Fighting the sign problem in a chiral random matrix model with contour deformations

Dávid Pesznyák

Eötvös Loránd University
in collaboration with
Matteo Giordano, Attila Pásztor and Zoltán Tulipánt
[arXiv:hep-lat/2301.12947]
63. Cracow School of Theoretical Physics

September 17-23, 2023, Zakopane, Tatra Mountains, Poland

Outline

Structure of the talk:

1. introduction (the sign problem, the chRMT model and its sign problem);
2. methods (complexification, integration manifold optimisation, holomorphic flow);
3. results (with different ansätze, comparisons with holomorphic flow);
4. discussion and outlook.

What is the sign problem?

Grand canonical partition function of QCD:

$$
\begin{aligned}
\mathcal{Z} & =\int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-S[U, \psi, \bar{\psi}]}=\int \mathcal{D} U \operatorname{det} M[U] e^{-S_{\mathrm{g}}[U]} \\
& =\int \mathcal{D} U e^{-S_{\mathrm{eff}}[U]}=\int \mathcal{D} U w[U]
\end{aligned}
$$

If $w[U]$ not real and positive $\leftrightarrow S_{\text {eff }} \notin \mathbb{R}$: MC with importance sampling not possible \sim complex action problem.
E.g.

- finite density/bariochemical potential QCD(-like models);
- Hubbard model of condensed matter physics (away from half filling);
- real time dynamics $\sim\langle f| e^{-i H}|i\rangle=\int \mathcal{D} x e^{i S[x]}$.

What is the sign problem?

Q : How to overcome the complex action problem?
\boldsymbol{A} : Simulate what you can and reweight to the original theory!

Expectation value through reweighting ($r[\phi]$ real and positive):

$$
\langle\mathcal{O}\rangle_{w}=\frac{\int \mathcal{D} \phi \mathcal{O}[\phi] w[\phi]}{\int \mathcal{D} \phi w[\phi]}=\frac{\int \mathcal{D} \phi \mathcal{O}[\phi] \frac{w[\phi]}{r[\phi]} r[\phi]}{\int \mathcal{D} \phi \frac{w[\phi]}{r[\phi]} r[\phi]}=\frac{\left\langle\mathcal{O} \frac{w}{r}\right\rangle_{r}}{\left\langle\frac{w}{r}\right\rangle_{r}} .
$$

Complex action problem reduces to the sign problem:

- large fluctuations in $\frac{w}{r} \longrightarrow$ large cancellations \longrightarrow large uncertainties (exp. in V, μ);
- severity of the sign problem:

$$
\left\langle\frac{w}{r}\right\rangle_{r}=\frac{\mathcal{Z}_{w}}{\mathcal{Z}_{r}} \quad \Longrightarrow \quad\left\{\begin{aligned}
1 & \sim \text { perfect! } \\
\approx 0 & \sim \text { not so much. } .
\end{aligned}\right.
$$

E.g. phase quenched theory $r=|w| \Longrightarrow \operatorname{det} M \rightarrow|\operatorname{det} M|$.

Fighting the sign problem?

Why?

- QCD;
- condensed matter physics (Hubbard model);
- neutron stars;
- hydrodynamic simulations at finite density;
- etc.

How?:

N-dim. integral over real fields to

- 2 N -dim. stochastic dynamics in the real and imaginary parts of complexified fields (e.g. complex Langevin);
- N-dim. integral with deformed integration contour/manifold into the complexified field space.

Complex contour deformations

Aim:

- searching for theories "closer" to the original theory;
- with real and positive weights;
- hence acquiring better signal-to-noise ratios in observables.

Set of integration manifolds $\mathcal{M}_{\text {def }}(\{p\})$ parameterised with some finite set of real parameters $\{p\}$:

$$
\mathcal{Z}=\int_{\mathcal{M}} \mathcal{D} \phi w[\phi]=\int_{\mathcal{M}_{\mathrm{def}}} \mathcal{D} \phi_{\mathrm{def}} w\left[\phi_{\mathrm{def}}\right]=\int_{\mathcal{M}_{\mathrm{def}}} \mathcal{D} X \operatorname{det} \mathcal{J}(X) w\left[\phi_{\mathrm{def}}(X)\right] .
$$

Phase quenched partition function:

$$
\mathcal{Z}_{\mathrm{PQ}}^{\text {def }}(\{p\})=\int_{\mathcal{M}_{\mathrm{def}}} \mathcal{D} X\left|\operatorname{det} \mathcal{J}(X) w\left[\phi_{\operatorname{def}}(X)\right]\right|
$$

Severity of the sign problem:

$$
\left\langle\frac{w}{r}\right\rangle_{r}=\frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{PQ}}^{\mathrm{def}}(\{p\})}=\left\langle\frac{\operatorname{det} \mathcal{J} w\left[\phi_{\mathrm{def}}\right]}{\left|\operatorname{det} \mathcal{J} w\left[\phi_{\mathrm{def}}\right]\right|}\right\rangle_{\mathrm{PQ}}^{\mathrm{def}}:=\left\langle e^{i \theta}\right\rangle .
$$

Integration manifold optimisation \sim machine learning

The sign problem is milder if

$$
\frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{PQ}}^{\text {def }}(\{p\})} \text { is maximal! }
$$

Y. Mori et. al. [arXiv:hep-lat/1705.05605]

Introducing a cost function and minimise it by varying $\{p\}$:

$$
\mathcal{F}(\{p\})=-\log \left\langle e^{i \theta}\right\rangle=-\log \mathcal{Z}+\log \mathcal{Z}_{\mathrm{PQ}}^{\text {def }}(\{p\})
$$

One can utilise machine learning algorithms (e.g. gradient descent) and compute gradients:

$$
\nabla_{p} \mathcal{F}(\{p\})=\nabla_{p} \log \mathcal{Z}_{\mathrm{PQ}}(\{p\})=-\left\langle\nabla_{p} S_{\mathrm{eff}}-\nabla_{p} \log \right| \operatorname{det} \mathcal{J}| \rangle_{\mathrm{PQ}}^{\mathrm{def}}
$$

Holomorphic flow

A. Alexandru et. al.: [arXiv:hep-lat/1512.08764]

- Specific way of doing contour deformations:

$$
\int_{\mathcal{M}_{0}} \mathcal{D} \phi e^{-S_{\text {eff }}[\phi]} \quad \xrightarrow{\text { deformation }} \quad \int_{\mathcal{M}_{\mathrm{def}}\left(t_{\mathrm{f}}\right)} \mathcal{D} \phi_{\mathrm{f}} e^{-S_{\mathrm{eff}}\left[\phi_{\mathrm{f}}\right]}
$$

- Defined by the flow equation

$$
\frac{\mathrm{d} \phi_{\mathrm{f}}}{\mathrm{~d} t_{\mathrm{f}}}=\left(\frac{\partial S_{\mathrm{eff}}}{\partial \phi_{\mathrm{f}}}\right)^{*} \quad \text { with initial condition } \quad \phi_{\mathrm{f}}\left(t_{\mathrm{f}}=0\right)=\phi .
$$

- Along the flow

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t_{\mathrm{f}}} \operatorname{Re} S_{\mathrm{eff}}=\frac{1}{2}\left[\frac{\mathrm{~d} S_{\mathrm{eff}}}{\mathrm{~d} t_{\mathrm{f}}}+\left(\frac{\mathrm{d} S_{\mathrm{eff}}}{\mathrm{~d} t_{\mathrm{f}}}\right)^{*}\right]=\left|\frac{\mathrm{d} S_{\mathrm{eff}}}{\mathrm{~d} \phi_{\mathrm{f}}}\right|^{2} \geq 0 \sim \text { monotonically increasing; } \\
& \frac{\mathrm{d}}{\mathrm{~d} t_{\mathrm{f}}} \operatorname{Im} S_{\mathrm{eff}}=\frac{1}{2 i}\left[\frac{\mathrm{~d} S_{\mathrm{eff}}}{\mathrm{~d} t_{\mathrm{f}}}-\left(\frac{\mathrm{d} S_{\mathrm{eff}}}{\mathrm{~d} t_{\mathrm{f}}}\right)^{*}\right]=\frac{1}{2 i}\left[\left|\frac{\mathrm{~d} S_{\mathrm{eff}}}{\mathrm{~d} \phi_{\mathrm{f}}}\right|^{2}-\left|\frac{\mathrm{d} S_{\mathrm{eff}}}{\mathrm{~d} \phi_{\mathrm{f}}}\right|^{2}\right]=0 \sim \text { constant . }
\end{aligned}
$$

- $\operatorname{Re} S_{\text {eff }}$ increases monotonically $\quad \Longrightarrow \quad \mathcal{Z}_{\mathrm{PQ}}$ becomes smaller!
- Jacobian: $\mathrm{d} \mathcal{J} / \mathrm{d} t_{\mathrm{f}}=(H \mathcal{J})^{*}$ with Hessian H and $\operatorname{det} \mathcal{J}\left(t_{\mathrm{f}}=0\right)=1$ \sim very expensive...

The Stephanov model

\sim chiral random matrix model (Stephanov: [arXiv:hep-lat/9604003]):
$\mathcal{Z}=\int \mathcal{D} U \operatorname{det} M[U] e^{-S_{\mathrm{g}}[U]}$
vs. $\mathcal{Z}=e^{N \mu^{2}} \int \mathrm{~d} W \mathrm{~d} W^{\dagger} \operatorname{det}^{N_{f}}(D+m) e^{-N \operatorname{Tr}\left(W W^{\dagger}\right)}$,
where:
$\checkmark W, W^{\dagger} \in \mathbb{C}^{N \times N}$, general complex matrices $\rightarrow 2 N^{2}$ DoF;

- N_{f} : flavour number;
- μ : chemical potential;
- m : quark mass;
- and massless Dirac operator

$$
D=\left(\begin{array}{cc}
0 & i W+\mu \\
i W^{\dagger}+\mu & 0
\end{array}\right) \in \mathbb{C}^{2 N \times 2 N}
$$

[arXiv:hep-ph/0003017]

The Stephanov model

Phase transitions:

- chiral condensate

$$
\Sigma(m, \mu)=\frac{1}{2 N} \frac{\partial \log \mathcal{Z}}{\partial m}
$$

- baryon number density

$$
n_{B}(m, \mu)=\frac{1}{2 N} \frac{\partial \log \mathcal{Z}}{\partial \mu}
$$

The Stephanov model: the phase quenched theory

Phase quenched partition function:

$$
\mathcal{Z}_{\mathrm{PQ}}=e^{N \mu^{2}} \int \mathrm{~d} W \mathrm{~d} W^{\dagger}\left|\operatorname{det}^{N_{f}}(D+m)\right| e^{-N \operatorname{Tr}\left(W W^{\dagger}\right)} .
$$

Expectation values via reweighting

$$
\langle\mathcal{O}\rangle=\frac{\left\langle\mathcal{O} \frac{\operatorname{det}^{N_{f}}(D+m)}{\left|\operatorname{det}^{N} f(D+m)\right|}\right\rangle_{\mathrm{PQ}}}{\left\langle\frac{\operatorname{det}^{N_{f}}(D+m)}{\left|\operatorname{det}^{N} f(D+m)\right|}\right\rangle_{\mathrm{PQ}}} .
$$

E.g. baryon number density:

The Stephanov model: pion condensation in the PQ theory

Transition to pion condensed phase:
Phase quenched, $N_{f}=2, m=0.2$

Phase quenched, $N_{f}=2, m=0.2$

The Stephanov model and its sign problem at finite μ

Severity of the sign problem (average phase):

$$
\left\langle e^{i \theta}\right\rangle=\frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{PQ}}}=\left\langle\frac{\operatorname{det}^{N_{f}}(D+m)}{\left|\operatorname{det}^{N_{f}}(D+m)\right|}\right\rangle_{\mathrm{PQ}}
$$

The Stephanov model: integration contour deformations

Complexification:

$$
\begin{array}{rlrlr}
W & =A+i B & & \rightarrow & X=\alpha+i \beta \\
W^{\dagger} & =A^{\mathrm{T}}-i B^{\mathrm{T}} & & \rightarrow & Y=\alpha^{\mathrm{T}}-i \beta^{\mathrm{T}}
\end{array}
$$

where $A, B \in \mathbb{R}^{N \times N}$ and $\alpha, \beta \in \mathbb{C}^{N \times N}$.
$\longrightarrow \quad \alpha, \beta$ can be parameterized by A, B and some set of parameters $\{p\}$.

Partition functions:

- deformations are chosen such that \mathcal{Z} remains invariant,
- while $\mathcal{Z}_{\mathrm{PQ}} \equiv \mathcal{Z}_{\mathrm{PQ}}(\{p\})$ does not!

The Stephanov model: Jacobian of contour deformations

We parameterize the deformed integration manifold with the undeformed variables:

$$
\mathcal{Z}=\int_{\mathcal{M}_{\text {def }}} \mathrm{d} \alpha \mathrm{~d} \beta e^{-S_{\text {eff }}[\alpha, \beta]}=\int_{\mathcal{M}_{\text {def }}} \mathrm{d} A \mathrm{~d} B \operatorname{det} \mathcal{J} e^{-S_{\text {eff }}[\alpha(A, B), \beta(A, B)]}
$$

where $S_{\text {eff }}=N \operatorname{Tr}(X Y)-N_{f} \log \operatorname{det}(D+m)$ and $\mathcal{J}=\frac{\partial(\alpha, \beta)}{\partial(A, B)} \in \mathbb{C}^{2 N^{2} \times 2 N^{2}}$.
"New" average phase after deformation:

$$
\left\langle e^{i \theta}\right\rangle=\left\langle\frac{\operatorname{det}^{N_{f}}(D+m) \operatorname{det} \mathcal{J}}{\left|\operatorname{det}^{N_{f}}(D+m) \operatorname{det} \mathcal{J}\right|} e^{-i N \operatorname{Im} \operatorname{Tr}(X Y)}\right\rangle_{\mathrm{PQ}}^{\operatorname{def}}
$$

Results: ansatz \#1

Motivation:

μ can be transformed out of the Dirac operator via a constant imaginary shift in A :

$$
D=\left(\begin{array}{cc}
0 & i W+\mu \\
i W^{\dagger}+\mu & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & (i A-B)+\mu \\
\left(i A^{\mathrm{T}}+B^{\mathrm{T}}\right)+\mu & 0
\end{array}\right)
$$

The ansatz:

$$
\begin{aligned}
\alpha & =A+i k_{1} \mathrm{id} \\
\beta & =B+i k_{2} \mathrm{id}
\end{aligned}
$$

with $k_{1}, k_{2} \in \mathbb{R}$ and $\operatorname{det} \mathcal{J}=1$.

Results: ansatz \#1
$\alpha=A+i k_{1} \mathrm{id}$
$\beta=B+i k_{2} \mathrm{id}$

Results: ansatz \#2

Motivation:

When μ is transformed out of the Dirac operator via $A \rightarrow A+i k \mathrm{id}$:

$$
\operatorname{Tr}(X Y)=\operatorname{Tr}\left(A A^{\mathrm{T}}+B B^{\mathrm{T}}\right)-N k^{2}+2 i k \operatorname{Tr} A
$$

The ansatz:

$$
\begin{aligned}
& \alpha=A+i p_{1} \mathrm{id}+p_{2} \operatorname{Tr} A \mathrm{id} \\
& \beta=B
\end{aligned}
$$

with $p_{1}, p_{2} \in \mathbb{R}$ and $\operatorname{det} \mathcal{J}=1+N p_{2}$.

Results: ansatz \#2

$$
\begin{aligned}
& \alpha=A+i p_{1} \mathrm{id}+p_{2} \operatorname{Tr} A \mathrm{id} \\
& \beta=B
\end{aligned}
$$

Results: many-parameter ansätze

20-parameter linear ansatz:

$$
\begin{aligned}
& \alpha=(a+b \operatorname{Tr} A+c \operatorname{Tr} B) \mathrm{id}+(1+d) A+e B \\
& \beta=(f+g \operatorname{Tr} A+h \operatorname{Tr} B) \mathrm{id}+j A+(1+k) B
\end{aligned}
$$

with $a, b, \ldots, k \in \mathbb{C}$ and all are zero before contour deformation;

$$
\operatorname{det} \mathcal{J}=((1+d)(1+k)-e j)^{N^{2}-1}[((1+d)+N b)((1+k)+N h)-(e+N c)(j+N g)] .
$$

Proper scan is not feasible: too many parameters:

- too costly to scan,
- impossible to visualize,
but can be handled with the integration manifold optimisation approach.

Results: many-parameter ansätze

Interestingly only a single important parameter emerges $\quad \Longrightarrow \quad \operatorname{Im}(a)=k_{1}=p_{1}$

Results: many-parameter ansätze

Visible improvement in the sign problem:

Results: μ - and N-dependence at $N_{f}=2\left(\operatorname{Im}(a)=k_{1}=p_{1}\right)$

Results: improvement on the sign problem $\left(\operatorname{Im}(a)=k_{1}=p_{1}\right)$

Statistical improvement $\sim\left(\left\langle e^{i \theta}\right\rangle^{\text {def }} /\left\langle e^{i \theta}\right\rangle^{\text {original }}\right)^{2} \propto 1 /$ (length of the simulation)

Results: optimal contour parameters $\left(\operatorname{Im}(a)=k_{1}=p_{1}\right)$
μ - and N-dependence:

Results: holomorphic flow vs. integration manifold optimisation
Q : "Does the two methods find the same deformed contour?"

$$
\left\langle\alpha_{\mathrm{f}}^{i j}-A^{i j}\right\rangle=\left\langle\operatorname{Tr}\left(\alpha_{\mathrm{f}}-A\right)\right\rangle\left(t_{\mathrm{f}}\right) \delta^{i j} \quad \longleftrightarrow \quad\left\langle\alpha^{i j}-A^{i j}\right\rangle=i k_{1} N \delta^{i j}
$$

hence: $\quad k_{1}=\operatorname{Im}\left\langle\operatorname{Tr}\left(\alpha_{\mathrm{f}}-A\right)\right\rangle\left(t_{\mathrm{f}}\right) / N$.

$$
m=0.2, N_{f}=2, N=2
$$

- The majority of the improvement comes from the constant shift, but there seems to be more and more as t_{f} is increased.

Piecewise optimisation of the trace

\sim deforming only $t=\operatorname{Tr} A$.
Ansatz $(\beta=B)$:

$$
A=\frac{t}{N} \mathrm{id}+\left(A-\frac{t}{N} \mathrm{id}\right)=\frac{t}{N} \mathrm{id}+\tilde{A} \quad \rightarrow \quad \alpha=\frac{\tau}{N} \mathrm{id}+\tilde{A},
$$

$\operatorname{Tr} \tilde{A}=0$ and $\tau=t+i f\left(t ;\left\{y_{k}\right\},\left\{x_{k}\right\}\right)$ where f is some (e.g. linear) interpolation function.

- $\left\{y_{k}\right\}$: parameters to optimise;
- $\left\{x_{k}\right\}$: nodes on the original contour.

Discussion and outlook

Findings:

- The sign problem in theories with a fermion determinant could be improved through complex contour deformations.
- Deformations that weaken the sign problem the most (i.e. some constant shift $\propto i \cdot \mathrm{id})$ has no direct counterpart in full-QCD.
- Still, numerically the improvement appears to be exponential in V and μ.
- The optimisation method (i.e. machine learning) is an applicable way to find the optima of the deformation parameters in different änsatze.
- Results with holomorphic flow demonstrate that there is still more than the constant shift.

To do:

- We shall use a more realistic toy model of QCD, or continue with chRMT but only with deformations allowed in full-QCD.
- Planned: applications in heavy dense QCD in 2 and/or 4 dimensions.

The End

Thank you for your attention.

Supported by the ÚNKP-23-4 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund

