Relativistic Spin-magnetohydrodynamics from Kinetic Theory

Samapan Bhadury.

Institute of Theoretical Physics, Jagiellonian University.

At 63rd Cracow School of Theoretical Physics, Zakopane Nuclear Matter at Extreme Densities and High Temperatures

September 22, 2023

Based On: PRL 129, 192301 (2022)

Collaborators : Wojceich Florkowski, Amaresh Jaiswal, Radoslaw Ryblewski, Avdhesh Kumar

Introduction & Motivation

Relativistic Spin-magnetohydrodynamics :

Summary and Outlook :

Features of Non-central Collisions :

Before collision

After collision

Figure 1: Heavy-ion collision experiments. [LHC Collaboration, JINST 17 (2022) 05, P05009]

• Properties of the matter produced :

- Behaves like a fluid (Hydrodynamics applicable).
- The viscosity (η/s) is lowest (Dissipative hydrodynamics required).
- Highly vortical (for non-central collisions).

Features of Non-central Collisions :

Before collision

After collision

Figure 1: Heavy-ion collision experiments. [LHC Collaboration, JINST 17 (2022) 05, P05009]

• Special feature of Non-Central Collisions :

- Large Magnetic Field. [A. Bzdak and, V. Skokov, Phys. Lett. B 710 (2012) 171-174]
- Large Angular Momentum. [F. Becattini et. al. Phys. Rev. C 77 (2008) 204906]
- Particle polarization at small $\sqrt{S_{NN}}$. [STAR Collaboration, Nature 548 62-65, 2017]

Generation of Magnetic Field :

Figure 2: Generation of magnetic field in non-central collisions. [D. E. Kharzeev, PPNP 75 (2014) 133-151]

Generation of Magnetic Field :

Figure 2: Generation of magnetic field in non-central collisions. [D. E. Kharzeev, PPNP 75 (2014) 133–151] Time evolution of magnetic field. [K. Tuchin, LJMPE 23, No. 1 (2014) 1430001]

Generation of Angular Momentum :

Figure 3: Generation of angular momentum in non-central collisions. [B. Mohanty, ICHEP 2020]

Generation of Angular Momentum :

Figure 3: Generation of angular momentum in non-central collisions. [B. Mohanty, ICHEP 2020] Angular momentum vs impact parameter. [Becatimi, Piccinini and, Rizzo, Phys. Rev. C 77 (2008) 024906]

Particle Polarization :

Figure 4: Origin of particle polarization. [W. Florkowski et al, PPNP 108 (2019) 103709]

[Z.-T. Liang and X.-N. Wang, Phys. Rev. Lett. 94, 102301 (2005); Phys. Lett. B 629, 20 (2005)]

Particle Polarization :

Experimental evidence, [STAR Collaboration, Nature 548, 62 (2017), Phys. Rev. Lett. 123, 132301 (2019), Phys. Rev. Lett. 126, 162301 (2021)]

Theoretical models assuming equilibration of spin d.o.f. explains the data.

Particle Polarization :

Figure 5: Observation (L) and prediction (R) of longitudinal polarization. [Left: Phys. Rev. Lett. **123** 132301 (2019); Right: Phys. Rev. Lett. **120** 012302 (2018)]

- $\circ~$ Theoretical models assuming equilibration of spin d.o.f. predict the opposite sign.
- $\circ~$ Not enough time to thermalize. Dissipative forces at play?

Einstein-de Haas effect :

Figure 6: Einstein-de Haas effect. [Amaresh Jaiswal - Excited QCD 2022]

 $Magnetic \ field \ aligns \ electron \ spins \rightarrow Matter \ rotates \ to \ conserve \ angular \ momentum.$

Barnett effect :

Figure 7: Barnett effect. [Amaresh Jaiswal - Excited QCD 2022]

Non-zero angular momentum \rightarrow Generation of magnetic field.

The main problem we wish to address is :

 $\circ~$ To describe a relativistic fluid that is both magnetizable and polarizable.

 $\rightarrow\,$ Formulate Dissipative Spin-magnetohydrodynamics.

Introduction & Motivation

 $Relativistic \ Spin-magnetohydrodynamics:$

Summary and Outlook :

 Inspired by the success of Relativistic Hydrodynamics (RH) in explaining the multitude of properties of QGP evolution, development of a framework of RH with spin was started.

[P. Romatschke, IJMPE 19 (2010) 1-53, J. Y. Ollitrault EJP 29 (2008) 275-302, Jaiswal and Roy AHEP 2016 (2016) 9623034]

[F. Becattini et al, Annals Phys. 338 (2013) 32-49, Phys. Rev. C 95 (2017) 5, 054902, EPJC 77 (2017) 4, 213]

[W. Florkowski et al, Phys. Rev. C 97 (2018) 4, 041901, Phys. Rev. D 97 (2018) 11, 116017]

[D. Montenegro et al, Phys. Rev. D 96 (2017) 5, 056012, Phys. Rev. D 96 (2017) 7, 076016]

How to include internal degrees of freedom in a macroscopic theory?

[J. Weyssenhoff, A. Raabe, Acta Phys. Pol. 9 (1947) 7]

- $\circ~$ Origin of spin is purely quantum mechanical.
- $\circ~$ A theory with spin should be built up from Quantum Field Theory (QFT).
- \circ For a hydrodynamic description of a spin-polarizable fluid starting from QFT, it was proved that a spin-polarization tensor ($\omega^{\mu\nu}$) must be introduced. [F. Becattini *et al*, Phys. Lett. B 789 (2019) 419-425]
- $\circ~$ It has been argued that, at global equilibrium, the spin-polarization tensor should be same as the thermal vorticity.
 - [F. Becattini et al, Annals Phys. 338 (2013) 32-49, Phys. Rev. C 95 (2017) 5, 054902, EPJC 77 (2017) 4, 213]
 - [N. Weickgenannt et al, Phys. Rev. Lett. 127 (2021) 5, 052301]

$$\omega^{\mu
u}|_{
m geq}\proptoarpi^{\mu
u}=\left(\partial^{\mu}eta^{
u}-\partial^{
u}eta^{\mu}
ight)/2$$

 $\beta^{\mu}=u^{\mu}/T$ is the inverse temperature four-vector.

- A theory of ideal spin-hydrodynamics was formulated for fluids in equilibrium.
 [W. Florkowski *et al*, Phys. Rev. C 97 (2018) 4, 041901, Phys. Rev. D 97 (2018) 11, 116017]
 [D. Montenegro *et al*, Phys. Rev. D 96 (2017) 5, 056012, Phys. Rev. D 96 (2017) 7, 076016]
- $\circ~$ But, we want description of fluid with non-thermalized spin, where the relation, $\omega^{\mu\nu}\propto \varpi^{\mu\nu}$ may not hold.
- $\circ~$ Here, we want to understand, how $\omega^{\mu\nu}$ and hence a out-of-equilibrium system of spin-polarizable particles evolves in presence of magnetic field.

Covariant Magnetohyrodynamics :

 $\circ~$ In the limit of infinite conductivity, field strength tensor is,

$$F^{\mu\nu} \to B^{\mu\nu} = \epsilon^{\mu\nu\alpha\beta} \, u_\alpha \, B_\beta$$

- B^{μ} is orthogonal to u^{μ} and spacelike i.e. $u_{\mu}B^{\mu} = 0$ and, $B_{\mu}B^{\mu} \leq 0$. [G. S. Denicol et al. Phys. Rev. D 98 (2018) 7, 076009; A. K. Panda et al., JHEP 03 (2021) 216]
- If the medium if magnetizable, then the Maxwell's equations are given by,

$$\begin{split} \partial_{\mu}H^{\mu\nu} &= J^{\nu}, \qquad \partial_{\mu}\widetilde{F}^{\mu\nu} = \mathbf{0}, \\ & \left(\widetilde{F}^{\mu\nu} = \frac{1}{2}\epsilon^{\mu\nu\alpha\beta}\,F_{\alpha\beta}\right) \end{split}$$

where, $H^{\mu\nu} = F^{\mu\nu} + M^{\mu\nu}$ is the induction tensor and $M^{\mu\nu}$ is the magnetization tensor, J^{ν} is the charged four-current.

[Balakin, Grav.Cosmol. 13 (2007) 163-177; Hehl and, Obukhov, Phys. Lett. A 311, 277 (2003)]

 $\circ~$ The charged four-current may have two different origins -

$$J^{\mu} = J^{\mu}_{\rm f} + J^{\mu}_{\rm ext}$$

 $\circ~$ Charge four-current can be related to particle four-current as, $J^{\mu}_{\rm f}=\mathfrak{q}N^{\mu}_{\rm f}.$

Figure 8: Heavy-ion collision experiments. [LHC Collaboration, JINST 17 (2022) 05, P05009]

 $\circ~$ The net particle current within the system remains conserved. Hence we have,

$$\partial_{\mu}N_{\rm f}^{\mu} = 0$$

- $\circ~$ Total stress-energy tensor is, $~~T^{\mu\nu}=T^{\mu\nu}_{\rm f}+T^{\mu\nu}_{\rm int}+T^{\mu\nu}_{\rm B}+T^{\mu\nu}_{\rm ext}$
- $\circ~$ The first three stress-energy tensors are given by,

$$\begin{split} T^{\mu\nu}_{\rm f} &= \mathcal{E} \, u^{\mu} u^{\nu} - (\mathcal{P} + \Pi) \, \Delta^{\mu\nu} + \pi^{\mu\nu} \\ T^{\mu\nu}_{\rm int} &= -F^{\mu}_{\ \alpha} M^{\nu\alpha} \\ T^{\mu\nu}_{\rm B} &= -F^{\mu\alpha} F^{\nu}_{\ \alpha} + \frac{1}{4} g^{\mu\nu} F^{\alpha\beta} F_{\alpha\beta} \end{split}$$

 $\circ~$ Due to the external field, stress-energy tensor is not conserved

$$\partial_{\nu}T^{\mu\nu} = -f^{\mu}_{\text{ext}} , \qquad f^{\mu}_{\text{ext}} = F^{\mu}_{\ \alpha}J^{\alpha}_{\text{ext}} , \qquad \partial_{\nu}T^{\mu\nu}_{\text{f}} = F^{\mu}_{\ \alpha}J^{\alpha}_{\text{f}} + \frac{1}{2} \left(\partial^{\mu}F^{\nu\alpha}\right)M_{\nu\alpha}$$

• Similar to stress-energy tensor, the total angular momentum is not conserved in presence of external field and we have,

$$\partial_{\lambda}J^{\lambda,\mu\nu} = \partial_{\lambda}L^{\lambda,\mu\nu} + \partial_{\lambda}S^{\lambda,\mu\nu} = -\tau_{\text{ext}}^{\mu\nu},$$

where, $\tau_{\rm ext}^{\mu\nu} = x^{\mu}f_{\rm ext}^{\nu} - x^{\nu}f_{\rm ext}^{\mu}$ is the torque exerted by $J_{\rm ext}$ on the system.

 $\circ~$ However, since $\partial_\lambda L^{\lambda,\mu\nu}=-\tau_{\rm ext}^{\mu\nu},$ we get a conserved spin angular momentum tensor i.e.

$$\partial_{\lambda} S^{\lambda,\mu\nu} = 0$$

• Conservation laws:

$$\partial_{\mu}N^{\mu} = \mathbf{0}, \qquad \qquad \partial_{\nu}T_{f}^{\mu\nu} = F^{\mu}_{\ \alpha}J_{f}^{\alpha} + \frac{1}{2} \left(\partial^{\mu}F^{\nu\alpha}\right)M_{\nu\alpha}, \qquad \qquad \partial_{\lambda}S^{\lambda,\mu\nu} = \mathbf{0}$$

Boltzmann Equation :

- Phase-space distribution function with spin $\rightarrow f(x, p, s)$.
- $\circ~$ In presence of electromagnetic fields, the Boltzmann equation under RTA is,

$$p^{\mu}\partial_{\mu}^{(x)}f^{\pm} + \mathcal{F}^{\mu}\partial_{\mu}^{(p)}f^{\pm} + \mathcal{S}^{\mu\nu}\partial_{\mu\nu}^{(s)}f^{\pm} = -\frac{(u \cdot p)}{\tau_{\mathrm{R}}}\delta f^{\pm}$$

where, [Suttorp, de Groot, Nuovo Cimento A (1965-1970), van Weert Thesis (1970)]

$$\partial^{(x)}_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}, \qquad \partial^{(p)}_{\mu} \equiv \frac{\partial}{\partial p^{\mu}}, \qquad \partial^{(s)}_{\mu\nu} \equiv \frac{\partial}{\partial s^{\mu\nu}},$$

 $\circ~$ We can obtain a simplified expression for the equation of motion as,

[Suttorp, de Groot, Nuovo Cimento A (1970), van Weert (1970), N. Weickgenannt et al. Phys. Rev. D 100 (2019) 5, 056018]

$$\mathcal{F}^{\alpha} = \mathfrak{q} F^{\alpha\beta} p_{\beta} + \frac{m}{2} \left(\partial^{\alpha} F^{\beta\gamma} \right) m_{\beta\gamma}$$

where, $m^{\alpha\beta} = \chi \, s^{\alpha\beta}$ is dipole moment tensor, m is the mass of the particle.

 $\circ~$ We can use the dipole moment tensor to provide a definition of $M^{\alpha\beta}$ as,

$$M^{\alpha\beta} = m \int \mathrm{dPdS} \, m^{\alpha\beta} \left(f^+ - f^- \right)$$

Solving Boltzmann Equation :

 $\circ~$ Using RTA in Boltzmann equation we can write the 1^{st} order gradient correction as,

$$\delta f_{(1)}^{\pm} = -\mathcal{D} f_{\text{eq}}^{\pm},$$

where,

$$\mathcal{D} = \frac{\tau_R}{(u \cdot p)} \left(p^{\alpha} \frac{\partial}{\partial x^{\alpha}} + \mathcal{F}^{\alpha} \frac{\partial}{\partial p^{\alpha}} \right)$$

[A. K. Panda et al., JHEP 03 (2021) 216]

• For equilibrium distribution function, we use,

$$\begin{split} f_{\text{eq}}^{\pm}(x,p,s) &= \left(1 + \frac{1}{2}\omega_{\alpha\beta}\,s^{\alpha\beta}\,\tilde{f}_{0}^{\pm}\right)f_{0}^{\pm} + \mathcal{O}\left(\omega^{2}\right)\\ \text{with,} \quad f_{0}^{\pm} &= \left[e^{\beta\cdot p\mp\xi} + 1\right]^{-1} \quad \text{and,} \quad \tilde{f}_{0}^{\pm} = 1 - f_{0}^{\pm} \end{split}$$

[F. Becattini et. al., Annals Phys. 338 (2013); W. Florkowski et. al., Phys. Rev. D 97 (2018)]

• The dissipative quantities are defined as,

$$\begin{split} n^{\mu} &= \Delta^{\mu}_{\alpha} \int dP \int dS \, p^{\alpha} \left(\delta f^{+} - \delta f^{-} \right) \\ \Pi &= -\frac{\Delta_{\alpha\beta}}{3} \int dP \int dS \, p^{\alpha} p^{\beta} \left(\delta f^{+} + \delta f^{-} \right) \\ \pi^{\mu\nu} &= \Delta^{\mu\nu}_{\alpha\beta} \int dP \int dS \, p^{\alpha} p^{\beta} \left(\delta f^{+} + \delta f^{-} \right) \\ \delta S^{\lambda,\mu\nu} &= \int dP \int dS \, p^{\lambda} s^{\mu\nu} \left(\delta f^{+} + \delta f^{-} \right) \end{split}$$

where, $\Delta^{\mu\nu}_{\alpha\beta} = (1/2)(\Delta^{\mu}_{\alpha}\Delta^{\nu}_{\beta} + \Delta^{\nu}_{\beta}\Delta^{\mu}_{\alpha}) - (1/3)\Delta^{\mu\nu}\Delta_{\alpha\beta}$ is a traceless symmetric projection operator.

Dissipative Currents in Spin-magnetohydrodynamics:

 $\circ~$ So, the dissipative currents are :

$$\begin{split} X &= \tau_{\text{eq}} \Big[\beta_{X\Pi} \,\theta + \beta_{Xn}^{\alpha} \left(\nabla_{\alpha} \xi \right) + \beta_{Xa}^{\alpha} \dot{u}_{\alpha} + \beta_{X\pi}^{\alpha\beta} \sigma_{\alpha\beta} \\ &+ \beta_{X\Omega}^{\alpha\beta} \,\Omega_{\alpha\beta} + \beta_{XF}^{\alpha\beta} \left(\nabla_{\alpha} B_{\beta} \right) + \beta_{X\Sigma}^{\alpha\beta\gamma} \left(\nabla_{\alpha} \omega_{\beta\gamma} \right) \Big], \end{split}$$

where, $X \equiv n^{\mu}$, Π , $\pi^{\mu\nu}$, $\delta S^{\lambda,\mu\nu}$.

 $\circ~$ Evolution of spin-polarization tensor (obtained from spin-matching) is given by,

$$\dot{\omega}^{\mu\nu} = \mathcal{D}_{\Pi}^{\mu\nu} \theta + \mathcal{D}_{n}^{\mu\nu\gamma} \left(\nabla_{\gamma} \xi \right) + \mathcal{D}_{a}^{\mu\nu\gamma} \dot{u}_{\gamma} + \mathcal{D}_{\pi}^{\mu\nu\rho\kappa} \sigma_{\rho\kappa} + \mathcal{D}_{\Omega}^{\mu\nu\rho\kappa} \Omega_{\rho\kappa} + \mathcal{D}_{\Sigma}^{\mu\nu\phi\rho\kappa} \left(\nabla_{\phi} \omega_{\rho\kappa} \right)$$

 $\circ~$ Equilibrium magnetization tensor is given by,

$$M_{\text{eq}}^{\mu\nu} = a_1(T,\mu)\,\omega^{\mu\nu} + a_2(T,\mu)\,u^{[\mu}u_\gamma\omega^{\nu]\gamma}$$

[S.B., W. Florkowski, A. Jaiswal, A. Kumar and, R. Ryblewski, Phys. Rev. Lett. 129, 192301 (2022)]

Introduction & Motivation

Relativistic Spin-magnetohydrodynamics :

Summary and Outlook :

• Summary :

- 1. All the dissipative currents can depend on multiple hydrodynamic gradients.
- 2. Evolution of spin-polarization tensor affected by multiple hydrodynamic gradients.
- 3. Magnetomechanical effects exist in a spin-polarizable and magnetizable fluid.

• Outlook :

- 1. The consequence of "pure torque" should be explored.
- 2. Formulation of a causal spin-hydrodynamics is required.
- 3. Spin-hydrodynamics for spin-1 particles should be explored.

Thank you.

 $\circ~$ Magnetic field at z=0,~~b=7.4 fm, $~~\gamma=100,~~\sigma=5.8$ MeV. [Kirill Tuchin, LJMPE (2014)]

Kinetic Theory with Spin :

- To import spin in kinetic theory (KT), we start from the Wigner function $(\mathcal{W}_{\alpha\beta})$, that bridges the gap between QFT and KT.
- $\circ~$ For spin-1/2 particles we set up kinetic equation of $\mathcal{W}_{\alpha\beta}$ using Dirac equation,

$$\left[\gamma \cdot \left(p + \frac{i}{2}\partial\right) - m\right] \mathcal{W}_{\alpha\beta} = \mathcal{C}\left[\mathcal{W}_{\alpha\beta}\right]$$

[Xin-Li Sheng, PhD Thesis (2019), N. Weickgenannt et al, PRL 127 (2021) 5, 052301, PRD 100, 056018 (2019).]

• The Wigner function can be decomposed as,

$$\mathcal{W}_{\alpha\beta} = \frac{1}{4} \left(\mathcal{F} + i\gamma^5 \mathcal{P} + \gamma^\mu \mathcal{V}_\mu + \gamma^5 \gamma^\mu \mathcal{A}_\mu + \frac{1}{2} \Sigma^{\mu\nu} \mathcal{S}_{\mu\nu} \right)_{\alpha\beta}$$

 $\mathcal{F}
ightarrow ext{scalar component},$ $\mathcal{P}
ightarrow ext{pseudoscalar component},$ $\mathcal{V}_{\mu}
ightarrow ext{vector component},$ $\mathcal{A}_{\mu}
ightarrow ext{axial vector component},$ $\mathcal{S}_{\mu\nu}
ightarrow ext{tensor component}.$

where, the γ -matrices are the 4 \times 4 Dirac γ -matrices and, $\Sigma^{\mu\nu} = i\gamma^{[\mu}\gamma^{\nu]}$.

 $\circ~$ For spin-hydrodynamics it suffices to consider only ${\cal F}$ and ${\cal A}_{\mu}$ components.

[Xin-Li Sheng, PhD Thesis (2019)]

	Scalar Component	Axial Component
Kin. Eq.	$k^{\mu}\partial_{\mu}\mathcal{F}(x,k)=\mathcal{C}_{\mathcal{F}}$	$k^{\mu}\partial_{\mu}\mathcal{A}^{ u}(x,k)=\mathcal{C}^{ u}_{\mathcal{A}}$
RTA	$C_{\mathcal{F}} = \frac{(k \cdot u)}{\tau_{\text{eq}}} \Big[\mathcal{F}_{\text{eq}}(x, k) - \mathcal{F}(x, k) \Big]$	$C_{\mathcal{A}}^{\nu} = \frac{(k \cdot u)}{\tau_{\text{eq}}} \left[\mathcal{A}_{\text{eq}}^{\nu}(x, k) - \mathcal{A}^{\nu}(x, k) \right]$
Dist. fn.	$\mathcal{F}^{\pm}(x,k) = 2m \int_{p,s} f^{\pm}(x,p,s) \delta^{(4)}(k \mp p)$	$\mathcal{A}^{\mu}_{\pm}(x,k) = 2m \int_{p,s} s^{\mu} f^{\pm}(x,p,s) \delta^{(4)}(k \mp p)$

[S.B., W. Florkowski, A. Jaiswal, A. Kumar and, R. Ryblewski, PLB 814 (2021) 136096, PRD 103 (2021) 1, 014030]

$$\begin{split} \text{Momentum measure} &\to \quad \int_p (\cdots) \to \int \mathrm{d} \mathbf{P}(\cdots), \quad \int \mathrm{d} \mathbf{P} = d^3 p / (2\pi)^3 \, p^0. \\ \text{Spin measure} \to \quad \int_s (\cdots) \to \int \mathrm{d} \mathbf{S}(\cdots), \quad \int \mathrm{d} \mathbf{S} = (m/\pi \mathfrak{s}) \int d^4 s \delta(s \cdot s + \mathfrak{s}^2). \end{split}$$