991 0.586166 0.553281 0.535322 0.523688 0.5154 0.509576 0.505916 0.503775 0.501855

n = 31 0.66799 0.586204 0.553199 0.535197 0.523837 0.515885 0.509889 0.505314 0.502048 0.499932

TABLE I. Estimates for the spectral gap E0

λ
1
3N

for various values of N resulting from solving cn = 0

for different approximation levels n. One should note that results stabilize as n → ∞ as well as

for N → ∞.

is

lim
r→0

rψ(r) = 0 , (A3)

because otherwise ∇⃗2
(
1
r

)
= −4πδ(x⃗) is not a solution to the Schrödinger equation. Rescaling

of coordinates and energy values as r = (2λ)−
1
6 r̂, E = (2λ)

1
3 Ê, and rescaling ψ as ψ(r̂) =

u(r̂)√
r̂N−1

, the Schrödinger equation becomes

−u′′(r̂) + 4l(l +N − 2) + (N − 1)(N − 3)

4r̂2
u(r̂) +

r̂4

N
u(r̂)− 2Êu(r) = 0 . (A4)

For large r̂, the r̂4 term in the potential dominates, so we choose a bounded wave-function

by setting u(r̂) = e
− r̂3

3
√
N v(r̂), with v(r̂) fulfilling

−v′′(r̂) + 2r̂2√
N
v′(r̂) +

[
4l(l +N − 2) + (N − 1)(N − 3)

4r̂2
+

2r̂√
N

− 2Ê

]
v(r̂) = 0 . (A5)

The spectral gap is given by setting the angular quantum number to zero, l = 0. It is

then convenient to compactify the interval r̂ ∈ [0,∞) by introducing

r̂ =
y

1− y
, y ∈ [0, 1) , v(r̂) = w(y) (A6)

and subsequently solving the Schrödinger equation by expanding w(y) in a power series in

y. However, because of the boundary condition at r = 0, the series expansion must be taken

as

w(y) = y
N−1

2

∞∑
n=0

cny
n . (A7)
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The resulting recursion relation for the coefficients cn is somewhat unenlightening. For the

first few coefficients we find

c1 = c0
(N − 1)

2
,

c2 = c0
N3 −N − 8Ê

8N
,

c3 = c0
N4 + 3N3 −N2 − 3N + 16

√
N − 24Ê(3 +N)

48N
. (A8)

A simple yet effective way to obtain the spectrum Ê is by demanding that cn = 0 for

sufficiently large n. For instance, setting c2 = 0 leads to the crude estimate E
(n=2)
0 =

(2λ)
1
3
N3−N

8
for the spectral gap. In practice, we find that the larger N , the higher n needs

to be in order for the spectral gap from cn = 0 to stabilize. Our results for the spectral gap

for different N, n are summarized in table I. One should note that the result for the spectral

gap for the one component theory N = 1 is consistent with the result from [23, Eq.(IV.16)]

Appendix B: Fixing Parameters in EFTs

For the case of /π EFT, the two-neutron parameter C0 was identified with the s-wave

scattering length in Eq. (37). In this appendix, I derive the corresponding relation for

bosons. To this end, consider a simple example theory with an effective Lagrangian density

L = ϕ

(
i∂t +

∇2

2M

)
ϕ− 2C0

4!
ϕ4 , (B1)

where for illustrative purposes we take ϕ to be a boson. The Lagrangian obeys Galilean in-

variance, and corresponds to an interacting non-relativistic field theory if C0 is non-vanishing.

A standard calculation in quantum-field theory is the S-matrix

S = 1 + iT , (B2)

where the interaction part T (also referred to as “T-matrix”) may be expressed in terms

of Feynman diagrams, see for example section 4.6 in Ref. [60]. Let us consider two-particle

scattering: dividing L into a free field theory part L0 = ϕ
(
i∂t +

∇2

2M

)
ϕ and an interaction

part LI = L − L0, the T-matrix can be written as

T = ⟨ϕ1ϕ2|ei
∫
d4xLI |ϕAϕB⟩amputated, fully connected , (B3)
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where time-ordering is implicit and the attributes “amputated” and “fully connected” refer

to the class of Feynman diagrams contributing to T . Here ϕ1, ϕ2, ϕA, ϕB are shorthand for

the properties of the scattered particles, e.g. incoming particles 1 and 2, while A and B are

outgoing particles. Examples for diagrams contributing to T are

T = + 1
2 + 1

4
+ . . . ,

(B4)

where the symmetry factors for the diagrams have been made explicit and the Feynman

rules in momentum space are:

� There is a factor of −2iC0 for every vertex

� Energy and momentum are conserved at each vertex: (2π)4δ(Ein − Eout)δ
3(pin − pout)

� Integrate over every loop momentum:
∫

d4p
(2π)4

� Each propagator is given by ∆(E,p) with E,p positive in the direction of momentum

flow

� All external lines are set to unity

The propagator ∆(E,p) in momentum space may be calculated by performing a Fourier

transform ϕ(x) =
∫

dEdp
(2π)4

e−iEt+ip·xϕ(E,p) in

− i
∫
d4xL0 = −i

∫
dEdp
(2π)4

|ϕ(E,p)|2
(
E − p2

2M

)
= dEdp

(2π)4
|ϕ(E,p)|2∆−1(E,p) ,

∆(E,p) = i

E− p2

2M
+i0+

≡ ∆(P ) , (B5)

where we collectively denote four-momenta as P ≡ (E,p).

With these set of Feynman rules, the T-matrix for the above diagrams can be evaluated.

One finds that there is an overall factor of momentum conservation, which for the two-

particle scattering case at hand implies

iT = (2π)4δ(E1 + E2 − EA − EB)δ
3 (p1 + p2 − pA − pB) iM . (B6)

(Note that our normalization convention differs from standard relativistic quantum field

theory, cf. Ref. [60], but this difference does not play a role for the results found below).
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Here M is the scattering amplitude as defined in quantum field theory, and for the set of

diagrams given in , it is given by

iM = 2(−iC0) + 2(−iC0)
2

∫
d4P

(2π)4
∆(P )∆(P1 + P2 − P ) + . . . . (B7)

It is convenient to evaluate M in the center of mass frame, e.g. E1 = E2 = EA = EB = E
2
,

p1 = −p2 = k, pA = −pB = k′. Because these particles are on-shell, E = k2

M
= k′2

M
. With

these choices, the relevant loop integral in the scattering amplitude becomes∫
dp0d

3p

(2π)4
∆(p0,p)∆(E − p0,−p) = i

∫
d3p

(2π)3
1

E − p2

M
+ i0+

. (B8)

The integral is linearly divergent, so a regularization scheme has to be chosen. We will follow

Ref. [61] by employing dimensional regularization where D = 3 → D = 3− 2ϵ such that∫
dDp

(2π)D
1

p2 − k2 − i0+
=

1

(4π)D/2
Γ(1− D

2
)(−k2)D/2−1 ,

=D→3 −
ik

4π
. (B9)

Therefore, the scattering amplitude in the center of mass frame is given by

M = −2C0 − 2C2
0M

ik

4π
+ . . . . (B10)

Now let us redo the calculation in the context of the Schrödinger equation for two-particle

scattering. For two particles with mass M interacting with a two-body potential V , the

Hamiltonian is given by

H =
2p2

2M
+ V̂ =

p2

M
+ V , (B11)

where H0 =
p2

M
is the free Hamiltonian. The free retarded Greens function operator is given

by

G0 =
1

E −H0 + i0+
, (B12)

which can be used to write a solution to the full time-independent Schrödinger equation

H|ϕ⟩ = E|ϕ⟩ as

|ϕ⟩ = |k⟩+G0V |ϕ⟩ , (B13)

where |k⟩ is the solution to the free Schrödinger equation which we take to be normalized as

⟨x|k⟩ = eik·x. The free retarded Greens function may be calculated with standard methods,

finding

⟨x|G0|x′⟩ = −M
4π

eik|x−x′|

|x− x′|
, ⟨p′|G0|p⟩ =

(2π)3δ3(p− p′)

E − p2/M + i0+
, (B14)
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such that the solution (B13) to the full Schrödinger equation for short range potentials V

becomes

ϕ(x) = eik·x − M

4π

eik|x|

|x|

∫
d3x′e−ik

′·x′
V (x′)ϕ(x′) , (B15)

where k′ ≡ k x
|x| . This form may be compared to that of a scattered wave with scattering

amplitude f(k,k′):

ϕ(x) = eik·x +
eik|x|

|x|
f(k,k′) , (B16)

from which it follows that

f(k,k′) = −M
4π

⟨k′|V |ϕ⟩ . (B17)

We will find that the scattering amplitude f as used in the Schrödinger equation is related

to the scattering amplitude M calculated in quantum field theory (B7) up to a normal-

ization. For a spherically symmetric scattering potential, the scattering amplitude may be

decomposed entirely in partial waves as

f(k,k′) =
∞∑
l=0

(2l + 1)Pl(cos θ)

k cot δl(k)− ik
, (B18)

where k · k′ = k2 cos θ and δl(k) are the energy-dependent scattering phase shifts. For low

energy scattering k → 0, the higher partial waves are suppressed and s-wave scattering l = 0

dominates the scattering amplitude. One finds that in this case, the form of the s-wave

phase shift is universally given by

k cot δ0(k) = − 1

a0
+
r0
2
k2 +O(k3) , (B19)

where a0, r0 are the s-wave scattering length and effective range, respectively. The scattering

length and effective range are reliably measured experimentally for a variety of systems.

Using again the result for the scattering amplitude in the Schrödinger calculation given

in Eq. (B17), where |ϕ⟩ is given by Eq. (B13), we have

f = −M
4π

(⟨k′|V |k⟩+ ⟨k′|V G0V |k⟩+ . . .) . (B20)

Using ⟨k′|V |k⟩ = V (k,k′) and the known form of the Green’s function (B14) leads to

f = −M
4π

(
V (k′,k) +

∫
d3p

(2π)3
V (k′,p)

1

E − p2/M + i0+
V (p,k) + . . .

)
. (B21)

Comparing (B21) to Eq. (B7) when using (B8), one finds that the structure of the integrals

is very similar. In fact one finds that

f =
M

4π

M
2

(B22)
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if V (p,q) = C0 such that if we focus on low-energy (s-wave) scattering, we have

4π

M

1

− 1
a0

− ik + r0
2
k2 + . . .

= −C0 + C2
0M

ik

4π
+ . . . , (B23)

which implies

C0 =
4πa0
M

. (B24)

Note that the matching includes the term linear in k in (B23) which is a non-trivial consis-

tency check. Equation (B24) implies that we have matched the leading low-energy constant

C0 to an experimentally measurable quantity, the scattering length a0.
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[39] D. E. González Trotter, F. Salinas, Q. Chen, A. S. Crowell, W. Glöckle, C. R. Howell, C. D.
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