

STATISTICAL HADRONIZATION MODEL FOR Au-Au COLLISIONS AT SIS18 ENERGIES

Szymon Harabasz (TU Darmstadt) in collaboration with:

Wojciech Florkowski Jagiellonian University Tetyana Galatyuk TU Darmstadt / GSI Malgorzata Gumberidze GSI Jedrzei Kołaś Warsaw University of Technology **Radoslaw Ryblewski IFJ PAN Piotr Salabura Jagiellonian University Joachim Stroth Goethe-University Frankfurt / GSI** Hanna Paulina Zbroszczyk **Warsaw University of Technology**

Based on: PRC **102** (2020) 5, 054903, arXiv: 2003.12992 [nucl-th]

PRC **107** (2023) 3, 034917 arXiv: 2210.07694 [nucl-th],

https://github.com/therminator2/therminator2 Pull Requests, "Issue" reports very welcome

QCD STUDY WITH HEAVY-ION COLLISIONS

In chemical equilibrium density of particle *i* can be written as:

$$n_i = \frac{g_s}{2\pi^2} \Upsilon T m^2 K_2 \left(\frac{m}{T}\right)$$

Statistical Hadronization Model (SHM)

- One can fit the ratios of measured particle yields and extract free parameters
 - Location in the phase diagram

MAPPING THE PHASE DIAGRAM WITH THE SHM

HADES, Nature Phys. **15** (2019) 10, 1040-1045 A. Andronic *et al.*, Nature **561** (2018) no.7723 LQCD: S. Borsanyi *et al.* [Wuppertal-Budapest], JHEP **1009** (2010) 073 LQCD: A. Bazavov *et al.*, PLB **795** (2019) 15-21

- Is it valid at all to use equilibrium methods at low energies?
 - Particles with strange quarks produced deep below the NN threshold
 - Low number of newly produced particles in the interaction zone: ~40 in central events (mainly pions)
- On the other hand:
 - Original nucleons stopped in the interaction zone (~300 particles in central events)
 - Longer life-time of the system (~15 fm/c): enough to thermalize

HYDRO-INSPIRED MODELS OF PARTICLE PRODUCTION AT THE FREEZE-OUT

First idea:

- P. J. Siemens and J. O. Rasmussen, PRL 42 (1979) 880
- Used for Ne+NaF at $E_{kin}/A = 0.8 \text{ GeV}!$
- Thermal source of spherical geometry and spherically symmetric expansion
- Constant radial velocity (non-physical for r = 0?)

Guidance from dynamic models T. Galatyuk et al., EPJA 52 (2016) 5, 131

Au+Au at 1.23A GeV

Spherical symmetry at 1-2A GeV is clearly more realistic than boost invariance

Modification:

E. Schnedermann, J. Sollfrank, U. W. Heinz, PRC 48 (1993) 2462

- Appropriate for higher-energy collisions (originally S+S at $E_{kin}/A = 200 \text{ GeV}$)
- Cylindrically-symmetric geometry and expansion
- Boost invariance in Z direction "Bjorken scaling"
- Velocity profile: $\beta(r) = \beta_{\max}(r/r_{\max})^n$

SINGLE FREEZE-OUT SCENARIO AT RHIC ENERGIES

W. Broniowski and W. Florkowski, PRL 87 (2001) 272302

- Chemical freeze-out coincides with kinetic freeze-out
- Hadron yields are given by the integrals of hadron spectra
- Feed-down from resonance decays included
- Successful at RHIC, does it work at SIS18 energies?
- Idea is implemented in the Thermal Event Generator (Therminator 2)

THERMAL EVENT GENERATOR (THERMINATOR 2) M. Chojnacki *et al.*, Comput. SH. W. Elorkowski, T. Galatu

M. Chojnacki *et al.*, Comput. Phys. Comm. 103 (2012) 746-773 SH, W. Florkowski, T. Galatyuk *et al.*, PRC 102 (2020) 5, 054903 SH, W. Florkowski, T. Galatyuk *et al.*, PRC 107 (2023) 3, 034917

Ingredients of the method:

- Single (chem. & kin.) freeze-out on a spheroid-symmetric hypersurface
- Δ spectral function from πN phase shift
- Fix parameters with particle multiplicity ratios:
 - Six equations for six parameters:

APPROACHES TO THERMAL PARAMETERS

A. Motornenko et al., PLB 822 (2021) 136703

]	
Parameter	Harabasz <i>et al.</i> [1]	no clusters low T minimum	no clusters high T minimum	with clusters	with clusters + unstable nuclei
T (MeV)	49.6 ± 1.1	47.2 ± 2.6	70.3 ± 2.0	68.6 ± 2.0	63.5 ± 1.6
R (fm)	16.0	18.9 ± 2.2	6.8 ± 0.9	9.0 ± 0.4	10.4 ± 0.3
$\mu_B \ (MeV)$	776 ± 3	780.1 ± 3.8	872.1 ± 24.3	786.7 ± 2.9	781.1 ± 3.3
γ_S	0.16 ± 0.02	0.19 ± 0.07	0.05 ± 0.01	0.03 ± 0.01	0.04 ± 0.01
$\chi^2/N_{ m df}$	$N_{\rm df} = 0$	1.58/2	1.13/2	105.30/5	62.30/5

- There Q/B = 0.4 and total S = 0 are kept as constraints
- We recover parameters needed to run Therminator: $\mu_{I3} \mu_{S}$
- We fix the Hubble constant *H* and readjust *R*

RESONANCE TREATMENT R. Dashen, S. K. Ma and H. J. Bernstein, Phys. Rev. 187 (1969) 345 (1969)

 πN phase shift in the P₃₃ channel

Pok Man Lo et al., PRC 96, 015207 GW WI08: R.L. Workman et al. PRC 86, 035202 150 GW WI08 ð(degree) 100 50 0 -50 1.2 1.5 1.4 1 1.1 1.3 M (GeV)

Spectral function: $B_l(M) = 2 \frac{d}{dM} \delta_l$

eBW (SHARE)

 $2 d\delta / dM$

dN / dM_{πN} (a.u.) 90

0.4

Sensitivity of hadron spectra

Pok Man Lo, EPJC 77 (2017) no.8, 533

R.Venugopalan, and M. Prakash, NPA **546** (1992) 718 W. Weinhold, and B. Friman, PLB **433** (1998) 236

PROTON SPECTRA

Ref. [29]: PRC **102** (2020) 5, 054903 Case A & Case B: arXiv: 2210.07694 [nucl-th]

Parameter	Case A	Case B	Spherical
T (MeV)	49.6	70.3	49.6
R (fm)	15.7	6.06	15.7
μ _B (MeV)	776	876	776
<u>µ</u> _S (MeV)	123.4	198.3	123.4
μ _{l3} (MeV)	-14.1	-21.5	-14.1
Ys	0.16	0.05	0.16
H (GeV)	0.01	0.0225	0.008
δ	0.2	0.4	0
$\sqrt{Q^2}$	0.238	0.256	0.285

Spheroid fireball is more realistic than spherical

HADES data: M. Szala, Proceedings of SQM 2019 EPJA 56 (2020) 10, 259 PLB 778 (2018) 403-407 PLB 793 (2019) 457-463

PION SPECTRA (**POSITIVE CHARGE**)

Ref. [29]: PRC **102** (2020) 5, 054903 Case A & Case B: arXiv: 2210.07694 [nucl-th]

Parameter	Case A	Case B	Spherical
T (MeV)	49.6	70.3	49.6
R (fm)	15.7	6.06	15.7
μ _B (MeV)	776	876	776
<u>µ</u> _S (MeV)	123.4	198.3	123.4
μ _{l3} (MeV)	-14.1	-21.5	-14.1
γs	0.16	0.05	0.16
H (GeV)	0.01	0.0225	0.008
δ	0.2	0.4	0
$\sqrt{Q^2}$	0.238	0.256	0.285

- Spheroid fireball is more realistic than spherical
- Single δ works well for both protons and pions
- One can infer the shape of the fireball from data

HADES data: M. Szala, Proceedings of SQM 2019

EPJA 56 (2020) 10, 259 PLB 778 (2018) 403-407 PLB 793 (2019) 457-463

PION SPECTRA (NEGATIVE CHARGE)

Ref. [29]: PRC **102** (2020) 5, 054903 Case A & Case B: arXiv: 2210.07694 [nucl-th]

Parameter	Case A	Case B	Spherical
T (MeV)	49.6	70.3	49.6
R (fm)	15.7	6.06	15.7
μ _B (MeV)	776	876	776
<u>µ</u> s (MeV)	123.4	198.3	123.4
μ _{l3} (MeV)	-14.1	-21.5	-14.1
Υs	0.16	0.05	0.16
H (GeV)	0.01	0.0225	0.008
δ	0.2	0.4	0
$\sqrt{Q^2}$	0.238	0.256	0.285

- Spheroid fireball is more realistic than spherical
- Single δ works well for both protons and pions
- One can infer the shape of the fireball from data

HADES data: M. Szala, Proceedings of SQM 2019

EPJA 56 (2020) 10, 259 PLB 778 (2018) 403-407 PLB 793 (2019) 457-463

PION FEMTOSCOPIC RADII

Case B (T = 70.3 MeV, ...) π⁺ - π⁺ ∈= -0.1 π - π R_{inv} (fm) ∈= -0.2 $\pi^0 - \pi^0$ R_{out} (fm) E= -0.3 R_{side} (fm) R_{long} (fm) 1.5 .5 (fm) دارس 2.0 , (fm) 2.0 200 300 400 100 200 100 300 400 k_{τ} (MeV) k_{τ} (MeV)

HADES data: PLB 795 (2019) 446

- Trends as a function of transverse momentum and order of magnitude or R's are OK-ish
- Many moving parts in the modeling (pair wave function etc.) not just the freeze-out parametrization

OUTLOOK: PION-PROTON PAIR SPECTRA

Case A (T = 49.6 MeV, ...)

M. Kurach, Internship and Training Project Report, GET INvolved Programm, GSI/FAIR Darmstadt

Case B (T = 70.3 MeV, ...)

HADES data: PLB **819** (2021) 136421

- Extra hint to select the "right" set of parameters
- Possibility to disentagle effects of the resonance shape, the thermal factor and the kinematic shift
- The event generator allows experimental collaborations to study combinatorial background effects

SUMMARY

- Statistical hadronization model can describe not only multiplicities, but also spectra of bulk particles produced in heavy-ion collisions in $\sqrt{s_{NN}}$ of few GeV
- Input:
 - Spheroid fireball shape and expansion
 - Hubble-like velocity profile
 - Instantaneous freeze-out
 - Careful treatment of baryonic resonances
- Output:
 - Thermodynamic conditions and fireball shape at the freezeout
 - Resonance shape vs. thermal factor vs. kinematic shift
 - Convenient, easily tunable event generator for experiment:
 - Efficiency study with a realistic event shape
 - Combinatorial background effects
 - Future: constraining freeze-out cocktail for dileptons

Q&A

63. Cracow School of Theoretical Physics | Zakopane, September 17-23, 2023 | Szymon Harabasz

EXTRA SLIDES

63. Cracow School of Theoretical Physics | Zakopane, September 17-23, 2023 | Szymon Harabasz

Transverse mass of pions from Δ decay for different spectral functions:

- A with fixed mass of 1.232 GeV
- Spectral function from the πN phase shift in the P₃₃ channel

Finite Δ width: \rightarrow populate low m_t pions

COOPER-FRYE FORMULA

F. Cooper and G. Frye, PRD 10 (1974) 186

"Single-particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production"

$$E_p \frac{dN}{d^3 p} = \int d^3 \Sigma_\mu(x) p^\mu f(x, p)$$

• Spherically symmetric system:

$$x^{\mu} = (t(r), r\mathbf{e_r})$$

• Spherical expansion of the "fluid":

$$u^{\mu} = \frac{1}{\sqrt{1 - v^2(r)}} \left(1, v(r)\mathbf{e_r}\right)$$

• Sudden freeze-out in the "lab" frame (t = const(r)): $d^{3}\Sigma_{\mu} \equiv \varepsilon_{\mu\alpha\beta\gamma} \frac{\partial x^{\alpha}}{\partial \zeta} \frac{\partial x^{\beta}}{\partial \phi} \frac{\partial x^{\gamma}}{\partial \theta} d\zeta d\phi d\theta$

 $= (r^2 \sin \theta \ d\theta \ d\phi \ dr, 0, 0, 0)$

$$f(x,p) = \frac{g_s}{2\pi} \left[\Upsilon^{-1} \exp\left(\frac{p_\mu u^\mu}{T}\right) \pm 1 \right]^{-1}$$

Fugacity factor: $\Upsilon \equiv \gamma_q^{N_q + N_{\overline{q}}} \gamma_s^{N_s + N_{\overline{s}}} \exp\left(\frac{\mu_B B + \mu_S S + \mu_{I_e} I_3}{T}\right)$ (in this work we assume $\gamma_q = 1$)

- Integrating over the freeze-out hypersurface and phase-space gives back particle multiplicity
- Right sets of assumptions recover the original Siemens-Rasmussen and Schnedermann-Sollfrank-Heinz formulas
- But we assume Hubble-like expansion: $v(r) = \tanh(Hr)$

Parameter of $\zeta \to (t(\zeta), r(\zeta))$ $\nu(r) = tar$