How Radial Oscillations Can Help to Probe the Onset of the Deconfinement Phase Transition and Special Points in Hybrid Stars

<u>Christoph Gärtlein*,</u> David Blaschke, Oleksii Ivanytskyi, Violetta Sagun

University of Lisbon (IST) University of Coimbra University of Wroclaw

Fundação para a Ciênci e a Tecnologi 63. Cracow School of Theoretical Physics

17th - 23rd September 2023

21/09/2023

Outline

Compact Stars Building up an NS Special points Radial Oscillations Conclusions

Outline

Compact Stars

Building up an NS
Special points
Radial Oscillations
Conclusions

Contents

Compact Stars

Neutron Stars

21/09/2023

	Neutron star	White dwarf	Sun
$M_{max}(M_{\odot})$	2	1.44	1
R (km)	11-12	10 ⁴	$7 \cdot 10^{5}$
$n_c (g/cm^3)$	$10^{14} - 10^{15}$	10^{7}	10^{2}
rotation speed (s)	$10^{-3} - 1$	100	$2 \cdot 10^{6}$
B (G)	$10^8 - 10^{16}$	100	1
T (K)	$10^6 - 10^{11}$	10^{3}	10 ⁵

Δ

Variety in the composition

21/09/2023

Compact Stars

Construction the Equation of State (EoS)

Idea:

combine the EoS for <u>hadronic matter</u> and our model for <u>quark matter</u> via Maxwell construction

Shahrbaf, Blaschke+ (2022)

21/09/2023

DD2npY-T model (hadronic) neutrons and

protons + hyperonic degrees of freedom **Quark matter:** Ivanytskyi,Blaschke (2022) confining relativistic density functional approach (RDF) Underlying Lagrangian:

 $\mathcal{L} = \mathcal{L}_{\textit{free}} + \mathcal{L}_{\textit{V}} + \mathcal{L}_{\textit{D}} - \mathcal{U}$

Meaning what?

ην Including <u>vector</u> <u>repulsion</u> and <u>diquark</u> <u>pairing</u> controlled by dimensionless couplings

Confinement + Conformal limit + Color Superconductivity

6

Hybrid EoS

21/09/2023

Building up an NS

Building up an NS

Special Points and Onset Mass

- M-R curves show many interesting characteristics
- Plotting curves characterized by the couplings of the quark phase
- Special points and onset mass (deconfinement phase transition)

21/09/2023

Special points

Special points

- Similar to stars (well studied for the Sun) radial and nonradial oscillations are considerable
- Changes of radius and pressure (harmonic oscillations)
- Radial: n=0 --> zero or fundamental mode (f-mode)
- n > 1: p-modes

Pressure deviation

Radial Oscillations

How do they work?

Equations:

$$\frac{d\xi}{dr} = -\left(\frac{3}{r} + \frac{1}{\epsilon + p}\frac{dp}{dr}\right)\xi - \frac{\eta}{r\gamma}, \qquad \xi \equiv \frac{\Delta r}{r} \quad \text{radial perturbations}$$

$$\frac{d\eta}{dr} = \omega^2 \left[\frac{\epsilon + p}{p}re^{(\lambda - \nu)}\right]\xi$$

$$-\left[\frac{4dp}{pdr} + 8\pi(\epsilon + p)re^{\lambda} - \frac{r}{p(\epsilon + p)}\left(\frac{dp}{dr}\right)^2\right]\xi$$

$$-\left[\frac{\epsilon}{p(\epsilon + p)}\frac{dp}{dr} + 4\pi\zeta re^{\lambda}\right]\eta, \qquad \eta \equiv \frac{\Delta p}{p} \quad \text{pressure perturbations}$$

- radial pressure oscillations (p-waves) ⇒ no GW emission
- could couple to nonradial oscillations \Rightarrow emit GW
- used to probe composition of compact stars

21/09/2023

Radial Oscillations

- **1.** Phenomenological EoS in agreement with astrophysical constraints
- 2. Variation of η_D while keeping η_V fixed \longrightarrow family of hybrid quark-hadron EoS also other possibilities corresponding mass-radius curves intersect in **SP**
- **3.** Finding special points within microscopic approach

4. Study of f-modes (belonging to SPs)

for same gravitational mass, radius and vector coupling

frequency decreases with decreasing diquark coupling

5. Earlier deconfinement phase transition **—** higher frequency

6. Observing low f-modes —> closer to maximum mass

with relation: constraining NS mass at which deconfinement transition occurs

CD	M_{SP}	R _{SP}	η_V	η_D	M_{onset}	$[M_{max}]$	f
51	$[M_{\odot}]$	[km]			$[M_{\odot}]$	$[M_{\odot}]$	[kHz]
nlq 1.973 1	11.06	0.230	0.749	0.251	2.044	0.840	
			0.740	0.506	2.011	0.821	
			0.731	0.826	1.986	0.770	
			0.721	1.169	1.974	0.318	
			0.711	1.483	1.976	_	
magenta 5.095	11.46	0.290	0.760	0.251	2.159	0.760	
			0.753	0.506	2.130	0.755	
			0.745	0.826	2.104	0.750	
			0.737	1.169	2.094	0.410	
				0.730	1.483	2.095	_
				A 1990	O OF 4	0 0 0 F	a = aa

16

Outlook and further findings

- Constraining the possible values of couplings
- range suggests an early deconfinement of quark matter and deconfinement onset masses below 1 solar mass
- consistent with the existence of heavy NSs with up to 2.4 solar masses

Thank you for your attention

Any Questions?

End Of Presentation

18

Lagrangian of the quark matter theory: including Up and Down quarks

$$\mathcal{L} = \overline{q}(i\partial \!\!\!/ - m)q + \mathcal{L}_V + \mathcal{L}_D - \mathcal{U},$$

$$\mathcal{L}_{V} = -G_{V}(\overline{q}\gamma_{\mu}q)^{2} + \Theta_{V},$$

$$\mathcal{L}_{D} = G_{D}(\overline{q}i\gamma_{5}\tau_{2}\lambda_{A}q^{c})(\overline{q}^{c}i\gamma_{5}\tau_{2}\lambda_{A}q) - \Theta_{D}.$$

 $\mathcal{U} = D_0 \left[(1+\alpha) \langle \overline{q}q \rangle_0^2 - (\overline{q}q)^2 - (\overline{q}i\gamma_5 \vec{\tau}q)^2 \right]^{\frac{1}{3}}$

Definition of couplings:

$$\begin{split} G_V &= \frac{G_{V0}}{1 + \frac{8}{9M_g^2} \left(\frac{\pi^2 \langle q^+ q \rangle}{2}\right)^{2/3}}, \\ G_D &= \frac{G_{D0}}{1 + \frac{8}{9M_g^2} \left(\frac{\pi^2 |\langle \overline{q}^c i \tau_2 \gamma_5 \lambda_2 q \rangle|}{2}\right)^{2/3}}, \\ \eta_V &\equiv \frac{G_{V0}}{G_{S0}} \quad \text{and} \quad \eta_D \equiv \frac{G_{D0}}{G_{S0}} \quad \text{Vacuum value of scalar coupling} \\ \text{dimensionless} \end{split}$$

Fixing parameters via mass and decay constant of the pion as well as of the scalar meson

$m \; [MeV]$	$\Lambda \ [MeV]$	α	$D_0 \Lambda^{-2}$	M_g [MeV]
4.2	573	1.43	1.39	600

Speed of sound profiles

21/09/2023

End Of Presentation